

Institute for Natural Resources in Africa

Modelling impact of climate change on maize (Zea mays L.) yield under rainfed condition in sub-humid Ghana

By

Benedicta Y. Fosu-Mensah (PhD)

Visiting Scholar UNU-INRA

Institute for Natural Resources in Africa

Outline of Presentation

□ Introduction

□Objectives

☐ Materials and Methods

Introduction Materials & methods Model framework

- Cereal production is a major component of small-scale farming in West Africa.
- Maize is one of the major staple food in Ghana, contributing 20
 % of calories to the diet.
- Decreasing trend in maize yields due to continuous cropping and low fertilizer use.

Source: wordpress.com

Materials & methods

Model framework

- As farmers battle with low soil fertility, climate change and variability is another major threat to food security.
- More frequent and intense extreme weather events (heat waves, drought, floods).
- Extreme vulnerability and limited adaptation capacity; major threat to food security.

Source: time.com Source: crs-blog.org

Materials & methods

Model framework

Research Gap

➤ Little has been done on the use of models (eg. APSIM) to assess influence of nutrient management on maize yield.

➤ Little is known on the impact (quantifying) of climate change on maize yield in sub-humid Ghana using A1B and B1 scenarios.

Materials & methods

Model framework

Research question

What impact will climate change have on future maize yield in sub-humid Ghana?

Materials & methods

Model framework

❖General objective

The overall objective of the research is to model impact of climate change on maize yield under rainfed condition.

Specific objectives

- ➤ Evaluate the capability of APSIM-maize model to simulate growth, development and yield of maize.
- Quantify the impact of climate change on maize yield

Materials & methods

Model framework

□ Study site

- Ejura, located in Ashanti region (150 – 250 m).
- ➤One major food producing area

Sub-humid climate; Bimodal

rainfall pattern.

- ✓ major & minor rainy seasons.
- ✓ Mean annual rainfall 1300 1400mm.

Materials & methods

Model framework

Field trials for APSIM parameterisation and evaluation

- > Two sites, major & minor seasons in 2008
- ➤ Four levels of N (0, 40, 80, 120 kg ha⁻¹)
- ➤ Three levels of P (0, 30, 60 kg ha⁻¹)
- ➤ Two maize cultivars Obatanpa (medium), Dorke SR (Short season)
- > Experiment layout in RCBD with 3 replicates.

Materials & methods

Model framework

❖ Field measurements:

Initial soil sampling

Time series biomass sampling, LAI using sun scan, soil moisture measurement

❖ Field observations

Time of 50% emergence, flag leaf, tasseling and silking, and date of physiological maturity.

Final harvest: 4X3 m² harvested and grain yield calculated.

Materials & methods

Model framework

APSIM – A farming systems modelling framework

Materials & methods

Model framework

Systems simulation over time

Materials & methods

Model framework

Systems simulation across different scales

crop – farm – catchment - region

Systems simulation of the cropping, agroforestry systems and native woodland

Materials & methods

Model framework

APSIM Simulation Scenarios

- ➤ Historical climate data(1980-2000) use as base line.
- ➤ MM5/ ECHAM4 use in generating future daily climate data (2030-2050) from Institute for Meteorology and Climate Research; Garmisch.

❖A1B Scenario -

Future world of very rapid economic growth, global population that peaks in mid-century and declines thereafter, and the rapid introduction of new and more efficient technologies.

❖B1 Scenario –

As in A1 storyline, but with rapid change in economic structures toward a service and information economy, with reductions in material intensity and the introduction of clean and resource-efficient technologies.

Materials & methods

Model framework

- ❖ APSIM Long-term Simulation Scenarios
- Maize sowing conditions:
- √ sowing windows 15 March to 10 May
- √ 20 mm rainfall within 5 days
- Two crop rotation
- ✓ <u>Maize-cowpea rotation</u> (maize during major season and cowpea during minor season)
- ✓ <u>Maize-fallow rotation</u> (maize during major season and fallow during minor season)

Expected outcome

- Results will be use to exploy management options to reduce impact of climate change on yield.
- Recommendations and government intervention will be made to assist farmers adapt to claimte change.

Progress report

- Review of relevant literature on the topic and information needed to write policy brief.
- ➤ Evaluation of the ability of APSIM-maize model (version 7.3) to simulate grain yield, total biomass, total N and P uptake as observed in experimental data at Ejura.
- Downscaling of future weather data using MM5
- ➤ Long term simulation run using historical weather data and simulated future (2030 2050) weather data for two cropping systems.

Work Plan from August to October 2011

Activities	Time (Week)								
	3 rd wk	4 th wk	1st wk	2 nd wk	3 rd wk	4tth wk	1st wk	2 nd wk	3 rd wk
	August	August	September	September	September	September	October	October	October
Statistical Analysis of									
simulated yields									
Writing of working paper									
Writing of Policy Brief									
Seminar on findings									
Writing of paper for publication									

Data: NCEP/NCAR Reanalysis Project, 1959-1997 Climatologies Animation: Department of Geography, University of Oregon, March 2000