The United Nations
University

UNU-IIST

International Institute for
Software Technology

UTP and sustainability

Yifeng Chen and J. W. Sanders

August 2010

UNU-IIST Report No. 440




UNU-IIST and UNU-IIST Reports

UNU-IIST (United Nations University International Institute forf8eare Technology) is a Research and Training
Centre of the United Nations University (UNU). It is basedMacao, and was founded in 1991. It started opera-
tions in July 1992 UNU-IIST is jointly funded by the government of Macao and the govemief the People’s
Republic of China and Portugal through a contribution toltNJ Endowment Fund. As well as providing two-
thirds of the endowment fund, the Macao authorities als@isugNU-1I1ST with its office premises and furniture
and subsidise fellow accommodation.

The mission ofUNU-IIST is to assist developing countries in the application anceld@ment of software tech-
nology.

UNU-IIST contributes through its programmatic activities:

1. Advanced development projects, in which software techniques supported by tools are agplie
2. Research projects, in which new techniques for software development are tiyated,

3. Curriculum development projects, in which courses of software technology for universitiesléveloping
countries are developed,

4. University development projects, which complement the curriculum development projects inyirgy to
strengthen all aspects of computer science teaching irersgities in developing countries,

5. Schools and Courses, which typically teach advanced software developmentriegles,
6. Events, in which conferences and workshops are organised or stggpbyUNU-I1IST, and

7. Dissemination, in which UNU-IIST regularly distributes to developing countries informatian interna-
tional progress of software technology.

Fellows, who are young scientists and engineers from dpirglccountries, are invited to actively participate in
all these projects. By doing the projects they are trained.

At present, the technical focus OfNU-IIST is onformal methods for software developmentUNU-IIST is an
internationally recognised center in the area of formalhods. However, no software technique is universally
applicable. We are prepared to choose complementary tpadsior our projects, if necessary.

UNU-IIST produces a report series. Reports are either Rescfﬁechnica, Compendi or Adminis-

trative. They are records dNU-1IST activities and research and development achievementsy bfatme
reports are also published in conference proceedings amagts.

Please write taJNU-IIST at P.O. Box 3058, Macao or viditNU-1I1ST’s home pagehttp://www.iist.unu.edu, if
you would like to know more aboWtNU-IIST and its report series.

Peter Haddawy, Director



v .«\

-
gla The United Nations
2 University

UNU-IIST

International Institute for
Software Technology

P.O. Box 3058

Macao

UTP and sustainability

Yifeng Chen and J. W. Sanders

Abstract

Hoare and He's approach to unifying theories of programming, UTP, ézardyears old. In spite of the
importance of its ideas, UTP does not seem to be attracting due interestuiduse of this article is
to discuss why that is the case, and to consider UTP’s destiny. To do salyisas the nature of UTP,
focusing primarily on unification, and makes suggestions to expand its use.
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Preamble /

1 Preamble

The history of science is a maze of roads not taken; of ideas not glr¥oe can't drift in style from
Shanghai to Beijing in a Zeppelin. Nor do you explain the evolution of the #agithg Lamarckism. The
Theremin has not replaced the Stadivarius. Your laptop bears little reserelit@Babbage’s difference
engine. Those analogue computers, the astrolabe, slide rule and Bifdrisntial analyser, have all
been interred in a graveyard for nondigital devices. And wither quactmputing?

Itis interesting to speculate on the reasons for lack of success. Thelyexsagial: too much has already
been invested in alternatives (the world has overloakedstandard calculysn spite of its capturing
the Leibnizian intuition of infinitesimals and boasting a first-year textbook [20}) the reasons may
be commercial: a more powerful competitor has its own alternative or an diterndfers better prof-
itability (VHS quickly dominated Betamax [40]). Of course most often the neaswe simply scientific
(perpetual motion machines, the geocentric solar system (or was it s&Rjesind phlogiston).

Science evolves by following pathways at the expense of those neglémtadhatever reasons. Seldom
does a choice between paths have the opportunity to be weighed up publicly.

Is UTP adead-end? The purpose of this paper is to reflect on and frdimoussion of just that question.
The importunate reader might skip Section 2, in which the problem confroklifig is considered;
Section 3, in which UTP is ‘kick started’; Section 4, in which alternative UTéjgrts are considered;
and instead move straight to the Conclusions.

2 UTP at the crossroads

2.1 The evidence

UTP is struggling. It seems that the previous two conferences (UTPadD6rham [9] and UTP2008
in Dublin) required considerable organisational skill on the parts of Sewme and Andrew Butterfield
respectively. Recall the difficulty attracting interest in the present edespite Shengchao Chin’s best
efforts. And witness the continued poor acceptance rate for papens.nrany Ph.D. theses has UTP
supported? Are there case studies that make non-specialists want to Aisetiere special conference
tracks that have the effect of incorporating UTP into the wider community?

For comparison, think of the manner in which Z [12, 38] became establighedearly case study of
IBM’s CICS [18]; the large number of M.Sc. and Ph.D. theses (fromo@kfalone); its integration
into the wider community of Formal Methods and the blossoming of case studm@ssupport and

its adoption by industry; organisation of user-group meetings (which owehrtmuJonathan Bowen);
expansion and re-use (for instance object-Z [8]); and the proliferaticourses and books. A similar

1The reader is invited to a complementary parlour game: list ever-mdgmifisant things which nonetheless prevail. Let’s
start with lorem ipsum
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UTP at the crossroads 8

story could be told for the theories VDM, CSP, CCS, ...

It is now a dozen years since the UTP textbook [17] was published. Zirstarted with a whimper
rather than a bang, comparison is difficult; perhaps for Z a similar time wouwlel élapsed by the mid
90s. By then it appeared stronger and to be expanainghmore rapidly than UTP does now. Surely
the time has come to reflect on the situation.

Let's start, well, at the beginning. What might be expected of theoriesagframming? Why seek to
unify them? Finally, how might unification be expected to go?

2.2 Theories of programming

Once upon a time, in the early daysafcoL, a theory of programming consisted of the syntax of a pro-
gramming language, an advance that has been accorded thenarfur John Bachus and Peter Nauer.
That ‘theory’ helped programmers who, at a time when new programmingéaes were appearing fast,
furious and in a wide range of styles, could otherwise learn a new laegudy by following examples.

But compiler writers required more: a semantics by which to validate and centipair products. At
first, semantic descriptions were informal. The caselaioL 60 provoked the transition to formality:
its reports [30, 3] of 1960 and 1963 in natural language were (ineviRalokticised as being ambiguous
[21]. The variety of semantic approaches was evident from the staakiamatic semantics was given to
Pascal [14] in 1971; an operational style was usedfér[23] in 1971 andaLcoL 68 [39]in 1975; and
denotational semantics was demonstratediopoL-like languages [25] by 1976. A theory of program-
ming consisted, by the mid 1970’s, of a language’s syntax accompaniedémantic description. It
seems fair to say that the unfortunate divergence between programnditigeametical computer science
dates from this time.

During the first half of the 1970’s programmers, now in thkerof humble software engineers, required
yet more from a theory of programming. Support was requiredgystem engineerindor verification
against a more asbtract specification of a design that was either pogsited{amed by incremental
development in a manner supporting the top-down approach of engigeerin

Spec= Design C Design C ... C Design, = Impl

(including algorithmic refinements over the same state space, and refinementlistinct spaces by
data representation). The important feature of the ‘domain of discoigréieat it be powerful enough
to express specifications, code, and the combinations that arise at inigarledels of design. The
semantic model is thus required to span various levels of abstraction anddortked on a (reflexive
and) transitive notion of refinement.

That approach has since retained its importance because it enables:
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UTP at the crossroads 9

e a design to be verified against a specification (without an understanfiicmntormance, what
does a specification mean?);

e abstract interpretation and model checking, firstly of the abstract madedecondly of the prop-
erty being checked against it;

e comprehension of a system incrementally, by layers of successivelydiitest, that approach has
been traditionally used qualitatively to describe complex software (for ebeapprating systems
[22]), and now is able to be interpreted quantitatively;

e stepwise system derivation, of the kind begun by Dijkstra in the 1970'sifqple programs but
now extended to systems, through all layers of abstraction using laws arn@assistance;

e comprehension of new behaviours (like concurrency, probability and tihen intuition alone is
too risky as a basis for programming;

e program analysis of the usual kinds: data-flow, constraint-bassttaabinterpretation, type sys-
tems and effect systems [32].

This time theoreticians took longer to respond, though the first step was immehtiat®75 Dijkstra
provided the predicate transformer model [7], then at just one levdistfation and without explicit use

of laws or the refinement relation. Over the next fifteen years the concepts Dijkstra had introduced
for code were extended to the more general commands appropriatétéeargoengineering (unbounded
nondeterminism, angelic choice and unenabled commands (‘miracles’)§31, 29], and data refine-
ment [35]) and studied in both the predicate-transformer and binarjferetaodels [15]. The result was,

by 1990, what two decades later is still recognised as a ‘theory of gmoging’:

1. a semantic domaif¥,C), incorporating a partial order representing refinement
2. amapping - ]| from the syntactically-defined ‘programming’ language to the semantic dakhain

3. accompanying laws that are sound (and ideally complete) with respeetsertantic model.

2.3 Unification

But whilst theoretical support for such theories of programming is sat@fg applications remain scant.
Examples include: functional programming languages [27] (cartesiaedloategories); the guarded-
command language [15] (predicate transformers or binary relatiors)egs algebras CSP [37] (failures
and divergences) and CCS [26] (transition trees); and receptbaegs theory (for use in asynchronous
devices) [19] (failures and divergences).

The difficulty is that, as new features are incorporated, the complexityasesedue to the interaction
between the new feature and (potentialygchexisting feature. The incorporation of probability with
nondeterminism [24] is certainly a success; &tidam [36] has been of limited success semantically, due
to interactions between state, nondeterminism and synchronisation.
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UTP at the crossroads 10

Fortunately in many paradigms of computation, a new feature interacts inrelyesiecumscribed man-
ner with previous features. So there is hope that a satisfactory themiyecabtained incrementally, by
adding new features gradually to existing theory.

That, of course, is what is meant lificationin UTP, and why the approach is so vitally impor-
tant. Without it there seems little chance of providing a patently correct, cérapsible, semantics for
something likeoccam which combines, as already observed, various features that intenatcivially.
Without it that list of successes seems destined to remain short. But using iight hope to describe
occam, for example, in layers that correspond to sequential programs, tenudeistic programs, reac-
tive programs, and finallgccam processes. Indeed that has been one of the principle motivations for
UTP, and a measure by which its success can be judged.

To demonstrate its utility, a unification of theories of programming ought to explicather pressing
paradigms of computation. Examples include

service computing

e real time

e object orientation (including mutable objects)
e component-based systems

e adaptivity and other self-system properties

e hybrid and cyberphysical systems

e machine learning

e guantum computation

e game-theoretic semantics

e hardware systems

¢ biologically-inspired systems.

If the unifying approactlis as important as has just been reasoned from a scientific viewpoint, whiy ha
not been more widely adopted in a dozen years?

2.4 The three-chapter problem

It has been observed that many students of UTP do not progre<Shmgster 3 of Hoare and He's eleven-
chapter text [17]. The implication is that by being exposed to only the firdytharcent of the book
(85 pages of 282), their view of UTP is dominated by relations, predicatétha healthiness conditions
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UTP at the crossroads 11

Hi, for 1 <i < 4. Indeed there does seem to be evidence, amongst students anedseanhers, for the
accuracy of this harsh claim.

Can the ‘three-chapter problem’ be related to our lack of progress igingitheories? Can that in turn
be part of the reason behind the limited adoption of UTP? Since there seemsdfi#eohsystematic
progress in the area of providing theories of contemporary programnithgwvuse of unification, some
investigation seems required.

2.5 What might might be expected of unification?

It has been argued in Section 2.2 that a theory of ‘programming’ consiatsesmantic domain (partially
ordered), an interpretation of the language in that domain and a collectimunfl laws for the language
constructs. The purpose of this section is, in view of the UTP programmegagemingly stalled, to

consider afresh what might be expected from unification.

The expectation is that, by viewing theories hierarchically, a simple th@asyo be embedded in a more
complexC in a manner that enable®s semantics to be imported. So the semantics of the more complex
C, as far as it concerns just the features it shares with the simple langljdge already been provided

in 4; only features unique t@ (lying outside the range of the embedding) need now be considered.
The theory ofC has been unified with that o via the embedding. Examples will be familiar to UTP
aficionadosseveral are considered in Section 3.

The partial ordef= of each theory captures conformance. As usual there are operatogsponding to
its infimum 1, andsupremumLl. The former arises from abstraction, or information hidivig, local

blocks and it is preserved by the embeddirgas is required for lifting a semantics that includes-iff
for any family £ (empty, nonempty and finite, or infinite) in the abstract donyjin

(1) en =r{eE|E€E}.

That condition is equivalent tobeing the embedding in an embedding-projection fgim) known as a
Galois connectiorand defined by the equivalence

(2) ealC,c = alLgrc.

The case in whicl is injective embeds? in C and so forms the basis of the hierarchical approach. Then
the connection is called@alois embeddingsee Figure 1.

So Galois connections and embeddings must be expected to play a célatril unifying theories.

Moreover, in lifting semantics to a more detailed level, the embeddingst preserve further combina-
tors. For instance preservation of sequential composition,

€.(rss) = erse.s,
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A fresh start 12

aCmcin (4,Cq)

Figure 1: A Galois embeddingc(e, 15 4, C) relates abstract and concrete theories.

enables to be used to lift the behaviour of a sequential composition from one levektadht in the
hierarchy. Similarly for the other combinators, including recursion (amtd&giteration. That way, laws
in 4 arere-usedin C: a major benefit of unifying theories.

It will then be important to characterise the lifted spaaa.c as a subset of” and furthermore to
determine—if possible—the manner in which it generafesFor that determines th€-semantics in
terms of the4-semantics.

But now we find ourselves firmly in Chapter 4, without having mentioned ipa¢els or healthiness
conditions. How can that be? From our present viewpoint, predicatedynferm the basis of certain
models (predicate transformers, for example!); and healthiness comsditiermerely used in defining
domains. Suddenly both have disappeared from the centre of the stag@abnwe expect unification
to be performed.

Is it possible that there is an alternative entry to UTP which starts from Gedoisections—Chapter
4—instead of Chapter 3? If so, how does it go and what then is the impertdi@hapter 3? Perhaps by
following it the ‘three-chapter problem’ might be avoided.

3 A fresh start

3.1 Computability: theory P

The theory of Computer Science began in the 1930s with the various mogeélgbbrt, Turing, Kleene,
Church, Markovet al.,, of the concept of @omputation(or of recursiveness). By modelling a ‘mech-
anism’, mathematicians had for the first time to model the possibility of nonterminafiotay such
computations are callgatedeterministidoecause from any initial state they are either nonterminating or
deterministic, and written using syntax like that of Figure 2. The set of atlgiegministic programs
over state spack is written PredetX).
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A fresh start 13

abort nontermination
X:=e assignment, with expressien
Pif belseQ conditional
PsQ sequential composition
WF recursion

Figure 2: Syntax for the spag@edetof predeterministic programs. Assignment is assumed to be prede-
terministic and recursion to be with respect to a continuous function.

Our intention is that sequential composition be associative with identity the assigskip (which
changes no variable). More interestingly, if a nonterminating progracepes or follows another pro-
gram the result remains nonterminating:

(3) abort;P = abort = Psabort.

Of course recursion includes iteration as tail recursion.

The time-honoured model [5] fd?redet X) consists of partial functions oX, with refinement as exten-
sion; it is denotedP(X):

P(X) = (X X,D).

It is a domair} with least element the empty partial functidr},, with maximal elements the total func-
tions and with compact elements the partial functions having finite domains. eRti@ngic mapping is
given in Figure 3. Both its well-definedness, and soundness of the dagvsoutine.

By starting with the ‘historical’ theoryP(X), explicit consideration of healthiness conditions has been
avoided: predeterminism is captured enitrely by the tpe X.

3.2 An alternative: theory Q

A popular alternative, in view of models soon to come, is to replace the pautiatibns with total

functions whose range includes a ‘virtual’ element for nontermination.sTach partial function is
made total orX by mapping each element outside its domain to the virtual eletheRurthermore, for
the new model to be closed under sequential composition, it must be ‘hormgEnthe virtual state.

2 By ‘domain’ here is meant a complete partial order in which each eleimém supremum of its compact approximations.
Recall that an elemertis compactiff any directed setE that exceeds it contains an element which does sofif_IE then
Je: E-kC e. In the case of partial functions, the domain conditions m&dr:?-f = N{k: P | #(domk) < e A KkCf }.
Indeed without loss of generality thekeanges over singleton partial functiongd#mk) = 1.
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A fresh start 14

labort]y = {}
[x:=¢€]e = Ax:X-e
[Pif belseQy = AXx:X-[P]e.xif b.x else[Q]¢.X
[PsQle = [Qlleo[P]e
[mFle = U{f:2(X)|FfCf}

Figure 3: The? semantics of predeterministic programs, in which progkaie denoted by a partial
function [Pl and variablex is used for both its argument and the state of the program. Recursion is
the least fixed point oF, as given by the first recursion theorem of Kleene (for instancelaorem
10.3.1).

must also belong to the domain. Let

X, = XU{J_}

Now for the left zero law in (3) to hold, it suffices for each denotafiaf a program to betrict (with
the flat ordering oiX ):

f.lL=1.

For the right zero law in (3) to hold, it suffices foralso to beup-closedat that bottom element. Such
relational behaviour is most easily captured by defining, for a fundtiod — X, its ‘(relational) strict
and up-closed extension ¥o ' by

(f)y == fU{L}xX,

(an idea that is extended from functiohnto relations in Section 3.3).

Writing pre.f for the set of elements of not mapped by the extensiéno L,
pref (= {x:X|fx #L},
in order fore to be isotone, the partial order of conformance must translate in the new taode

fCf = (f|pref =f'[pref).

Thus

Q(X> = ({(f)i_ ’ HfZXHX},E),
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A fresh start 15

Figure 4: Using to translate the semantics of predeterministic programs famQ .

and the translation function is

€:P(X) — Q(X)
ef =fu{(x,L)|xeX, \domf}.

Theorem 1  The translation functioa : (X) — Q(X)

1. is an isotone bijection so that in particutan.€ is the carrier ofQ(X) ;

2. ensures that the doma@(X) has least element the constant functiopnmaximal elements the
functionsf with pre.f = X and compact elements the functidnwith pre.f finite;

3. preserves total functionsd. assignment): if is total then(e.f) [ X = f;

4. preserves compositior:(f og) = (e.f)o(e.9) .

Now the Q semantics oPredetis obtained by translating th® semantics with the embeddirggas
indicated in Figure 4. Theorem 1 ensures accuracy of the result asdrpation of the laws; the result

is given in Figure 5.

It is worth emphasising that the semantics is not defined anew, but tranisje¢dtbm 2. For example

[abortsP] o
= definition of Q semantics, Figure 4

€.[abortsP]»
= law of P semantics

€.[abort] »
= definition of Q semantics again

[abort] q .
3.3 Nondeterminism: theory D

Nondeterminism arises for several reasons. Firstly, it might simply beenhér functionality being
specified: locate in an array (wherex may occur more than once); find a minimum spanning tree
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A fresh start 16

= [QeelPle
MFle = W{f:QX)|FfCf}

Figure 5: TheQ semantics of predeterministic programs, inferred from&semantics (Figure 3) using
the technique of Figure 4.

[abort]q = Ax:X-L
[x:=¢€lq = e&Ax:X-e

[Pif b eIseQ]]Q = AX:X-[P]q.xif b.x else[Q]q.x
[Ps HQ

(where there may be several), a shortest path, a Hamiltonian circuit,econ8ly, it might be the result
of abstracting the mechanism determining a choice made at a lower leveltodiction: a random-
number generator whose seed and mechanism of generation areledn@éadly, it might be assumed
in order to ensure that reasoning is local: a choice determined by testind@ ghriable might be
assumed to be a nondeterministic choice in order to avoid global reasoning.

Predeterministic programs are extended to be fimitalyndeterministic by augmenting the language
Predetwith a binary combinator fonondeterministic choice

PMQ.

The set of such programs over state spgéewritten Prog(X) and the relationship of conformance still
written C . Its connection with nondeterminism is, as already observed,

PCP = PNP =P.

Important laws involving programs and nondeterminism include:

(4) Priabort = abort
) (PNQ)sR (PsRM(Q
6 Ps(QMR) = (PsQMI(P

R)
R).

o
9
)
9

The first characterises the Dijkstra-Hoare approach: in order t@agtes entirely correct implementa-
tions, a theory must ensure that the (nondeterministic) possibility of an eridensified with certain
error. In (5) the demonic choice responsible for the nondeterminism is firatlen both sides, which
are therefore indistinguishable. Law (6) is more subtle because the d¢hoiaae first on the right, but
on the left only afteP ; nonetheless, the two programs are expected to have identical beh@&doause

3More precisely, the nondeterministic choice is now considered of angmpty finite set of programs. That is equivalent
to the nondeterministic choice of two programs, by induction and the lawssotativity, idempotence and commutativity of
binary nondeterministic choice.
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A fresh start 17

P on the left-hand side is a program and not a more general kind of compuitmmangelic choice)
able to offers behaviour which the later demonic choice can exploit).

What is the relationship betwedtrog(X) and Predet{X), i.e. between programs and predeterministic

programs? The following law ‘quantifies’ the relationship by expressimt) @aogram as the (not nec-
essarily finitely) nondeterministic combination of its predeterministic refinements.

(7) VP:Prog(X)-P = n{Q:PredefX) | PCQ}

A ‘dual’ law, extended from predeterministic programs to programs andéhanalogous to the ‘domain
law’ in Footnote 2, expresses each program (and so in particularpeedbterministic program) as the
supremum of the compact programs (defined in that footnote, and to bectdrésed semantically in
Theorem 2) it refines:

(8) VQ:Prog(X)-Q = L{K:Prog(X) | KC Q, K compact.
A compelling model of nondeterministic programs [15] consists of allowing thaehés of the model
Q(X) to be multivalued, sinc€(X) already captures nontermination with the valugand now would

capture nondeterminism as multi-valueness of a relation. Then the partéalarcbnformance, ‘at least
as deterministic as’, between such relations would be containment (as sets)

rcs = rDs.

Let us determine the healthiness conditions on such a relatnX, , using the same method as for
Q(X). For the right zero law to hold in (3), it suffices foto be total onX, as were the elements Qf(X)

(9) Vx:X-3IX X -xrx.

For the left zero law, again it suffices foto map_L to all of X, .

In order forabort to be minimum in the refinement ordering of containment, Law (4), it suffices fo

xrl = vx X, -xrx.

Finally in order for the least upper bound, or intersection, of a chaireafthy relations again to be
healthy, as required for recursion, it suffices for the image of eath tetdbefinitary: to be either all of
X, or nonempty and finite

(10) {X:X | xrX} # X, = 0<#{X:X, | xrX} <.
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Evidently being nonempty supersedes totality (9).

Those conditions can be abbreviated using the notafien X for the type of all relations oiX and
r.(| x|) for the relational image af atx

r.(x)) = {xX: X, | xrx'}.
That model is calledD(X), and has orderin@ and carrier set

1rl
{r:X <X, | . XrlL=r(x))=X -
1 L (VX.XJ_'(r.(X)ixL:>O<L#I’.(X)<°°>)

There is a Galois connection from the modg(X) for predeterministic programs to the mode(X) ,
whose embedding is

D(X)

QX)) —
=f U (X \pref)xX,.

€
(11) ef :
In other words,

x(ef)x = (xepref = fx=x).

Its adjointttr denotes the largest partial functionrinvhich ‘accounts for all of’s results at its argu-
ments’. It may be thought of as the largest partial function which apprdaesna Q (X), total relation
r. Indeed that is the form far expected by adjunction:

ir = U{f:Q(X) |efDr}.
Then:

Theorem 2  The functione : Q(X) — D(X)

1. is an injection that preserves arbitrary suprema fiQX) underC to D(X) under2>: more
generally, Definition (11) o€ makes sense if its argument is merely a relation, and thearfpr
subsefF of the carrier ofQ (X) (not just those having a well-defined supremufm e Q(X)),

eUF = n{ef|feF};
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2. has adjointt: D(X) — Q(X), thusgc(e, 1t Q(X), D(X)), where
(12) r = {(xy):r|y#L A VX #L-xrX=xX=y}
which is (2, C)-continuous: ifRis a >-directed subset ab(X) then

(13) mNR = U{mr | r eR};

3. has range which generat®$X) under nonempty finite unions:

D(X) = {UF | F Cran.g is nonempty and finitg;

4. ensures that the domaifi(X) has least element the universal relationXan maximal elements
the (total) functions and compact elements the relatrowith pre.r finite (extending Definition
(4) from functions to relations); thus each D is the supremum of compact elements which it
refines (a fact which is weaker than 3 since each compact eleménisoh nonempty finite union
of elements of ram);

5. preserves sequential compositiar(idy ) = (idy) ;| ande.(fog) = (£.9)s(e.f).

It is convenient to define an embedding from relationsXoto those onX, to capture that part of the
healthiness conditions relating to initial virtual state:

()1 (XeX) = (XL« X))
(r)L =ru {L}XXL

Since(-), preserves arbitrary intersections (though only nonempty unions) it issGedmn (X < X, D)
to (X, < X,D). Its adjoint is restriction tX:

T (XL < X1 ) — (X< X)
TS 1= sN(XxX),

a projection that preserves arbitrary intersections (as well as arbitnéops as expected from the basic
property of Galois connections) and is surjective. The embeddihg is injective (as expected from
properties of Galois connections) and preserves sequential composition

(14) (rss). = (r)rs(s)r-

The semantic spac®(X) is comprehensively more complex th@tX). Our task, then, is to define the
semantics oProg(X) in D(X) in such a way that the simplicity of the(X) semantics is not obscured.
That is achieved—of course—by lifting withvia Q(X) .
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[[abort]]@ = XL XXL
[X:=€¢lp = AXx:X-€),
[Pif belseQp = {(xX) |x[P]pX if b.x elsex[Q]pX }
[PsQlo = [Plos[Qlo
[WFlp = n{d:D(X)|F.d2>d}
[PNQlp = [PloU[Qlp

Figure 6: Important properties of the relational semantic$fog. FunctionF is monotone orD.

For eactP: Prog(X) its relational semantidi]| », is defined by Law (7) using union for nondeterministic
choice and the lifting (Figure 4), under the Galois connection of Theoreshthe Q semantics oP’s
predeterministic refinements:

(15) [Plo = U{e.[Qle | Q€ PredetX) A PEQ}.

In particular, ifP is itself predeterministic then

For exampleskip, because it is deterministic, has semantics

[skip] »

= definition of D semantics
e.[skip]q

= Q semantics wittskip abbreviatingx := x)
€.(Ax:X-X)

= definition ofe
(AX:X-X) .

A similar argument works foabort; as does the fact théabort] q is the least element a@ (X) ande
preserves minima (a basic property of Galois connections).

Thus the?D semantics oProg(X) is defined by lifting onPrede{X) and otherwise by union. Now the
properties, that before were a matter of definition in theemantics of Figure 3, are simply inferred,
though with a little more work than for thQ semantics as inferred in Figure 5; see Figure 6.

Consider, for example, sequential composition. The proof relies orfedinistic computations whose
P semantics consists of a singleton partial function (recall Footnote 2); tumthputation terminates
from just a single state. WritinBredeg (X) for the set of such computations, f8rP’ : Prog(X),
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[PsP]o

= (15)
U{e.[R]q | Re PredetX) A PsP C R}

= Footnote 2 and set theory
U{e.[Rlq | Re Predei(X) A PsP'C R}

= property ofPredef (X)
U{e.[R]q | 3Q,Q € Predei(X) A\PCQAP CQ AR=Q;Q'}

= 1-point law

U{e.[Q3Qq | Q.Q € Predei(X) \PCQAP CQ}

€ preserves sequential composition (Theorem 2, Part 5)

U{e.[Qlg3e[Qq | Q.Q €Predei(X) \APEQAP CQ'}

= set theory

U{e.[Qllq | Qe Predei(X) APC Q} s
U{e.[Q]lq | Q € Predei(X) AP CQ}
= Footnote 2 again

U{e.[Qllq | Q€ PredetX) APCQ} 5
U{e[Qq | Q € PredetX) A\PCQ'}
= (15)

[Plos [Plo -
The case of nondeterminism is similar using instead (in the third step) the fyrtpety forQ : Predei(X) ,
POMPCQ = PCQV PLQ.

The proofs of Laws (4) to (6) are immediate from basic set theory.

There is an alternative to this approach to the semanti€sagj(X) based on Law (7) withu for non-
determinism. It assigns semantics by structural inductio® oRrog(X), ‘building in’ Equation (15)
at each step. But then Law (7) must be checked and so the amountlofsaeguivalent. The former
approach has been chosen because it seems to extend better to more domgalies, like probabilistic
domains.

In summary, a Galois connection has been used to liftifsemantics, and laws, 0.

3.4 Angelic choice: theoryT

Just as Software Engineering brought to light (demonic) nondetermin@tiesformal development
process discussed in Section 2.2 revealed the utility of ‘partially enabledpetations and ‘angelic’
choice. We call such computations, which extend programsmands

Report No. 440, August 2010 UNU-IIST, P.O. Box 3058, Macao



A fresh start 22

magic the command that is never enabled
nF nondeterminstic choice ovefr
LF angelic choice ovefr

Figure 7: Syntax completing the spaCemn{X) of commands over state spaXethe unenabled com-
mand, and arbitrary nondeterministic and angelic choigeis an arbitrary set of commands.

An example of a partially-enabled command is choice of an element from ahset Wwappens to be
empty; computation cannot be started—is not enabled—in a manner that iduabmputation that
fails to terminate. This situation arises when a procedure for choosingraemiéom a set is used in a
context which ensures the set is nonempty; but when developed ‘in ist)dlie empty case must also
be considered.

Angelic choice is simply supremum, the dual of nondeterminism. A simple example is provided by
the angelic choice of two consistent commands. The fsthoosex nondeterministically between 0
and 1 whilst the secon@ chooses nondeterministically between 1 and 2. Their angelic cRaic®is
the weakest program stronger than both:= 1.

If RandShad not been consistent in that example then their angelic choice, theensunr;, would not
have been a program. The supremum of an inconsistent set of commandsrismand (though not a
program) that is never enabled. Notation for the command that is neveledraaid for angelic choice
are introduced in Figure 7, as is our last ingredient of command spdiitragy (rather than just binary)
nondeterminism. The set of commandsXis writtenComn{X). As usual, the relation of conformance
is C, satisfying (4). Of course equivalently:

PCP = PUP =P.

With the extension from programs to commands, the previous laws must biee\er correctness.

Law (5) remains valid: the nondeterministic choice is made initially on both sides@ride demon

resolving the nondeterminism, confronted with the same choices, prodecsartte behaviours. But for
just that reason its partner (6) does not remain valid, and must be weghkenR S T : Comn{X) ,

(16) Rs(SNT) C (ReSM(R:T).

Refinement there must of course hold by monotonicity. But equality may faiedimee demon (having

memory but not prescience), has more choices the later it acts. Thahriafewer choices on the right
and so fewer behaviours than on the left. The choices coincide if exaaiti@ results in no angelic

choice by which the demon might profit: ¥is free of angelic choice.

Important laws involving the new combinators include:

(17) RUmagic = magic
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(18) magiccR = magic
(19) (RU§ST = (RsT)U(SsT)
(20) Rs(SUT) O (RsSU(R:T).

The first, (17), says thahagic is indeed dual t@bort and so is the greatest (or ‘most refined’) com-
mand (and thus equals the empty angelic choi¢é ). The second says that an unenabled command
cannot be enabled by any sequential successor @wan). In (19) the choice is made initially on both
sides so, reasoning as above (with the angel in place of the demon)ityeolds. But (20) is dual

to (16): on the right the angel acts early and—having prescience buh&mory—has more choices
and so produces more behaviours; alternatively, the refinement fatlgwsonotonicity. The choices
coincide if execution oR results in no nondeterministic choices by which the angel might profisf
predeterministic.

The relationship between commands and programs is given by the law anslmg(8) (evidently the
analogue of (7) fails): for any commaiiti

(21) R = u{P:Prog(X) | PCR}.

In fact the domain property holds: without loss of generality, progParan be assumed to be compact.

In the relational modeD(X), angelic choice must be intersection and partial enabledness must therefo
be captured by partial-ness of a relation. But that means the healthineditiaro of totality, (9), no
longer holds. Because nondeterminism is now arbitrary, the finitary conditi®) also fails (at both
ends of the inequality, in view of lack of totality). Thus all that remains is strggrend upclosure.
The extension t@(X) consisting of relations satisfying just strictness and upclosure, but witsetine
criterion of conformance, is calle (X) .

The spaceR (X) is a domain and a complete lattice with same least elemeht 4% but greatest element
({}). and compact elements the cofinite ‘subsetsXofx X, . Moreover it is a Boolean algebra under
the complement — (X, x X, \r), . However the natural embedding #f(X) in & (X) is not Galois.
Otherwise its adjointt would map the greatest element®(X) to a greatest element @?(X); but no
such element exists.

Nonetheless the injection @p(X) in K (X) does generat& (X) under arbitrary intersections, reflecting
Law (21) (recall that from Theorem 2 nonempty finite unions were usegterateD(X) from Q(X),
reflecting Law (7)). Thus the carrier set®f(X) equals

{NF |FCD(X)}.

The relational semantics @omn{X) may be thought of—like the semantics ferog—as follows.

4Since the natural embedding from(X) to ® (X) preserves arbitrary unions, why is it not Galois by adjunction? Because
suprema ink (X) (arbitrary unions) are not the same as supremA(X); consider for example the empty union.

Report No. 440, August 2010 UNU-IIST, P.O. Box 3058, Macao



A fresh start 24

[magic]g = ({}H.
MF]x = U{[Plx [Pc ¥}
Lz = 0{[Plz [Pe¥}

Figure 8: Relational semantics f@omn{X); this augments the extension of the semantics in Equation
(15) from D to R using the natural embedding.

1. Firstly, the® semantics equals th® semantics for commands that are code (8kg). In other
words theR semanticextendghe 9 semantics.

2. Secondly, theR semantics is inferred from th® semantics by extending the combinators of
code to commands (as in the case of sequential composition, or even grbdrateterministic
choice, onProg from Prede). This is possible because the natural embedding preserves those
combinators.

3. Thirdly, it is defined for the (new) combinator of angelic choice by ettiche intersection.

Thus the® semantics ofCommis provided by Equation (15) (thus extended) and Figure 8 (which also
includes arbitrary nondeterminism and its empty casagic).

The proofs of Laws (17), (18) and (20) are now straightforwaidgibasic set theory. For example, for
Law (20),

[P35 (QUR)%

R semantics ofl ands from Figure 8
C set theory

= R_semantics of andLI again

Moreover equality holds in the middle step if, pointwise, the relafiefy either maps tal (and hence
to all of X,) or is single valued: as required, the comma&nd predeterministic.

Unfortunately, for Identity (19) the analogous argument establishesonlynless relationfR] ¢ is a
total function; in other words, commarilis deterministic. Furthermore in Law (16) equality always
holds (the existential quantification efdistributing theU of nondeterminism). It is inferred that the
relational modelR (X) does not fully capture angelic behaviour.

Thus stretching the relational mod&l(X) from programs to commands reveals deficiencies. The sit-
uation is analogous to the introduction of nondeterminism: the m8@€) was simply not expressive
enough and so was extended9X). Now with the introduction of angelic choice, the relational model
is in turn not expressive enough and must be extended.
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Again, a more detailed model is needed. One possibility is the ‘binary multirelatioalel [33] of
Rewitzky. Instead thpremiermodel of sequential semantics, Dijkstra’s predicate-transformer model, is
chosen.

The predicate-transformemodel (Dijkstra [7]) views each command as transforming postconditions

(predicates on final states) to preconditions (predicates on initial ste@s)ommandP, the operational
interpretation of its transformer semantjdd) - is: for any postconditiolg and any initial state

[P]lr.9.x holds iff P terminates fronx in a state satisfying.

Of course that is sufficient to motivate a formal definition of the semanticso&uinterest here lies in
reusing the relational semantics to infer the transformer semantics, adlifiat aspossible.

Let (pred X, <) denote the space of all predicatée.(conditions) onX partially ordered by implica-
tion. Thepredicate-transformemodel, 7 (X), of commands consists of those predicate transformers
t: pred X — pred X that aremonotone

g<q = tg<tqd,

ordered under the lifting of the ordering on predicates

t<t = vq:predX-t.q<t.qg.

ThenT (X) is a domain and complete lattice with least and greatest elements the consttioh&fatse
andtruerespectively. Its compact elements are the transforbfersvhich there is a finite subsetC X
such that

(22) vVq:predX-t.g = V{gx|xeF}.

The spaceZ (X) is endowed with an involution (see Back and von Wright [2])

t.q :=—t.0q

that preserves sequential composition but exchanges nondeterministangéhc choice, enabledness
with termination andnagic with abort.
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The embedding from relationg (X) to transformersZ (X) is traditionally called theveakest precondi-
tion

wp: R(X) — T (X)
wp.r.gx = VX : X, -xrxX = (X #L AgX).

It is Galois, but with orders reversed. Writitigl, <)~ for (4, >),

Theorem 3  The functionwp: R (X) — T (X)

1. is an injection that preserves arbitrary suprema f@gmto 7~ : for any subseRC R,

(23) wp.UR = A{wpr | reR};

2. has adjoint theelational projectionrp : 7 (X) — & (X) completing a Galois connectiogc(wp, rp; R~,7"),
where

(24) x(rpt)X = x=1 Vv Vq:predX-t.gx=qgx

which of course preserves infima: for any subBef the carrier ofZ (X),
(25) rp.VT = Nn{rp.t | teT}

but moreover preserves suprema:

(26) rp. AT = U{rpt|teT};

3. satisfies merely
(27) wp.(rns) > (wp.r)V(wp.s)

rather than equality (in contrast to the identities (23), (25) and (26));

4. has rangean.wp consisting of the conjunctive transformers,
(28) teranwp = Vq,q :predX-t.(qAq) =t.qAatd,
and that generates the carrierBfX) under angelic choice:

(29) 7(X) = {VF | FCranwp};

5The spacer' (X) is also generated by the compositionagiwith its involution [2]—vt- Ju,v: ran.wp-t = u* o v—but that
fact appears less useful here because the transformer involutiontteerifting of an involution on relations [34].
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5. ensures that the domaifi(X)™ has least element the constant functha: pred X - true, great-
est element the constant functidu : pred X - falseand with compact elements the transformers
analogous (because of the reversal of orders) to those descrif#2);in

6. preserves sequential compositiovp.(idy) | = id,eqx andwp.(rgs) = (wp.r)o (wp.s), as does
its adjointrp in the reverse direction.

As expected from adjunction, the projectignt defined by (24) is the largest relation that approximates
t underwp.

The semantic spacg(X) appears deceptively simple although the manner of expressing a computation
is radically different from that in relations. Naturally a Galois connectiorseduto bridge the gap!

The Galois connection can be used to lift much of the relational semantics &iamaers following
our standard approach. As usual for Galois connections, it maps steeleanent{ }), in R (X)™~ to

the least element, the constant transfortnee, in 7' (X)~ thus providing the semantics ofagic. For
sequential composition,

= definition of 7' semantics
= definition of ® semantics, Equation (15) and Figure 8
= property ofwp, Theorem 3.6

= definition of 7' semantics again

[Pl o [Q]-

It maps arbitrary unions i (X) to arbitrary conjunctions iff' (X), by (23), thus providing the semantics

of arbitrary nondeterminism. But the lack of equality in (27) meanswipatan not be used to lift angelic
choice fromR (X) to 7 (X). That must simply be defined to be disjunction. The resulting transformer
semantics is given in Figure 9.

The proofs of Laws (17), (18) and (19) are now straightforwaidgislementary logic. For Law (20),

[Ps(QUR)+
= 7 semantics ofl andg from Figure 9

e

Pl o ([Qllr v [Rl7)

v

monotonicity

Plzo[Qlz) V ([Plz e [Rlz)

—
=

7T semantics of andLl again
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[abort]s := false

[magic]s := true

[X:=€]sr := Aqg:predX-qle/x|

[Pif belseQ)y = [P]y if belse[Qr

[PsQlr = [Plre[Qls
WF]r = Vv{t:T(X)|Ft<t}
MF)r = ~APlr|PeF}
LFle = V{[Plr|PeF}

Figure 9: Transformer semantics for commands, inferred from Figusng thewp Galois connection.

[(PsQ U (PsR)].

Moreover equality holds in the middle step if the transforrfféf+ is disjunctive; in other words, the
commandP is predeterministic.

3.5 Refinement calculus

For theoretical purposes a computation is conveniently described asle girdicate; a form familiar
to this audience i$p A ok) = (P A oK). Similarly for the purposes of specification; a familiar form is
the body of a Z specification [38]. But for development towards codg nitore convenient to reveal the
precondition or predicate from which termination is assured. That idea, first prommtafDL [4], is
incorporated into the ‘refinement calculus’ [28], the main focus of ELChapter 3.

A specification statement

X:[p,P]

consists of drame xof variables (a list containing all those that may change¢ondition p, a predicate
whose free variables denote the initial state of the computation and whicksegyis the states from
which termination is certain, andmostcondition P, a binary predicate in initial and final states which
specifies the computation when it terminates. Enabledness is capturedsiyiitgathose initial states
from which termination in a final state is possible

pXo/X] = 3IX-P(xo,X)

(the substitution okg for x in the precondition is a technicality required by the decision toxs® free
variable inp).
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The semantics of a specification statement is given (see, for exampleaf8Jjredicate transformer

£.¢: [0.P])- = PA (Vx-P = q)[x/%d],

and the ordering on specification statements is that inherited for8o, sincee is in fact surjective,
specification statements are ‘the same'7asFinally, having gained experience of unification and the
benefits it affords, our path has returned to the context of [17]'p@hne.

3.6 Chapter 3 revisited

It may now be appreciated that, from the viewpoint of unification, [171®gter 3 contains two unifi-
cations, performed almost effortlessly because they occur within the gaetkcative, model [13]. To
proceed in reverse order, a model of ‘feasible specification statenedefined as the subspace of single
predicates satsifying all four healthiness conditibtisA H2 A H3 A H4. A model of ‘not-necessarily-
feasible specification statements’ is defined by just the first tittées H2 A H3. And the general space
of designs of use whenever enablednesk, and terminationpk’, are observable, is defined by just the
first twoH1 A H2.

Following the approach of the present paper, the original model offgaion statements as predicate
transformers [28] is adopted, and Galois connections are defined o te@those other models. Chapter
3 is highly elegant in making those connections actually injections. It doey sgibg a predicative
semantics with implication for refinement, using single-predicates (comparedheifhandP in the
previous section) and moreover by establishing an isomorphism betwaamdaws and healthiness
conditions on the semantic space of predicates, which it then capturedsoyeclaperators. Little won-
der, perhaps, that the reader may be distracted from the task of unificatio

Indeed most of that is subservient to the primary concern of unificatiomat\ig the further benefit of
ensuring that a model has that particular form? Of primary importance is atioficof new paradigms
of computation and the use of the unifying framework to simplify reasoningtaiealistic case studies.
Surely that kind of endeavour is of secondary importance and may evkmpiecious from outside the
tight-knit UTP community.

That is why starting from Chapter 4 has been advocated, and only latenirg to Chapter 3 to see the
special nature of the relational/predicative injections.

4 Unifying further

The field of program semantics is specialised and any single approach te TR even more so. Much
of our hope for UTP must therefore lie in further applications of unificatiod the techniques UTP
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provides, outside the confines of program semantics. What for progireg languages wasemanticss
now thought of abehaviour

The best examples are the complex systems currently preoccupyinguist $ystems like cyberphysical

systems and those from biology and finance. Can the hierarchicalaapbe used to describe them
incrementally in such a way that desirable properties ‘accumulate’? Thadwuake accessible ‘closed
form’ analysis, to complement simulation and model checking which appear tteetsole techniques

used at present.

The theories provided for incremental development, as summarised atthé®ection 2.2, are founded
on auniformdomainX of discourse. A typical example is provided by the refinement calculughwh
makes explicit the types of all variables appearing in the development. Tiheis avdevelopment step
involves a data refinement, both abstract and concrete spaces arethciud But data refinement is
a special kind of increment which by definition prohibits observation ofrmftion encapsulated in the
concrete data type, which is instead accessed only using the same opeasatibe abstract type.

In the setting of complex systems it may well be impractical to conceive the dotmaiminitio. Instead,
the complexity of the system may be revealed incrementally by successivis Gaioections, following
the approach of unification.

Here is an example from hardware design.

4.1 Beyond programming

The Boolean model of signal values provides a satisfactory accounardivare devices at one level of
abstraction. Unfortunately it is quite abstract so, for realistic design, siionga(typically inHSPICE
based on lower-level models are required. One of the difficulties is iningithe detailed model with
the Boolean model. This seems like an ideal test for the UTP approach.

For example in the Boolean model, a wire connected to power by a p-typéstaaris accurately mod-
elled as being high if the gate of the transistor is low. But if the p-type transssteplaced by an n-type
transistor, the Boolean model predicts the same result, which is wrong: teésanly weakly high,
a result not able to be expressed in the model (but which is fatal beeacisain of such transistors
successively reduces the signal until it is not merely weakly high, byt low

A further observation—of ‘drive’—needs to be incorporated in the modlkis has been achieved ele-
gantly by Hoare [16]. Each device is modelled first at the Boolean legdk(standard) but then at the
driven level (this is new) and properties of the models ensure that thésfusified in the second. In
fact both are embedded in predicates and the second extends the firststgléhof Chapter 3. Again,
the situation is as in Figure 4, with the language being that of deviedise Boolean model an@ the
driven model.

TheBoolean modeis given by the set of predicates whose free variables are wire naoresbtme set
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[pow]z := out
[ntran]y = g=(s=d)
[powl],s = [powis A dout
= outA dout
) [ntran]]
[ntran],, = ( gA 59/?(—5\/ -d) = (0s=d&d) )

Figure 10: Two devices, power and an n-type transistor, seen in twasiemmadels: the Boolean model
‘B and the driven modet!.

sayW and whose ordering is equivalence (since implication is too weak for tred rtesason)
B(W) = (preW,=)

For example the deviggowwhich connects outpudutto power is modelled by the predicaiat = true.
An n-type transistontran with gateg, sourcesand draind is modelled by the predicate which states that
if the gate is high then source and drain equilibrate. See Figure 10.

In the ‘driven model’ an extra Boolean observadleis included for each wirav in the Boolean model,
representing whether or not that wire is driven to its value. For exampleuitpeit of power is always
driven and so its description in the driven model is its Boolean descriptiojoiced withdout = true.
The driven description of the n-type transistor consists of its Booleasriggen conjoined with a predi-
cate relating drive of wires to their values: if the gate is driven high andresthece or drain is low then
when they equilibrate, as is guaranteed from the Boolean descriptionateequi-driven. See Figure
10.

Thus thedriven modelextends the Boolean model by also containing a predicate whose freblearia
are both the wires and thedversion. Its order conjoins the Boolean order with the assurance that the
driven predicaté\’ of the finer device is stronger than thAt,of the coarser:

H(W) = (preW x pre.( WUW), <)

where

B=B
(B,A) < (B,4) = ( N ) .

Those examples suffice to confirm the example of weak signals mentioneel. &t our concern here
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is with the unification. The Boolean mod#lis embedded in the driven modéf by injection; and the
ordering of# is stronger than that aB. Thus the embedding is universallyjunctive and the models
are related by a Galois embedding.

Suppose it is required to model greater device detail. For example capaciteay be modelled as
persistence of drive—say after a cycle’s delay. That is capturedthiycamodel, the capacitive model,
in which the driven model is embedded. If, again, it is necessary tomessuaut time in more detail, a
fourth model could be defined in which one cycle is replaced by a clocthada signal value and its
single-cycle delay are replaced by a signal with values at discrete timelsso®on. The state information
required in more detailed models may be much more detailed than that of the abstdals (just
Booleans, in this case), but nonetheless the relationship is mediated by ¢ailoections.

The case being made is that the techniques developed in UTP stretchdadhlegories of programming.
They may be advantageously used to model, and reason about, compersys

4.2 The Philosopher’s stone?

When will the UTP approach, of unification, not be helpful? When the mergal approach fails: when
each feature is coupled so tightly with the others that the full behaviountaeriteased out’ into strands
enabling it to be understood by approximation.

Consider a physical example. Thebody problem [6] requires the determination of the motiomof
bodies, given their momenta at one instant and assuming Newtonian intesac8pacification of the
problem is easy, by differential equation; the challenge lies in finding théi@e. The problem is
difficult because it must take into account all possible interactions betiieehodies. There seems
to be no scope for unification unless approximation is allowed. In Phygigspgimation is a natural
step to take because small changes in the momenta of the bodies lead to sng@bkahahe solution.
So one can imagine progressively more accurate solutions. In the cdsei@te systems that kind of
approximation is of little use (how do you approximate a bit?), and any methodmstesatd approximate
complexityexactlyat each level of abstraction, through a series of abstractions. Inaihsg sinification
is our version of approximation in Physics. In thidody it seems unachievable.

In the terms of Computer Science, thédody problem is a distributed system in which each process
interacts with each other. That, then, is going to be difficult to analyse incitatheunless there is some
very special structure to the interactions. But if a process interacts wighraasmall number of others
(for example its nearest neighbours, if they are distributed spatially) thiioation might be expected.

5 Conclusion

Systems are inherently complicated. Since detail cannot ultimately be avoidediethmust be as
simple as possible. In the areas of traditional engineering, where relaifisrizetween observables are
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assumed to be differentiable, approximation by simpler behaviours whidglexapyate closely that of
the real system, provides a successful method. It has been argueahifiation, describing complex
behaviour exactly at varying levels of abstraction, is the equivalernhéodiscrete systems of Computer
Science.

In studying a complex system the first stage, then, must be to study its dgibsisganore real time, the
hybrid nature of the system and so on). But then must come a stage in wdtahisl restored. Then
unification is our only technique. We conclude that every effort musetber be made to sustain the
theory of unification, UTP.

Unification might be appreciated as one of two ‘orthogonal’ techniqueat dfmodularisationstruc-
tures descriptions at a given level of abstractionificationstructures complexity incrementally across
levels of abstraction. The former is reasonably well understood, is stiglpeoductively pursued at the
research level (information hiding), and is the foundation of almost ati@®mé& Engineering. The UTP
community appears to be guardians of the latter.

A single case study of the incremental approach has been presentedgritom predeterministicie.
computable) computations through finitely nondeterministic programs to angeliaraitrary nonde-
terministic commands. The journey could readily have been continued to inplatebilistic com-
putations and even quantum computations (to go in just one direction). Atohtdst increments the
semantic intuition and laws have been able to be lifted by Galois connectionse\Wia¢ has not been
the case, valuable insight has been provided by the property that tailsx@mple failure ofvp to map
intersections to disjunctions).

Though founded on unification, UTP offers further delightful distrawtialong the way. Many of them
are compressed in to Chapter 3, and so the case has been made that, iy tedtdntion be gently
deflected to Chapter 4, then its predecessor viewed in context. Perbgtmhal semantics’ is not as
important as might be thought from Chapter 3. As has just been seentiarS&dt is not at alrequired
for unification.

It has been suggested that unification offers a way of analysing corapégms, not just theories of
programming. Indeed it has been claimed that only by diversifying froogrmam semantics will the
techniques of UTP be properly and widely appreciated. It would be persuasive were the method
to be used on complex systems currently being analysed by simulation or ninedé&irng, like hybrid
systems arising from cyberphysical, biological or financial study. Bithimthe confines of program
semantics, it would be interesting to unify the standard models with more receleisntike the game
theoretic model.

Many important topics have been overlooked in this paper. Just two aersthof Galois connections
for calculationby use of ‘trading’; and data refinement in the domain of discourse amiaderms of
a Galois connection.

What, then, lies in store for UTP? It has been argued that the approtadtesd, and the techniques it
provides for unifying theories, are scientifically indispensible. But itdlas been acknowledged that
important ideas wither. Is UTP becoming a road less travelled, destinethdotescence? The former
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appears to be true; the latter may be up to us. It seems obvious that (unkesediscovered) the
approach will die without serious action: more courses might be taughqtiog unification; more
students be engaged in MSc. and PhD. degrees based on UTP; maratianifoe performed, mastering
new paradigms, making non-specialists want to use the method—good apfiestare provided by
hybrid, cyberphysical and biological systems; and an undue amoweffarsf not be spent on second-
order concerns. Otherwise, UTP will be as familiar in 20 years’ time as eppélins, Theremins and
the slide rule.

What we call the beginning is often the end
And to make an end is to make a beginning.
The end is where we start from.

We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.

Little Gidding [10]
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