Wetlands: at the heart of Disaster Risk Reduction

Dr. Christopher Briggs
Secretary General of the Ramsar Convention on Wetlands
What are wetlands?

- Definition: land areas that are flooded with water, either seasonally or permanently
 - Inland wetland types:
 - Marshes, ponds, lakes, fens, rivers, flood plains and swamps
 - Coastal wetland types:
 - Mangroves, saltwater marshes, seagrass beds, estuaries, lagoons and coral reefs
- Man-made wetlands including fish ponds, saltpans, rice paddies
- Ranging in size from less than one hectare to the massive Pantanal in Brazil, Bolivia, and Paraguay; (= the size of Guyana or Belarus)
Wetlands provide vital services and benefits for humanity

Water provision and purification
- At a very basic level, humans require 20-50 litres of water per day
- 2 billion people in Asia and 380 million EU residents depend on groundwater aquifers

Food supply
- Rice, grown in wetland paddies, is the staple for 3 billion people; 20% of global nutrition
- Average human consumes 19kg of fish each year; two–thirds of commercial fish breed and spawn in coastal wetlands; esp. mangroves and river estuaries

Biodiversity
- Home to more than 100,000 known freshwater species alone
- Essential for many amphibians and reptiles, for bird breeding and migration
- Wide range of important medicinal plants
Most fundamentally, wetlands are nature’s shock absorbers

- Coastal wetlands reduce impact of storms, hurricanes, tsunamis
 - Mangroves, saltmarshes act as buffer against storm surges
 - Coral reefs reduce speed and height of waves
 - Plant roots bind the shoreline, resisting erosion by wind and waves and providing a physical barrier to protect populated areas

- Inland wetlands act as a sponge – relieving both floods and droughts
 - Peatlands and wet grasslands alongside river basins absorb rainfall and control flow into streams and rivers
 - Peatlands alone also store twice as much carbon as all forests in the world!
The pace of wetland loss and degradation is alarming

- 64% of wetlands lost since 1900 and 87% lost since 1800

- Wetlands Extent Index is another indicator of this trend
 - 40% loss between 1970 and 2008 in more than 1000 surveyed sites

- 76% of populations of Wetland species lost in last forty years (2014 Living Planet Index-WWF)
For effective wetland restoration, establishing a baseline is essential

- Help of multiple partners and initiatives needed – Progress made
- Mangroves: Japanese Space Exploration Agency (JAXA)
 - Classifying mangrove communities focused on extent, structure, biomass and/or dominant/species or genus.
 - Data generated for insular and mainland Southeast Asia, northern Australia, Belize and the Amazon. Global maps of all mangroves across time sequences by 2016
- European Space Agency (ESA) is supporting an Africa-wide mapping of all wetlands – GLOBWETLANDS II
- NASA interested in carrying out wetland assessment mapping
- Ramsar working on mapping the State of the Worlds Wetlands Systems (SOWWS) as a baseline for targets and actions
Why healthy wetlands are at the heart of disaster risk reduction

• Number of people affected by flooding is set to triple by 2030 (WRI)
• Degraded wetlands can exacerbate floods, storms and droughts (eg New York & Sandy; New Orleans & Katrina)
• Mangroves removed from coastlines leave the way open for cyclones and storm surges to rampage inland
• Drained marshes and embankments that cut rivers off from their floodplains leave water with nowhere to go but downstream
 o Ends up finding the weakest point in flood defences
• Loss of forests, drainage of wetlands and silted up lakes all make rivers more likely to have flash floods
 o Prone to periods of both intense floods and low flows
Urban wetlands for flood control: Colombo, Sri Lanka

• In November 2010 Cyclone Jal dropped nearly 0.5 metres of rain on Colombo
 o 250,000 people displaced and US$50 million worth of damage
• Rainfall frequency has nearly doubled in the past 30 years
• World Bank provided US$213 million to the city to increase city’s flood resilience
 o restoring lakes and wetlands that act as natural water retention areas

Flooding in Colombo
(Sri Lankan Land Reclamation and Development Corp)
Restoring floodplains for DRR: Yangtze River region, China

- Increased frequency of floods in the central Yangtze River region from 1950s-1990s
- Dykes were built to control the floods
 - Construction in 1996 alone cost US$20 billion
- Still, floods in 1996 and 1998 caused up to US$5 billion and US$3.3 billion of damage
- New, integrated solution by government:
 - reforested hillsides in the upper catchment
 - removing the dykes along the central river
 - revert 2,900 km² of farmland back to natural wetlands to store the floodwaters
Wetland water storage against drought: Palau and Samoa

• Lake Ngardok Ramsar Site in Palau
 o Largest lake in Micronesia
 o provide waters for the new capital city of Melekeok
• Lake Lanoto’o Ramsar Site in Samoa
 o Crater lake which provides water for the capital city of Apia

Photos: Lew Young, Ramsar Secretariat
Managing flood vulnerability: Mozambique

• Nine major rivers drain through the country
 - Over 50% of population live in extreme poverty
 - 80% of population work in agriculture and fisheries
• Extreme climate events disrupt development
 - 7 major droughts and 7 major floods since 1980
• Integrated policy response since 1999
 - Flood early warning system integrates weather, water and climate change information
 - Disaster management system in place at multiple levels
 - Regional co-operation through Southern African Regional Climate Outlook Forum (SARCOF)

Photo: P.A. Petterson / Still Pictures
Integrated water resource management: Niger River Inland Delta, Mali

• One of the largest wetlands in the world
 ○ covers 60,000 sq. km
• Livestock, agriculture and fishing industries for 1 million people depend on its annual flooding
• Integrated management response:
 ○ Management plans for whole water cycle, including both drought and floods
 ○ Engineered wetlands to alleviate floods
 ○ Land use regulation
 ○ Community participation in determining uses

Photo: Wikimedia Commons/NASA
Disaster risk prevention initiative: Coastal zone wetlands, Benin

• Benin’s coastal zone is home to 60% of the country’s population, and accounts for 70% of its GDP

• Project targets wetland towns of Grand Popo and Ouidah adjacent to Ramsar Site 1017 (Basse Vallée du Couffo, Lagune Côtière, Chenal Aho, Lac Ahémé)
 o Mangroves, swamp, flooded grassland, palm formations
 o Local fishing employs 10,000; harvesting of crabs and oysters reserved exclusively for women

• Multi-faceted programme:
 o Two-day training for technical staff, youth, elected officials
 o Establishment of early warning mechanisms
 o Promotion of solar energy at village level
Ramsar Convention: the first major international environmental treaty

- Aims to promote wise use of wetlands that can form a global basis for disaster risk reduction efforts
- 168 Parties commit to wise use and naming “wetlands of international importance” and protecting these Ramsar Sites
- New Strategic Plan for 2016-2021 with clear Vision: “Slow, Stop and Reverse the Loss and Degradation of Wetlands”
- Four Goals to tackle roots of loss and degradation and restore wetlands:
 I. Addressing the drivers of Wetland Loss & Degradation
 II. Effective conservation and management of the Ramsar Site Network
 III. Wise use of all Wetlands
 IV. Enhancing Implementation of the Strategic Plan
Thank you!

Dr. Christopher Briggs
Secretary General of Ramsar Convention