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Abstract

Hoare and He’s approach to unifying theories of programming, UTP, is a dozen years old. In spite of the
importance of its ideas, UTP does not seem to be attracting due interest. The purpose of this article is
to discuss why that is the case, and to consider UTP’s destiny. To do so it analyses the nature of UTP,
focusing primarily on unification, and makes suggestions to expand its use.
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Preamble 7

1 Preamble

The history of science is a maze of roads not taken; of ideas not pursued. You can’t drift in style from
Shanghai to Beijing in a Zeppelin. Nor do you explain the evolution of the Panda using Lamarckism. The
Theremin has not replaced the Stadivarius. Your laptop bears little resemblance to Babbage’s difference
engine. Those analogue computers, the astrolabe, slide rule and Bush’sdifferential analyser, have all
been interred in a graveyard for nondigital devices. And wither quantumcomputing?1

It is interesting to speculate on the reasons for lack of success. They maybe social: too much has already
been invested in alternatives (the world has overlookednonstandard calculus, in spite of its capturing
the Leibnizian intuition of infinitesimals and boasting a first-year textbook [20]). Or the reasons may
be commercial: a more powerful competitor has its own alternative or an alternative offers better prof-
itability (VHS quickly dominated Betamax [40]). Of course most often the reasons are simply scientific
(perpetual motion machines, the geocentric solar system (or was it universe?) and phlogiston).

Science evolves by following pathways at the expense of those neglected, for whatever reasons. Seldom
does a choice between paths have the opportunity to be weighed up publicly.

Is UTP a dead-end? The purpose of this paper is to reflect on and promote discussion of just that question.
The importunate reader might skip Section 2, in which the problem confrontingUTP is considered;
Section 3, in which UTP is ‘kick started’; Section 4, in which alternative UTP projects are considered;
and instead move straight to the Conclusions.

2 UTP at the crossroads

2.1 The evidence

UTP is struggling. It seems that the previous two conferences (UTP2006in Durham [9] and UTP2008
in Dublin) required considerable organisational skill on the parts of SteveDunne and Andrew Butterfield
respectively. Recall the difficulty attracting interest in the present event,despite Shengchao Chin’s best
efforts. And witness the continued poor acceptance rate for papers. How many Ph.D. theses has UTP
supported? Are there case studies that make non-specialists want to use it?Are there special conference
tracks that have the effect of incorporating UTP into the wider community?

For comparison, think of the manner in which Z [12, 38] became established:the early case study of
IBM’s CICS [18]; the large number of M.Sc. and Ph.D. theses (from Oxford alone); its integration
into the wider community of Formal Methods and the blossoming of case studies; tool support and
its adoption by industry; organisation of user-group meetings (which owe much to Jonathan Bowen);
expansion and re-use (for instance object-Z [8]); and the proliferation of courses and books. A similar

1The reader is invited to a complementary parlour game: list ever-more insignificant things which nonetheless prevail. Let’s
start with ‘lorem ipsum’.
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UTP at the crossroads 8

story could be told for the theories VDM, CSP, CCS, . . .

It is now a dozen years since the UTP textbook [17] was published. SinceZ started with a whimper
rather than a bang, comparison is difficult; perhaps for Z a similar time would have elapsed by the mid
90s. By then it appeared stronger and to be expandingmuchmore rapidly than UTP does now. Surely
the time has come to reflect on the situation.

Let’s start, well, at the beginning. What might be expected of theories of programming? Why seek to
unify them? Finally, how might unification be expected to go?

2.2 Theories of programming

Once upon a time, in the early days ofALGOL, a theory of programming consisted of the syntax of a pro-
gramming language, an advance that has been accorded the nameBNF for John Bachus and Peter Nauer.
That ‘theory’ helped programmers who, at a time when new programming languages were appearing fast,
furious and in a wide range of styles, could otherwise learn a new language only by following examples.

But compiler writers required more: a semantics by which to validate and compare their products. At
first, semantic descriptions were informal. The case ofALGOL 60 provoked the transition to formality:
its reports [30, 3] of 1960 and 1963 in natural language were (inevitably?) criticised as being ambiguous
[21]. The variety of semantic approaches was evident from the start: anaxiomatic semantics was given to
Pascal [14] in 1971; an operational style was used forPL/I [23] in 1971 andALGOL 68 [39] in 1975; and
denotational semantics was demonstrated onALGOL-like languages [25] by 1976. A theory of program-
ming consisted, by the mid 1970’s, of a language’s syntax accompanied by asemantic description. It
seems fair to say that the unfortunate divergence between programming and theoretical computer science
dates from this time.

During the first half of the 1970’s programmers, now in the rôle of humble software engineers, required
yet more from a theory of programming. Support was required forsystem engineering: for verification
against a more asbtract specification of a design that was either posited, or obtained by incremental
development in a manner supporting the top-down approach of engineering

Spec= Design0 ⊑ Design1 ⊑ . . . ⊑ Designn = Impl

(including algorithmic refinements over the same state space, and refinements over distinct spaces by
data representation). The important feature of the ‘domain of discourse’is that it be powerful enough
to express specifications, code, and the combinations that arise at intermediate levels of design. The
semantic model is thus required to span various levels of abstraction and to befounded on a (reflexive
and) transitive notion of refinement.

That approach has since retained its importance because it enables:
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UTP at the crossroads 9

• a design to be verified against a specification (without an understanding of conformance, what
does a specification mean?);

• abstract interpretation and model checking, firstly of the abstract model and secondly of the prop-
erty being checked against it;

• comprehension of a system incrementally, by layers of successively finerdetail; that approach has
been traditionally used qualitatively to describe complex software (for example operating systems
[22]), and now is able to be interpreted quantitatively;

• stepwise system derivation, of the kind begun by Dijkstra in the 1970’s for simple programs but
now extended to systems, through all layers of abstraction using laws and machine assistance;

• comprehension of new behaviours (like concurrency, probability and time) when intuition alone is
too risky as a basis for programming;

• program analysis of the usual kinds: data-flow, constraint-based, abstract interpretation, type sys-
tems and effect systems [32].

This time theoreticians took longer to respond, though the first step was immediate. In 1975 Dijkstra
provided the predicate transformer model [7], then at just one level of abstration and without explicit use
of laws or the refinement relation⊑. Over the next fifteen years the concepts Dijkstra had introduced
for code were extended to the more general commands appropriate for software engineering (unbounded
nondeterminism, angelic choice and unenabled commands (‘miracles’) [31, 28, 1, 29], and data refine-
ment [35]) and studied in both the predicate-transformer and binary-relation models [15]. The result was,
by 1990, what two decades later is still recognised as a ‘theory of programming’:

1. a semantic domain(X ,⊑), incorporating a partial order representing refinement

2. a mapping[[ · ]] from the syntactically-defined ‘programming’ language to the semantic domainX

3. accompanying laws that are sound (and ideally complete) with respect to the semantic model.

2.3 Unification

But whilst theoretical support for such theories of programming is satisfactory, applications remain scant.
Examples include: functional programming languages [27] (cartesian-closed categories); the guarded-
command language [15] (predicate transformers or binary relations); process algebras CSP [37] (failures
and divergences) and CCS [26] (transition trees); and receptive-process theory (for use in asynchronous
devices) [19] (failures and divergences).

The difficulty is that, as new features are incorporated, the complexity increases due to the interaction
between the new feature and (potentially)eachexisting feature. The incorporation of probability with
nondeterminism [24] is certainly a success; butoccam [36] has been of limited success semantically, due
to interactions between state, nondeterminism and synchronisation.
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UTP at the crossroads 10

Fortunately in many paradigms of computation, a new feature interacts in a severely circumscribed man-
ner with previous features. So there is hope that a satisfactory theory can be obtained incrementally, by
adding new features gradually to existing theory.

That, of course, is what is meant byunification in UTP, and why the approach is so vitally impor-
tant. Without it there seems little chance of providing a patently correct, comprehensible, semantics for
something likeoccam which combines, as already observed, various features that interact nontrivially.
Without it that list of successes seems destined to remain short. But using it, one might hope to describe
occam, for example, in layers that correspond to sequential programs, nondeterministic programs, reac-
tive programs, and finallyoccam processes. Indeed that has been one of the principle motivations for
UTP, and a measure by which its success can be judged.

To demonstrate its utility, a unification of theories of programming ought to explicate further pressing
paradigms of computation. Examples include

• service computing

• real time

• object orientation (including mutable objects)

• component-based systems

• adaptivity and other self-∗ system properties

• hybrid and cyberphysical systems

• machine learning

• quantum computation

• game-theoretic semantics

• hardware systems

• biologically-inspired systems.

If the unifying approachis as important as has just been reasoned from a scientific viewpoint, why has it
not been more widely adopted in a dozen years?

2.4 The three-chapter problem

It has been observed that many students of UTP do not progress pastChapter 3 of Hoare and He’s eleven-
chapter text [17]. The implication is that by being exposed to only the first thirty percent of the book
(85 pages of 282), their view of UTP is dominated by relations, predicates and the healthiness conditions
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Hi , for 1≤ i ≤ 4. Indeed there does seem to be evidence, amongst students and even researchers, for the
accuracy of this harsh claim.

Can the ‘three-chapter problem’ be related to our lack of progress in unifying theories? Can that in turn
be part of the reason behind the limited adoption of UTP? Since there seems little hope of systematic
progress in the area of providing theories of contemporary programming without use of unification, some
investigation seems required.

2.5 What might might be expected of unification?

It has been argued in Section 2.2 that a theory of ‘programming’ consists of a semantic domain (partially
ordered), an interpretation of the language in that domain and a collection ofsound laws for the language
constructs. The purpose of this section is, in view of the UTP programme having seemingly stalled, to
consider afresh what might be expected from unification.

The expectation is that, by viewing theories hierarchically, a simple theoryA is to be embedded in a more
complexC in a manner that enablesA ’s semantics to be imported. So the semantics of the more complex
C , as far as it concerns just the features it shares with the simple languageA , has already been provided
in A ; only features unique toC (lying outside the range of the embedding) need now be considered.
The theory ofC has been unified with that ofA via the embedding. Examples will be familiar to UTP
aficionados; several are considered in Section 3.

The partial order⊑ of each theory captures conformance. As usual there are operatorscorresponding to
its infimum, ⊓, andsupremum, ⊔. The former arises from abstraction, or information hiding,via local
blocks and it is preserved by the embeddingε—as is required for lifting a semantics that includes⊓—iff
for any familyE (empty, nonempty and finite, or infinite) in the abstract domainA ,

ε.⊓E = ⊓{ε.E | E∈ E} .(1)

That condition is equivalent toε being the embedding in an embedding-projection pair(ε,π) known as a
Galois connectionand defined by the equivalence

ε.a⊑C c ≡ a⊑A π.c.(2)

The case in whichε is injective embedsA in C and so forms the basis of the hierarchical approach. Then
the connection is called aGalois embedding; see Figure 1.

So Galois connections and embeddings must be expected to play a central rôle in unifying theories.
Moreover, in lifting semantics to a more detailed level, the embeddingε must preserve further combina-
tors. For instance preservation of sequential composition,

ε.(r #s) = ε.r # ε.s,
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ε.a⊑ c in (C ,⊑C )

a⊑ π.c in (A ,⊑A )

ε π

Figure 1: A Galois embeddinggc(ε,π; A ,C ) relates abstract and concrete theories.

enablesε to be used to lift the behaviour of a sequential composition from one level to the next in the
hierarchy. Similarly for the other combinators, including recursion (and hence) iteration. That way, laws
in A arere-usedin C : a major benefit of unifying theories.

It will then be important to characterise the lifted spaceran.ε as a subset ofC and furthermore to
determine—if possible—the manner in which it generatesC . For that determines theC -semantics in
terms of theA-semantics.

But now we find ourselves firmly in Chapter 4, without having mentioned predicates or healthiness
conditions. How can that be? From our present viewpoint, predicates merely form the basis of certain
models (predicate transformers, for example!); and healthiness conditions are merely used in defining
domains. Suddenly both have disappeared from the centre of the stage onwhich we expect unification
to be performed.

Is it possible that there is an alternative entry to UTP which starts from Galoisconnections—Chapter
4—instead of Chapter 3? If so, how does it go and what then is the importance of Chapter 3? Perhaps by
following it the ‘three-chapter problem’ might be avoided.

3 A fresh start

3.1 Computability: theory P

The theory of Computer Science began in the 1930s with the various models, by Hilbert, Turing, Kleene,
Church, Markovet al., of the concept of acomputation(or of recursiveness). By modelling a ‘mech-
anism’, mathematicians had for the first time to model the possibility of nontermination.Today such
computations are calledpredeterministicbecause from any initial state they are either nonterminating or
deterministic, and written using syntax like that of Figure 2. The set of all predeterministic programs
over state spaceX is writtenPredet(X).

Report No. 440, August 2010 UNU-IIST, P.O. Box 3058, Macao



A fresh start 13

abort nontermination
x := e assignment, with expressione

P if b elseQ conditional
P#Q sequential composition
µ.F recursion

Figure 2: Syntax for the spacePredetof predeterministic programs. Assignment is assumed to be prede-
terministic and recursion to be with respect to a continuous function.

Our intention is that sequential composition be associative with identity the assignment skip (which
changes no variable). More interestingly, if a nonterminating program precedes or follows another pro-
gram the result remains nonterminating:

abort #P = abort = P#abort .(3)

Of course recursion includes iteration as tail recursion.

The time-honoured model [5] forPredet(X) consists of partial functions onX, with refinement as exten-
sion; it is denotedP (X):

P (X) := (X 7→ X,⊇) .

It is a domain2 with least element the empty partial function,{}, with maximal elements the total func-
tions and with compact elements the partial functions having finite domains. The semantic mapping is
given in Figure 3. Both its well-definedness, and soundness of the laws,are routine.

By starting with the ‘historical’ theoryP (X), explicit consideration of healthiness conditions has been
avoided: predeterminism is captured enitrely by the typeX 7→ X.

3.2 An alternative: theory Q

A popular alternative, in view of models soon to come, is to replace the partial functions with total
functions whose range includes a ‘virtual’ element for nontermination. Thus each partial function is
made total onX by mapping each element outside its domain to the virtual element⊥. Furthermore, for
the new model to be closed under sequential composition, it must be ‘homogeneous’: the virtual state⊥

2 By ‘domain’ here is meant a complete partial order in which each elementis the supremum of its compact approximations.
Recall that an elementk is compactiff any directed setE that exceeds it contains an element which does so: ifk ⊑ ⊔E then
∃e : E · k ⊑ e. In the case of partial functions, the domain conditions mean:∀ f : P · f = ∩{k : P | #(dom.k) < ∞ ∧ k ⊑ f } .
Indeed without loss of generality therek ranges over singleton partial functions: #(dom.k) = 1 .
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[[abort]]P := {}
[[x := e]]P := λx : X ·e

[[P if b elseQ]]P := λx : X · [[P]]P .x if b.x else[[Q]]P .x
[[P#Q]]P := [[Q]]P ◦ [[P]]P
[[µ.F]]P := ∪{ f : P (X) | F.f ⊆ f }

Figure 3: TheP semantics of predeterministic programs, in which programP is denoted by a partial
function [[P]]P and variablex is used for both its argument and the state of the program. Recursion is
the least fixed point ofF, as given by the first recursion theorem of Kleene (for instance [5],Theorem
10.3.1).

must also belong to the domain. Let

X⊥ := X∪{⊥} .

Now for the left zero law in (3) to hold, it suffices for each denotationf of a program to bestrict (with
the flat ordering onX⊥):

f . ⊥ = ⊥ .

For the right zero law in (3) to hold, it suffices forf also to beup-closedat that bottom element. Such
relational behaviour is most easily captured by defining, for a functionf : X → X, its ‘(relational) strict
and up-closed extension toX⊥’ by

(f )⊥ := f ∪ {⊥}×X⊥

(an idea that is extended from functionsf to relations in Section 3.3).

Writing pre.f for the set of elements ofX not mapped by the extensionf to⊥,

pre.f := {x:X | f .x 6= ⊥} ,

in order forε to be isotone, the partial order of conformance must translate in the new model to:

f ⊑ f ′ := (f ↾pre.f = f ′ ↾pre.f ) .

Thus

Q (X) := ({(f )⊥ | ∃ f :X → X},⊑) ,
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·P

·

· Q

[[ · ]]P [[ · ]]Q

ε

Figure 4: Usingε to translate the semantics of predeterministic programs fromP toQ .

and the translation function is

ε : P (X) → Q (X)

ε.f := f ∪{(x,⊥) | x∈ X⊥ \dom.f } .

Theorem 1 The translation functionε : P (X) → Q (X)

1. is an isotone bijection so that in particularran.ε is the carrier ofQ (X) ;

2. ensures that the domainQ (X) has least element the constant function⊥, maximal elements the
functionsf with pre.f = X and compact elements the functionsf with pre.f finite;

3. preserves total functions (i.e.assignment): iff is total then(ε.f )↾X = f ;

4. preserves composition:ε.(f ◦g) = (ε.f )◦ (ε.g) .

Now theQ semantics ofPredet is obtained by translating theP semantics with the embeddingε as
indicated in Figure 4. Theorem 1 ensures accuracy of the result and preservation of the laws; the result
is given in Figure 5.

It is worth emphasising that the semantics is not defined anew, but translatedby ε from P . For example

[[abort #P]]Q
= definition ofQ semantics, Figure 4

ε.[[abort #P]]P
= law of P semantics

ε.[[abort]]P
= definition ofQ semantics again

[[abort]]Q .

3.3 Nondeterminism: theoryD

Nondeterminism arises for several reasons. Firstly, it might simply be inherent in functionality being
specified: locatex in an array (wherex may occur more than once); find a minimum spanning tree
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[[abort]]Q = λx : X·⊥
[[x := e]]Q = ε.(λx : X ·e)

[[P if b elseQ]]Q = λx : X · [[P]]Q .x if b.x else[[Q]]Q .x
[[P#Q]]Q = [[Q]]Q ◦ [[P]]Q
[[µ.F]]Q = ⊔{ f : Q (X) | F.f ⊑ f }

Figure 5: TheQ semantics of predeterministic programs, inferred from theP semantics (Figure 3) using
the technique of Figure 4.

(where there may be several), a shortest path, a Hamiltonian circuit, . . . . Secondly, it might be the result
of abstracting the mechanism determining a choice made at a lower level of abstraction: a random-
number generator whose seed and mechanism of generation are concealed. Thirdly, it might be assumed
in order to ensure that reasoning is local: a choice determined by testing a global variable might be
assumed to be a nondeterministic choice in order to avoid global reasoning.

Predeterministic programs are extended to be finitely3 nondeterministic by augmenting the language
Predetwith a binary combinator fornondeterministic choice:

P⊓Q.

The set of such programs over state spaceX is writtenProg(X) and the relationship of conformance still
written⊑ . Its connection with nondeterminism is, as already observed,

P⊑ P′ ≡ P⊓P′ = P.

Important laws involving programs and nondeterminism include:

P⊓abort = abort(4)

(P⊓Q) #R = (P#R)⊓ (Q#R)(5)

P# (Q⊓R) = (P#Q)⊓ (P#R) .(6)

The first characterises the Dijkstra-Hoare approach: in order to guarantee entirely correct implementa-
tions, a theory must ensure that the (nondeterministic) possibility of an error isidentified with certain
error. In (5) the demonic choice responsible for the nondeterminism is madefirst on both sides, which
are therefore indistinguishable. Law (6) is more subtle because the choiceis made first on the right, but
on the left only afterP ; nonetheless, the two programs are expected to have identical behaviour(because

3More precisely, the nondeterministic choice is now considered of any nonempty finite set of programs. That is equivalent
to the nondeterministic choice of two programs, by induction and the laws of associativity, idempotence and commutativity of
binary nondeterministic choice.
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P on the left-hand side is a program and not a more general kind of computation(like angelic choice)
able to offers behaviour which the later demonic choice can exploit).

What is the relationship betweenProg(X) andPredet(X), i.e. between programs and predeterministic
programs? The following law ‘quantifies’ the relationship by expressing each program as the (not nec-
essarily finitely) nondeterministic combination of its predeterministic refinements.

∀P : Prog(X) ·P = ⊓{Q : Predet(X) | P⊑ Q}(7)

A ‘dual’ law, extended from predeterministic programs to programs and hence analogous to the ‘domain
law’ in Footnote 2, expresses each program (and so in particular, eachpredeterministic program) as the
supremum of the compact programs (defined in that footnote, and to be characterised semantically in
Theorem 2) it refines:

∀Q : Prog(X) ·Q = ⊔{K : Prog(X) | K ⊑ Q, K compact} .(8)

A compelling model of nondeterministic programs [15] consists of allowing the elements of the model
Q (X) to be multivalued, sinceQ (X) already captures nontermination with the value⊥, and now would
capture nondeterminism as multi-valueness of a relation. Then the partial order of conformance, ‘at least
as deterministic as’, between such relations would be containment (as sets)

r ⊑ s ≡ r ⊇ s.

Let us determine the healthiness conditions on such a relationr on X⊥, using the same method as for
Q (X). For the right zero law to hold in (3), it suffices forr to be total onX, as were the elements ofQ (X)

∀x : X · ∃x′ : X⊥ ·xrx′ .(9)

For the left zero law, again it suffices forr to map⊥ to all of X⊥.

In order forabort to be minimum in the refinement ordering of containment, Law (4), it suffices for

xr⊥ ⇒ ∀x′ : X⊥ ·xrx′ .

Finally in order for the least upper bound, or intersection, of a chain of healthy relations again to be
healthy, as required for recursion, it suffices for the image of each state to befinitary: to be either all of
X⊥ or nonempty and finite

{x′ : X⊥ | xrx′ } 6= X⊥ ⇒ 0 < #{x′ : X⊥ | xrx′ } < ∞ .(10)
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Evidently being nonempty supersedes totality (9).

Those conditions can be abbreviated using the notationX ↔ X for the type of all relations onX and
r.(| x |) for the relational image ofr atx

r.(| x |) := {x′ : X⊥ | xrx′ } .

That model is calledD(X), and has ordering⊇ and carrier set

{r : X⊥ ↔ X⊥ |





⊥ r⊥

∀x : X⊥ ·

(

xr⊥⇒ r.(| x |) = X⊥

r.(| x |) 6= X⊥ ⇒ 0 < #r.(| x |) < ∞

)



} .

There is a Galois connection from the modelQ (X) for predeterministic programs to the modelD(X) ,
whose embedding is

ε : Q (X) →D(X)

ε.f := f ∪ (X⊥\pre.f )×X⊥ .(11)

In other words,

x(ε.f )x′ ≡ (x∈ pre.f ⇒ f .x = x′ ) .

Its adjointπ.r denotes the largest partial function inr which ‘accounts for all ofr ’s results at its argu-
ments’. It may be thought of as the largest partial function which approximates, inQ (X), total relation
r. Indeed that is the form forπ expected by adjunction:

π.r = ∪{ f :Q (X) | ε.f ⊇ r } .

Then:

Theorem 2 The functionε : Q (X) →D(X)

1. is an injection that preserves arbitrary suprema fromQ (X) under⊑ to D(X) under⊇ : more
generally, Definition (11) ofε makes sense if its argument is merely a relation, and then forany
subsetF of the carrier ofQ (X) (not just those having a well-defined supremum⊔F ∈ Q (X) ),

ε.∪F = ∩{ε.f | f ∈ F} ;
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2. has adjointπ : D(X) → Q (X), thusgc(ε,π; Q (X),D(X)), where

π.r = {(x,y) : r | y 6=⊥ ∧ ∀x′ 6=⊥ ·xrx′ ⇒ x′ = y}(12)

which is(⊇,⊑)-continuous: ifR is a⊇-directed subset ofD(X) then

π.∩R = ⊔{π.r | r ∈ R} ;(13)

3. has range which generatesD(X) under nonempty finite unions:

D(X) = {∪F | F ⊆ ran.ε is nonempty and finite} ;

4. ensures that the domainD(X) has least element the universal relation onX⊥, maximal elements
the (total) functions and compact elements the relationsr with pre.r finite (extending Definition
(4) from functions to relations); thus eachr : D is the supremum of compact elements which it
refines (a fact which is weaker than 3 since each compact element ofD is a nonempty finite union
of elements of ranε);

5. preserves sequential composition:ε.(idX) = (idX)⊥ andε.(f ◦g) = (ε.g) # (ε.f ) .

It is convenient to define an embedding from relations onX to those onX⊥ to capture that part of the
healthiness conditions relating to initial virtual state:

( ·)⊥ : (X ↔ X) → (X⊥ ↔ X⊥)

(r)⊥ = r ∪ {⊥}×X⊥ .

Since( ·)⊥ preserves arbitrary intersections (though only nonempty unions) it is Galois from(X↔ X,⊇)
to (X⊥ ↔ X⊥,⊇) . Its adjoint is restriction toX :

π : (X⊥ ↔ X⊥) → (X ↔ X)

π.s := s∩ (X×X) ,

a projection that preserves arbitrary intersections (as well as arbitraryunions as expected from the basic
property of Galois connections) and is surjective. The embedding( ·)⊥ is injective (as expected from
properties of Galois connections) and preserves sequential composition:

(r #s)⊥ = (r)⊥ # (s)⊥ .(14)

The semantic spaceD(X) is comprehensively more complex thanP (X). Our task, then, is to define the
semantics ofProg(X) in D(X) in such a way that the simplicity of theP (X) semantics is not obscured.
That is achieved—of course—by lifting withε viaQ (X) .
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[[abort]]D = X⊥×X⊥

[[x := e]]D = (λx : X ·e)⊥
[[P if b elseQ]]D = {(x,x′) | x[[P]]Dx′ if b.x elsex[[Q]]Dx′ }

[[P#Q]]D = [[P]]D # [[Q]]D
[[µ.F]]D = ∩{d:D(X) | F.d⊇ d}

[[P⊓Q]]D = [[P]]D ∪ [[Q]]D

Figure 6: Important properties of the relational semantics forProg. FunctionF is monotone onD.

For eachP : Prog(X) its relational semantics[[P]]D is defined by Law (7) using union for nondeterministic
choice and the lifting (Figure 4), under the Galois connection of Theorem 2, of theQ semantics ofP’s
predeterministic refinements:

[[P]]D = ∪{ε.[[Q]]P | Q∈ Predet(X) ∧ P⊑ Q} .(15)

In particular, ifP is itself predeterministic then

[[P]]D = ε.[[P]]Q .

For exampleskip, because it is deterministic, has semantics

[[skip]]D
= definition ofD semantics

ε.[[skip]]Q
= Q semantics withskip abbreviating(x := x)

ε.(λx : X ·x)
= definition ofε

(λx : X ·x)⊥ .

A similar argument works forabort; as does the fact that[[abort]]Q is the least element ofQ (X) andε
preserves minima (a basic property of Galois connections).

Thus theD semantics ofProg(X) is defined by lifting onPredet(X) and otherwise by union. Now the
properties, that before were a matter of definition in theP semantics of Figure 3, are simply inferred,
though with a little more work than for theQ semantics as inferred in Figure 5; see Figure 6.

Consider, for example, sequential composition. The proof relies on predeterministic computations whose
P semantics consists of a singleton partial function (recall Footnote 2); thus the computation terminates
from just a single state. WritingPredet1(X) for the set of such computations, forP,P′ : Prog(X),
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[[P#P′]]D
= (15)

∪{ε.[[R]]Q | R∈ Predet(X) ∧ P#P′ ⊑ R}
= Footnote 2 and set theory

∪{ε.[R]Q | R∈ Predet1(X) ∧ P#P′ ⊑ R}
= property ofPredet1(X)

∪{ε.[[R]]Q | ∃Q,Q′ ∈ Predet1(X) ∧ P⊑ Q∧ P′ ⊑ Q′ ∧ R= Q#Q′ }
= 1-point law

∪{ε.[[Q#Q′]]Q | Q,Q′ ∈ Predet1(X) ∧ P⊑ Q∧ P′ ⊑ Q′ }
= ε preserves sequential composition (Theorem 2, Part 5)

∪{ε.[[Q]]Q # ε.[[Q′]]Q | Q,Q′ ∈ Predet1(X) ∧ P⊑ Q ∧ P′ ⊑ Q′ }
= set theory

∪{ε.[[Q]]Q | Q∈ Predet1(X) ∧ P⊑ Q} #

∪{ε.[[Q′]]Q | Q′ ∈ Predet1(X) ∧ P′ ⊑ Q′ }
= Footnote 2 again

∪{ε.[[Q]]Q | Q∈ Predet(X) ∧ P⊑ Q} #

∪{ε.[[Q′]]Q | Q′ ∈ Predet(X) ∧ P′ ⊑ Q′ }
= (15)

[[P]]D # [[P′]]D .

The case of nondeterminism is similar using instead (in the third step) the property that, forQ : Predet1(X) ,

P⊓P′ ⊑ Q ≡ P⊑ Q ∨ P′ ⊑ Q.

The proofs of Laws (4) to (6) are immediate from basic set theory.

There is an alternative to this approach to the semantics ofProg(X) based on Law (7) with∪ for non-
determinism. It assigns semantics by structural induction onP : Prog(X) , ‘building in’ Equation (15)
at each step. But then Law (7) must be checked and so the amount of work is equivalent. The former
approach has been chosen because it seems to extend better to more complex domains, like probabilistic
domains.

In summary, a Galois connection has been used to lift theQ semantics, and laws, toD.

3.4 Angelic choice: theoryT

Just as Software Engineering brought to light (demonic) nondeterminism, so the formal development
process discussed in Section 2.2 revealed the utility of ‘partially enabled’ computations and ‘angelic’
choice. We call such computations, which extend programs,commands.

Report No. 440, August 2010 UNU-IIST, P.O. Box 3058, Macao



A fresh start 22

magic the command that is never enabled
⊓F nondeterminstic choice overF
⊔F angelic choice overF

Figure 7: Syntax completing the spaceComm(X) of commands over state spaceX: the unenabled com-
mand, and arbitrary nondeterministic and angelic choices.F is an arbitrary set of commands.

An example of a partially-enabled command is choice of an element from a set which happens to be
empty; computation cannot be started—is not enabled—in a manner that is dualto a computation that
fails to terminate. This situation arises when a procedure for choosing an element from a set is used in a
context which ensures the set is nonempty; but when developed ‘in isolation’, the empty case must also
be considered.

Angelic choice is simply supremum⊔, the dual of nondeterminism⊓ . A simple example is provided by
the angelic choice of two consistent commands. The first,R, choosesx nondeterministically between 0
and 1 whilst the second,S, chooses nondeterministically between 1 and 2. Their angelic choiceR⊔S is
the weakest program stronger than both:x := 1.

If R andShad not been consistent in that example then their angelic choice, their supremum, would not
have been a program. The supremum of an inconsistent set of commands isa command (though not a
program) that is never enabled. Notation for the command that is never enabled and for angelic choice
are introduced in Figure 7, as is our last ingredient of command space: arbitrary (rather than just binary)
nondeterminism. The set of commands onX is writtenComm(X). As usual, the relation of conformance
is ⊑ , satisfying (4). Of course equivalently:

P⊑ P′ ≡ P⊔P′ = P′ .

With the extension from programs to commands, the previous laws must be revisited for correctness.
Law (5) remains valid: the nondeterministic choice is made initially on both sides andso the demon
resolving the nondeterminism, confronted with the same choices, produces the same behaviours. But for
just that reason its partner (6) does not remain valid, and must be weakened: forR,S,T : Comm(X) ,

R# (S⊓T) ⊑ (R#S)⊓ (R#T) .(16)

Refinement there must of course hold by monotonicity. But equality may fail since the demon (having
memory but not prescience), has more choices the later it acts. There arethus fewer choices on the right
and so fewer behaviours than on the left. The choices coincide if execution of R results in no angelic
choice by which the demon might profit: ifR is free of angelic choice.

Important laws involving the new combinators include:

R⊔magic = magic(17)
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magic#R = magic(18)

(R⊔S) #T = (R#T)⊔ (S#T)(19)

R# (S⊔T) ⊒ (R#S)⊔ (R#T) .(20)

The first, (17), says thatmagic is indeed dual toabort and so is the greatest (or ‘most refined’) com-
mand (and thus equals the empty angelic choice⊓{} ). The second says that an unenabled command
cannot be enabled by any sequential successor (evenabort). In (19) the choice is made initially on both
sides so, reasoning as above (with the angel in place of the demon), equality holds. But (20) is dual
to (16): on the right the angel acts early and—having prescience but not memory—has more choices
and so produces more behaviours; alternatively, the refinement followsby monotonicity. The choices
coincide if execution ofR results in no nondeterministic choices by which the angel might profit: ifR is
predeterministic.

The relationship between commands and programs is given by the law analogous to (8) (evidently the
analogue of (7) fails): for any commandR

R = ⊔{P : Prog(X) | P⊑ R} .(21)

In fact the domain property holds: without loss of generality, programP can be assumed to be compact.

In the relational modelD(X), angelic choice must be intersection and partial enabledness must therefore
be captured by partial-ness of a relation. But that means the healthiness condition of totality, (9), no
longer holds. Because nondeterminism is now arbitrary, the finitary condition (10) also fails (at both
ends of the inequality, in view of lack of totality). Thus all that remains is strictness and upclosure.
The extension toD(X) consisting of relations satisfying just strictness and upclosure, but with thesame
criterion of conformance, is calledR (X) .

The spaceR (X) is a domain and a complete lattice with same least element asD(X) but greatest element
({})⊥ and compact elements the cofinite ‘subsets’ ofX⊥×X⊥ . Moreover it is a Boolean algebra under
the complementr 7→ (X⊥×X⊥ \ r)⊥ . However the natural embedding ofD(X) in R (X) is not Galois.
Otherwise its adjointπ would map the greatest element inR (X) to a greatest element ofD(X); but no
such element exists.4

Nonetheless the injection ofD(X) in R (X) does generateR (X) under arbitrary intersections, reflecting
Law (21) (recall that from Theorem 2 nonempty finite unions were used togenerateD(X) from Q (X),
reflecting Law (7)). Thus the carrier set ofR (X) equals

{∩F | F ⊆D(X)} .

The relational semantics ofComm(X) may be thought of—like the semantics forProg—as follows.

4Since the natural embedding fromD(X) to R (X) preserves arbitrary unions, why is it not Galois by adjunction? Because
suprema inR (X) (arbitrary unions) are not the same as suprema inD(X); consider for example the empty union.
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[[magic]]R := ({})⊥
[[⊓F ]]R := ∪{ [[P]]R | P∈ F }
[[⊔F ]]R := ∩{ [[P]]R | P∈ F }

Figure 8: Relational semantics forComm(X); this augments the extension of the semantics in Equation
(15) fromD toR using the natural embedding.

1. Firstly, theR semantics equals theD semantics for commands that are code (likeskip). In other
words theR semanticsextendstheD semantics.

2. Secondly, theR semantics is inferred from theD semantics by extending the combinators of
code to commands (as in the case of sequential composition, or even arbitrary nondeterministic
choice, onProg from Predet). This is possible because the natural embedding preserves those
combinators.

3. Thirdly, it is defined for the (new) combinator of angelic choice by edict,to be intersection.

Thus theR semantics ofCommis provided by Equation (15) (thus extended) and Figure 8 (which also
includes arbitrary nondeterminism and its empty case,magic).

The proofs of Laws (17), (18) and (20) are now straightforward using basic set theory. For example, for
Law (20),

[[P# (Q⊔R)]]R
= R semantics of⊔ and# from Figure 8

[[P]]R # ([[Q]]R ∩ [[R]]R )
⊆ set theory

([[P]]R # [[Q]]R ) ∩ ([[P]]R # [[R]]R )
= R semantics of# and⊔ again

[[(P#Q) ⊔ (P#R)]]R .

Moreover equality holds in the middle step if, pointwise, the relation[[P]]R either maps to⊥ (and hence
to all of X⊥) or is single valued: as required, the commandP is predeterministic.

Unfortunately, for Identity (19) the analogous argument establishes only⊒ , unless relation[[R]]R is a
total function; in other words, commandR is deterministic. Furthermore in Law (16) equality always
holds (the existential quantification of# distributing the∪ of nondeterminism). It is inferred that the
relational modelR (X) does not fully capture angelic behaviour.

Thus stretching the relational modelR (X) from programs to commands reveals deficiencies. The sit-
uation is analogous to the introduction of nondeterminism: the modelP (X) was simply not expressive
enough and so was extended toD(X). Now with the introduction of angelic choice, the relational model
is in turn not expressive enough and must be extended.
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Again, a more detailed model is needed. One possibility is the ‘binary multirelation’model [33] of
Rewitzky. Instead thepremiermodel of sequential semantics, Dijkstra’s predicate-transformer model, is
chosen.

The predicate-transformermodel (Dijkstra [7]) views each command as transforming postconditions
(predicates on final states) to preconditions (predicates on initial states).For commandP, the operational
interpretation of its transformer semantics[[P]]T is: for any postconditionq and any initial statex

[[P]]T .q.x holds iff P terminates fromx in a state satisfyingq.

Of course that is sufficient to motivate a formal definition of the semantics. But our interest here lies in
reusing the relational semantics to infer the transformer semantics, as far asthat is possible.

Let (pred.X,≤) denote the space of all predicates (i.e. conditions) onX partially ordered by implica-
tion. Thepredicate-transformermodel,T (X), of commands consists of those predicate transformers
t : pred.X → pred.X that aremonotone

q≤ q′ ⇒ t.q≤ t.q′ ,

ordered under the lifting of the ordering on predicates

t ≤ t′ := ∀q : pred.X · t.q≤ t′.q.

ThenT (X) is a domain and complete lattice with least and greatest elements the constant functionsfalse
andtrue respectively. Its compact elements are the transformerst for which there is a finite subsetF ⊆ X
such that

∀q:pred.X · t.q = ∨{q.x | x∈ F} .(22)

The spaceT (X) is endowed with an involution (see Back and von Wright [2])

t∗.q := ¬t.¬q

that preserves sequential composition but exchanges nondeterministic withangelic choice, enabledness
with termination andmagicwith abort.
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The embedding from relationsR (X) to transformersT (X) is traditionally called theweakest precondi-
tion

wp : R (X) → T (X)
wp.r.q.x := ∀x′ : X⊥ ·xrx′ ⇒ (x′ 6=⊥ ∧ q.x′) .

It is Galois, but with orders reversed. Writing(A ,≤)∼ for (A ,≥),

Theorem 3 The functionwp : R (X) → T (X)

1. is an injection that preserves arbitrary suprema fromR ∼ to T ∼ : for any subsetR⊆ R ,

wp.∪R = ∧{wp.r | r ∈ R} ;(23)

2. has adjoint therelational projection, rp :T (X)→R (X) completing a Galois connection:gc(wp, rp;R ∼,T ∼),
where

x(rp.t)x′ := x =⊥ ∨ ∀q : pred.X · t.q.x⇒ q.x′(24)

which of course preserves infima: for any subsetT of the carrier ofT (X),

rp.∨T = ∩{ rp.t | t ∈ T}(25)

but moreover preserves suprema:

rp.∧T = ∪{ rp.t | t ∈ T} ;(26)

3. satisfies merely

wp.(r ∩s) ≥ (wp.r)∨ (wp.s)(27)

rather than equality (in contrast to the identities (23), (25) and (26));

4. has rangeran.wpconsisting of the conjunctive transformers,

t ∈ ran.wp ≡ ∀q,q′ : pred.X · t.(q∧q′) = t.q∧ t.q′ ,(28)

and that generates the carrier ofT (X) under angelic choice:5

T (X) = {∨F | F ⊆ ran.wp} ;(29)

5The spaceT (X) is also generated by the composition ofwpwith its involution [2]—∀ t · ∃u,v : ran.wp· t = u∗ ◦v—but that
fact appears less useful here because the transformer involution is not the lifting of an involution on relations [34].
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5. ensures that the domainT (X)∼ has least element the constant functionλq : pred.X · true, great-
est element the constant functionλq : pred.X · falseand with compact elements the transformers
analogous (because of the reversal of orders) to those described in(22);

6. preserves sequential composition:wp.(idX)⊥ = idpred.X andwp.(r #s) = (wp.r)◦ (wp.s), as does
its adjointrp in the reverse direction.

As expected from adjunction, the projectionrp.t defined by (24) is the largest relation that approximates
t underwp.

The semantic spaceT (X) appears deceptively simple although the manner of expressing a computation
is radically different from that in relations. Naturally a Galois connection is used to bridge the gap!

The Galois connection can be used to lift much of the relational semantics to transformers following
our standard approach. As usual for Galois connections, it maps the least element({})⊥ in R (X)∼ to
the least element, the constant transformertrue, in T (X)∼ thus providing the semantics ofmagic. For
sequential composition,

[[P#Q]]T
= definition ofT semantics

wp.[[P#Q]]R
= definition ofR semantics, Equation (15) and Figure 8

wp.([[P]]R # [[Q]]R )
= property ofwp, Theorem 3.6

(wp.[[P]]R )◦ (wp.[[Q]]R )
= definition ofT semantics again

[[P]]T ◦ [[Q]]T .

It maps arbitrary unions inR (X) to arbitrary conjunctions inT (X), by (23), thus providing the semantics
of arbitrary nondeterminism. But the lack of equality in (27) means thatwpcan not be used to lift angelic
choice fromR (X) to T (X) . That must simply be defined to be disjunction. The resulting transformer
semantics is given in Figure 9.

The proofs of Laws (17), (18) and (19) are now straightforward using elementary logic. For Law (20),

[[P# (Q⊔R)]]T
= T semantics of⊔ and# from Figure 9

[[P]]T ◦ ([[Q]]T ∨ [[R]]T )
≥ monotonicity

([[P]]T ◦ [[Q]]T ) ∨ ([[P]]T ◦ [[R]]T )
= T semantics of# and⊔ again
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[[abort]]T := false
[[magic]]T := true
[[x := e]]T := λq : pred.X ·q[e/x]

[[P if b elseQ]]T := [[P]]T if b else[[Q]]T
[[P#Q]]T := [[P]]T ◦ [[Q]]T
[[µ.F]]T := ∨{ t : T (X) | F.t ≤ t}
[[⊓F ]]T := ∧{ [[P]]T | P∈ F }
[[⊔F ]]T := ∨{ [[P]]T | P∈ F }

Figure 9: Transformer semantics for commands, inferred from Figure 8 using thewpGalois connection.

[[(P#Q) ⊔ (P#R)]]T .

Moreover equality holds in the middle step if the transformer[[P]]T is disjunctive; in other words, the
commandP is predeterministic.

3.5 Refinement calculus

For theoretical purposes a computation is conveniently described as a single predicate; a form familiar
to this audience is(p∧ ok) ⇒ (P∧ ok′). Similarly for the purposes of specification; a familiar form is
the body of a Z specification [38]. But for development towards code, itis more convenient to reveal the
precondition, or predicate from which termination is assured. That idea, first promotedby VDL [4], is
incorporated into the ‘refinement calculus’ [28], the main focus of [17]’s Chapter 3.

A specification statement

x : [p,P]

consists of aframe xof variables (a list containing all those that may change),precondition, p, a predicate
whose free variables denote the initial state of the computation and which represents the states from
which termination is certain, and apostcondition, P, a binary predicate in initial and final states which
specifies the computation when it terminates. Enabledness is captured by feasibility: those initial states
from which termination in a final state is possible

p[x0/x] ⇒ ∃x ·P(x0,x)

(the substitution ofx0 for x in the precondition is a technicality required by the decision to usex as free
variable inp).
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The semantics of a specification statement is given (see, for example, [28]) as a predicate transformer

ε.(x : [p,P]).q := p∧ (∀x ·P⇒ q)[x/x0] ,

and the ordering on specification statements is that inherited fromT . So, sinceε is in fact surjective,
specification statements are ‘the same’ asT . Finally, having gained experience of unification and the
benefits it affords, our path has returned to the context of [17]’s Chapter 3.

3.6 Chapter 3 revisited

It may now be appreciated that, from the viewpoint of unification, [17]’s Chapter 3 contains two unifi-
cations, performed almost effortlessly because they occur within the same,predicative, model [13]. To
proceed in reverse order, a model of ‘feasible specification statements’is defined as the subspace of single
predicates satsifying all four healthiness conditionsH1 ∧ H2 ∧ H3 ∧ H4. A model of ‘not-necessarily-
feasible specification statements’ is defined by just the first three:H1 ∧ H2 ∧ H3. And the general space
of designs, of use whenever enabledness,ok, and termination,ok′, are observable, is defined by just the
first two H1 ∧ H2.

Following the approach of the present paper, the original model of specification statements as predicate
transformers [28] is adopted, and Galois connections are defined to relate to those other models. Chapter
3 is highly elegant in making those connections actually injections. It does so by using a predicative
semantics with implication for refinement, using single-predicates (compared withthe p andP in the
previous section) and moreover by establishing an isomorphism between certain laws and healthiness
conditions on the semantic space of predicates, which it then captured by closure operators. Little won-
der, perhaps, that the reader may be distracted from the task of unification.

Indeed most of that is subservient to the primary concern of unification. What is the further benefit of
ensuring that a model has that particular form? Of primary importance is unification of new paradigms
of computation and the use of the unifying framework to simplify reasoning about realistic case studies.
Surely that kind of endeavour is of secondary importance and may even look precious from outside the
tight-knit UTP community.

That is why starting from Chapter 4 has been advocated, and only later returning to Chapter 3 to see the
special nature of the relational/predicative injections.

4 Unifying further

The field of program semantics is specialised and any single approach to it, like UTP, even more so. Much
of our hope for UTP must therefore lie in further applications of unificationand the techniques UTP
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provides, outside the confines of program semantics. What for programming languages wassemanticsis
now thought of asbehaviour.

The best examples are the complex systems currently preoccupying us: hybrid systems like cyberphysical
systems and those from biology and finance. Can the hierarchical approach be used to describe them
incrementally in such a way that desirable properties ‘accumulate’? That would make accessible ‘closed
form’ analysis, to complement simulation and model checking which appear to bethe sole techniques
used at present.

The theories provided for incremental development, as summarised at the end of Section 2.2, are founded
on auniformdomainX of discourse. A typical example is provided by the refinement calculus, which
makes explicit the types of all variables appearing in the development. Thus when a development step
involves a data refinement, both abstract and concrete spaces are included inX . But data refinement is
a special kind of increment which by definition prohibits observation of information encapsulated in the
concrete data type, which is instead accessed only using the same operations as the abstract type.

In the setting of complex systems it may well be impractical to conceive the domainX ab initio. Instead,
the complexity of the system may be revealed incrementally by successive Galois connections, following
the approach of unification.

Here is an example from hardware design.

4.1 Beyond programming

The Boolean model of signal values provides a satisfactory account ofhardware devices at one level of
abstraction. Unfortunately it is quite abstract so, for realistic design, simulations (typically inHSPICE)
based on lower-level models are required. One of the difficulties is in unifying the detailed model with
the Boolean model. This seems like an ideal test for the UTP approach.

For example in the Boolean model, a wire connected to power by a p-type transistor is accurately mod-
elled as being high if the gate of the transistor is low. But if the p-type transistoris replaced by an n-type
transistor, the Boolean model predicts the same result, which is wrong: the wire is only weakly high,
a result not able to be expressed in the model (but which is fatal becausea chain of such transistors
successively reduces the signal until it is not merely weakly high, but low).

A further observation—of ‘drive’—needs to be incorporated in the model. This has been achieved ele-
gantly by Hoare [16]. Each device is modelled first at the Boolean level (as is standard) but then at the
driven level (this is new) and properties of the models ensure that the first is unified in the second. In
fact both are embedded in predicates and the second extends the first, in the style of Chapter 3. Again,
the situation is as in Figure 4, with the language being that of devices,P the Boolean model andQ the
driven model.

TheBoolean modelis given by the set of predicates whose free variables are wire names from some set
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[[pow]]B := out

[[ntran]]B := g⇒ (s= d)

[[pow]]H := [[pow]]B ∧ δout

= out∧ δout

[[ntran]]H :=

(

[[ntran]]B
g∧ δg∧ (¬s∨¬d) ⇒ (δs= δd)

)

Figure 10: Two devices, power and an n-type transistor, seen in two semantic models: the Boolean model
B and the driven modelH .

sayW and whose ordering is equivalence (since implication is too weak for the usual reason)

B(W) := (pre.W,=)

For example the devicepowwhich connects outputout to power is modelled by the predicateout= true.
An n-type transistorntranwith gateg, sourcesand draind is modelled by the predicate which states that
if the gate is high then source and drain equilibrate. See Figure 10.

In the ‘driven model’ an extra Boolean observableδw is included for each wirew in the Boolean model,
representing whether or not that wire is driven to its value. For example theoutput of power is always
driven and so its description in the driven model is its Boolean description conjoined withδout= true.
The driven description of the n-type transistor consists of its Boolean description conjoined with a predi-
cate relating drive of wires to their values: if the gate is driven high and either source or drain is low then
when they equilibrate, as is guaranteed from the Boolean description, theyare equi-driven. See Figure
10.

Thus thedriven modelextends the Boolean model by also containing a predicate whose free variables
are both the wires and theirδ version. Its order conjoins the Boolean order with the assurance that the
driven predicate∆′ of the finer device is stronger than that,∆, of the coarser:

H (W) := (pre.W×pre.(W∪δW),�)

where

(B,∆) � (B′,∆′) :=

(

B = B′

∆′ ⇒ ∆

)

.

Those examples suffice to confirm the example of weak signals mentioned above. But our concern here
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is with the unification. The Boolean modelB is embedded in the driven modelH by injection; and the
ordering ofH is stronger than that ofB. Thus the embedding is universally∧-junctive and the models
are related by a Galois embedding.

Suppose it is required to model greater device detail. For example capacitance may be modelled as
persistence of drive—say after a cycle’s delay. That is captured by athird model, the capacitive model,
in which the driven model is embedded. If, again, it is necessary to reason about time in more detail, a
fourth model could be defined in which one cycle is replaced by a clock, sothat a signal value and its
single-cycle delay are replaced by a signal with values at discrete times. And so on. The state information
required in more detailed models may be much more detailed than that of the abstract models (just
Booleans, in this case), but nonetheless the relationship is mediated by Galoisconnections.

The case being made is that the techniques developed in UTP stretch far beyond theories of programming.
They may be advantageously used to model, and reason about, complex systems.

4.2 The Philosopher’s stone?

When will the UTP approach, of unification, not be helpful? When the incremental approach fails: when
each feature is coupled so tightly with the others that the full behaviour cannot be ‘teased out’ into strands
enabling it to be understood by approximation.

Consider a physical example. Then-body problem [6] requires the determination of the motion ofn
bodies, given their momenta at one instant and assuming Newtonian interactions. Specification of the
problem is easy, by differential equation; the challenge lies in finding the solution. The problem is
difficult because it must take into account all possible interactions betweenthe bodies. There seems
to be no scope for unification unless approximation is allowed. In Physics, approximation is a natural
step to take because small changes in the momenta of the bodies lead to small changes in the solution.
So one can imagine progressively more accurate solutions. In the case ofdiscrete systems that kind of
approximation is of little use (how do you approximate a bit?), and any method mustinstead approximate
complexityexactlyat each level of abstraction, through a series of abstractions. In that sense unification
is our version of approximation in Physics. In then-body it seems unachievable.

In the terms of Computer Science, then-body problem is a distributed system in which each process
interacts with each other. That, then, is going to be difficult to analyse incrementally unless there is some
very special structure to the interactions. But if a process interacts with only a small number of others
(for example its nearest neighbours, if they are distributed spatially) then unification might be expected.

5 Conclusion

Systems are inherently complicated. Since detail cannot ultimately be avoided, theories must be as
simple as possible. In the areas of traditional engineering, where relationships between observables are
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assumed to be differentiable, approximation by simpler behaviours which approximate closely that of
the real system, provides a successful method. It has been argued that unification, describing complex
behaviour exactly at varying levels of abstraction, is the equivalent forthe discrete systems of Computer
Science.

In studying a complex system the first stage, then, must be to study its abstractions (ignore real time, the
hybrid nature of the system and so on). But then must come a stage in which detail is restored. Then
unification is our only technique. We conclude that every effort must therefore be made to sustain the
theory of unification, UTP.

Unification might be appreciated as one of two ‘orthogonal’ techniques. That of modularisationstruc-
tures descriptions at a given level of abstraction.Unificationstructures complexity incrementally across
levels of abstraction. The former is reasonably well understood, is still being productively pursued at the
research level (information hiding), and is the foundation of almost all Software Engineering. The UTP
community appears to be guardians of the latter.

A single case study of the incremental approach has been presented, moving from predeterministic (i.e.
computable) computations through finitely nondeterministic programs to angelic and arbitrary nonde-
terministic commands. The journey could readily have been continued to includeprobabilistic com-
putations and even quantum computations (to go in just one direction). At mostof the increments the
semantic intuition and laws have been able to be lifted by Galois connections. Where that has not been
the case, valuable insight has been provided by the property that fails (for example failure ofwp to map
intersections to disjunctions).

Though founded on unification, UTP offers further delightful distractions along the way. Many of them
are compressed in to Chapter 3, and so the case has been made that, in teaching, attention be gently
deflected to Chapter 4, then its predecessor viewed in context. Perhaps ‘relational semantics’ is not as
important as might be thought from Chapter 3. As has just been seen in Section 3, it is not at allrequired
for unification.

It has been suggested that unification offers a way of analysing complexsystems, not just theories of
programming. Indeed it has been claimed that only by diversifying from program semantics will the
techniques of UTP be properly and widely appreciated. It would be verypersuasive were the method
to be used on complex systems currently being analysed by simulation or model checking, like hybrid
systems arising from cyberphysical, biological or financial study. But within the confines of program
semantics, it would be interesting to unify the standard models with more recent models, like the game
theoretic model.

Many important topics have been overlooked in this paper. Just two are: the use of Galois connections
for calculationby use of ‘trading’; and data refinement in the domain of discourse and seen in terms of
a Galois connection.

What, then, lies in store for UTP? It has been argued that the approach ittakes, and the techniques it
provides for unifying theories, are scientifically indispensible. But it hasalso been acknowledged that
important ideas wither. Is UTP becoming a road less travelled, destined for obsolescence? The former
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appears to be true; the latter may be up to us. It seems obvious that (unless itis rediscovered) the
approach will die without serious action: more courses might be taught, promoting unification; more
students be engaged in MSc. and PhD. degrees based on UTP; more unification be performed, mastering
new paradigms, making non-specialists want to use the method—good opportunities are provided by
hybrid, cyberphysical and biological systems; and an undue amount ofeffort not be spent on second-
order concerns. Otherwise, UTP will be as familiar in 20 years’ time as are Zeppelins, Theremins and
the slide rule.

What we call the beginning is often the end
And to make an end is to make a beginning.
The end is where we start from.

. . .

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

Little Gidding [10]
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