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Abstract

Fault-tolerance and timing have often been considered to be implementation issues of a program, quite
distinct from the functional safety and liveness properties. Recent work has shown how these non-
functional and functional properties can be verified in a similar way. However, the more practical ques-
tion of determining whether a real-time program will meet its deadlines, i.e., showing that there is a
feasible schedule, is usually done using scheduling theory, quite separately from the verification of other
properties of the program. This makes it hard to use the results of scheduling analysis in the design, or
redesign, of fault-tolerant and real-time programs. In this paper we show how fault-tolerance, timing,
and schedulability can be specified and verified using a single notation and model. This allows a unified
view to be taken of the functional and nonfunctional properties of programs and a simple transforma-
tional method to be used to combine these properties. It also permits results from scheduling theory to
be interpreted and used within a formal proof framework. The notation and model are illustrated using a
simple example.
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Introduction 1

1 Introduction

A real-time system must meet functional and timing properties when implemented on a chosen hardware
platform. Some timing properties can be derived from the specification of the system and others from the
design choices made in the implementation. Yet other properties can be determined only by examining
the timing characteristics of the implementation.

Real-time systems often need to meet critical safety requirements under a variety of operating conditions.
One factor that then needs attention is the ability of the system to overcome the effects of faults that may
occur in the system. Such faults are usually defined in terms of a fault-model. The dedaest-of
toleranceof the system must be established in terms of the fault-model and the effect of faults upon the
execution of the system.

In this chapter, we show that functional and many non-functional properties of a real-time system, such
as schedulability, or proving that its implementation meets its timing constraints, can be verified in a
similar way. Likewise, the fault-tolerance of a system can be proved using the same techniques. We
use a single notation and model and take a unified view of the functional and non-functional properties
of programs. A simple transformational method is used to combine these properties [58, 59]. We show
how the theory of concurrency, fault-tolerance, real-time and scheduling can be built on the theories of
sequential programming, such as those of Dijkstra’s calculus of weakest preconditions [24], Hoare Logic
[28], Morgan’s refinement calculus [70] and Hoare and He’s UTP [33]. These theories are discussed and
used in Chapter 3 and Chapter 5.

Section 2 gives an informal account of real-time systems. Section 3 presents a historic background on
formal techniques in real-time and fault-tolerance. Section 4 gives an outline of the approach used in
this chapter. Section 5 introduces the computational model and the Temporal Logic of Actions [43] used
for program specification, verification, and refinement. In Section 6, we show how physical faults are
specified, how fault-tolerance is achieved by transforming a non-fault-tolerant program, and how fault-
tolerance is verified and refined. Section 7 extends the method given in Section 5 for the specification
and verification of real-time programs. In Section 8 we combine the techniques used for fault-tolerance
and real-time. Section 9 shows how real-time scheduling policies can be specified and combined with
the program specification for verification of schedulability of a program. Proof rules for feasibility and
fault-tolerant feasibility are also developed and it is shown how methods and results from scheduling
theory can be formally verified and used. The notation, model and techniques are illustrated using a
simple processor-memory interface program.

2 Real-Time Systems: An Informal Account

Consider a car moving along a road that passes through some hills. Assume that there is an external
observer who is recording the movement of the car using a pair of binoculars and a stopwatch. With a
fast moving car, the observer must move the binoculars at sufficient speed to keep the car within sight.
If the binoculars are moved too fast, the observer will view an area before the car has reached there; too
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Real-Time Systems: An Informal Account 2

slow, and the car will be out of sight because it is ahead of the viewed area. If the car changes speed
or direction, the observer must adjust the movement of the binoculars to keep the car in view; if the car
disappears behind a hill, the observer must use the cars recorded time, speed and direction to predict
when and where it will re-emerge.

Suppose that the observer replaces the binoculars by an electronic camera which regea@sds to
process each frame and determine the position of the car. When the car is behind a hill, the observer
must predict the position of the car and point the camera so that it keeps the car in the frame even though
it is seen only at intervals of seconds. To do this, the observer must model the movement of the car
and, based on its past behaviour, predict its future movement. The observer may not have an explicit
model of the car and may not even be conscious of doing the modelling; nevertheless, the accuracy of
the prediction will depend on how faithfully the observer models the actual movement of the car.

Finally, assume that the car has no driver and is controlled by commands radioed by the observer. Being
a physical system, the car will have some inertia and a reaction time, and the observer must use an
even more precise model if the car is to be controlled successfully. Using information obtained every
seconds, the observer must send commands to adjust throttle settings and brake positions, and initiate
changes of gear when needed. The difference between a driver in the car and the external observer, or
remote controller, is that the driver has a continuous view of the terrain in front of the car and can adjust
the controls continuously during its movement. The remote controller gets snapshots of the car every
seconds and must use these to plan changes of control.

2.1 Real-time computing

A real-time computer controlling a physical device or process has functions very similar to those of
the observer controlling the car. Typically, sensors will provide readings at periodic intervals and the
computer must respond by sending signals to actuators. There may be unexpected or irregular events and
these must also receive a response. In all cases, there will be a time-bound within which the response
should be delivered. The ability of the computer to meet these demands depends on its capacity to
perform the necessary computations in the given time.

If a number of events occur close together, the computer will need to schedule the computations so that
each response is provided within the required time-bounds. It may be that, even so, the system is unable
to meet all the possible demands and in this case we say that the system lacks sufficient resources (since
a system with unlimited resources and capable of processing at infinite speed could satisfy any such
timing constraint). Failure to meet the timing constraint for a response can have different consequences:
in some cases, there may be no effect at all; in other cases, the effects may be minor and correctable; in
yet other cases, the results may be catastrophic. Looking at the behaviour required of the observer allows
us to define some of the properties needed for successful real-time control.

A real-time program must

e interact with an environment which has time-varying properties,
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Real-Time Systems: An Informal Account 3

o exhibit predictable time-dependent behaviour, and

e execute on a system with limited resources.

Let us compare this description with that of the observer and the car. The movement of the car through
the terrain certainly has time-varying properties (as must any movement). The observer must control this
movement using information gathered by the electronic camera; if the car is to be steered safely through
the terrain, responses must be sent to the car in time to alter the setting of its controls correctly. During
normal operation, the observer can compute the position of the car and send control signals to the car at
regular intervals.

If the terrain contains hazardous conditions, such as a flooded road or icy patches, the car may behave
unexpectedly, e.g. skidding across the road in an arbitrary direction. If the observer is required to
control the car under all conditions, it must be possible to react in time to such unexpected occurrences.
When this is not possible, we can conclude that the real-time demands placed on the observer, under
some conditions, may make it impossible to react in time to control the car safely. In order for a real-
time system to manifest predictable time-dependent behaviour it is thus necessary for the environment
to make predictable demands. With a human observer, the ability to react in time can be the result of
skill, training, experience or just luck. How do we assess the real-time demands placed on a computer
system and determine whether they will be met? If there is just one task and a single processor computer,
calculating the real-time processing load may not be very difficult. As the number of tasks increases, it
becomes more difficult to make precise predictions; if there is more than one processor, it is once again
more difficult to obtain a definite prediction. There may be a number of factors that make it difficult to
predict the timing of responses [13].

o Atask may take different times under different conditions. For example, predicting the speed of a
vehicle when it is moving on level ground can be expected to take less time than if the terrain has
a rough and irregular surface. If the system has many such tasks, the total load on the system at
any time can be very difficult to calculate accurately.

e Tasks may have dependencies: Task A may need information from Task B before it can com-
plete its calculation, and the time for completion of Task B may itself be variable. Under these
conditions, it is only possible to set minimum and maximum bounds within which Task A will
finish.

o With large and variable processing loads, it may be necessary to have more than one processor in
the system. If tasks have dependencies, calculating task completion times on a multi-processor
system is inherently more difficult than on a single processor system.

e The nature of the application may require distributed computing, with nodes connected by com-
munication lines. The problem of finding completion times is then even more difficult, as commu-
nication between tasks can take varying times.
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Figure 1: Real-Time System Development

Requirements, specification and implementation

The demands placed on a real-time system arise from the needs of the application and are often
called the requirements. Deciding on the precise requirements is a skilled task and can be carried
out only with very good knowledge and experience of the application. Failures of large systems
are often due to errors in defining the requirements. For a safety related real-time system, the
operational requirements must then go through a hazard and risk analysis to determine the safety
requirements. Requirements are often divided into two classes: functional requirements, which
define the operations of the system and their effects, and non-functional requirements, such as
timing properties. A system which produces a correctly calculated response but fails to meet
its timing-bounds can have as dangerous an effect as one which produces a spurious result on
time. So, for a real-time system, the functional and non-functional requirements must be precisely
defined and together used to construct the specification of the system.

A specification is a mathematical statement of the properties to be exhibited by a system. A
specification should be abstract so that

— it can be checked for conformity against the requirement, and

— its properties can be examined independently of the way in which it will be implemented, i.e.
as a program executing on a particular system.

This means that a specification should not enforce any decisions about the structure of the software,
the programming language to be used or the kind of system on which the program is to be executed:
these are properly implementation decisions. A specification is transformed into an application
by taking design decisions, using formal or semi-formal rules, and converted into a program in
some language (see Figure 1). We shall consider how a real-time system can be specified and
implemented to meet the requirements. A notation will be used for the specification and it will
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Real-Time Systems: An Informal Account 5

be shown how the properties of the implementation can be checked. It will be noticed as the
specifications unfold that there are many hidden complexities in even apparently simple real-time
problems. This is why mathematical description and analysis have an important role to play, as they
help to deal with this complexity. For both classical scheduling analysis and formal specification
and verification in different notations, we refer the reader to [13].

2.2 An example real-time system: mine pump

We illustrate the problem of real-time by a well-known case study [13]. Water percolating into a
mine is collected in a sump to be pumped out of the mine (see Figure 2). The water level $&nsors
andE detect when water is above a high and a low level respectively. A pump controller switches
the pump on when the water reaches the high water level and off when it goes below the low water
level. If, due to a failure of the pump, the water cannot be pumped out, the mine must be evacuated
within one hour.

Operator A Carbon Monoxide sensor

B Methane sensor
C Airflow sensor
D High water sensor
E Low water sensor

Log

ump Controller

1

Sump

Figure 2: Mine pump and control system (originally from Burns and Lister, 1991)

The mine has other sensdrs, B, C') to monitor the carbon monoxide, methane and airflow levels.

An alarm must be raised and the operator informed within one second of any of these levels be-
coming critical so that the mine can be evacuated within one hour. To avoid the risk of explosion,
the pump must be operated only when the methane level is below a critical level.

Human operators can also control the operation of the pump, but within limits. An operator can
switch the pump on or off if the water is between the low and high water levels. A special operator,
the supervisor, can switch the pump on or off without this restriction. In all cases, the methane
level must be below its critical level if the pump is to be operated.

Readings from all sensors, and a record of the operation of the pump, must be logged for later
analysis.
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Real-Time Systems: An Informal Account 6

Safety requirements

From the informal description of the mine pump and its operations we obtain the following safety
requirements:

1. The pump must not be operated if the methane level is critical.
2. The mine must be evacuated within one hour of the pump failing.

3. Alarms must be raised if the methane level, the carbon monoxide level or the air-flow level
is critical.

Operational requirement

The mine is normally operated for three shifts a day, and the objective is for no more than one shift
in 1000 to be lost due to high water levels.

Problem Write and verify a specification for the mine pump controller under which it can be
shown that the mine is operated whenever possible without violating the safety requirements.

Comments The specification is to be the conjunction of two conditions: the mine must be op-
erated when possible, and the safety requirements must not be violated. If the specification read
The mine must not be operated when the safety requirements are violated, then it could be trivially
satisfied by not operating the mine at all! The specification must obviate this easy solution by
requiring the mine to be operated when it is safely possible.

Note that the situation may not always be clearly defined and there may be times when it is difficult
to determine whether operating the mine would violate the safety requirements. For example, the
pump may fail when the water is at any level; does the time of one hour for the evacuation of the
mine apply to all possible water levels? More crucially, how is pump failure detected? Is pump
failure always complete or can a pump fail partially and be able to displace only part of its normal
output?

It is also important to consider under what conditions such a specification will be valid. If the
methane or carbon monoxide levels can rise at an arbitrarily fast rate, there may not be time to
evacuate the mine, or to switch off the pump. Unless there are bounds on the rate of change
of different conditions, it will not be possible for the mine to be operated and meet the safety
requirements. Sensors operate by sampling at periodic intervals and the pump will take some time
to start and to stop. So the rate of change of a level must be small enough for conditions to not
become dangerous during the reaction time of the equipment.

The control system obtains information about the level of water froritgbwaterandLowWater

sensors and of methane from thiethanesensor. Detailed data is needed about the rate at which
water can enter the mine, and the frequency and duration of methane leaks; the correctness of the
control software is predicated on the accuracy of this information. Can it also be assumed that the
sensors always work correctly?

The description explains conditions under which the mine must be evacuated but does not indicate
how often this may occur or how normal operation is resumed after an evacuation. For example,
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Real-Time Systems: An Informal Account 7

can a mine be evacuated more than once in a shift? After an evacuation, is the shift considered to
be lost? If the mine is evacuated, it would be normal for a safety procedure to come into effect and
for automatic and manual clearance to be needed before operation of the mine can resume. This
information will make it possible to decide on how and when an alarm is reset once it has been
raised.

2.3 Developing a specification

We shall start by describing the requirements in terms of some properties, using a simple mathe-
matical notation. This is a first step towards making a formal specification and we shall see various
different, more complete, specifications of the problem in later chapters. Properties will be defined
with simple predicate calculus expressions using the logical opervaiarsd),V (or), = (implies)

and< (iff), and the universal quantifier (for all). The usual mathematical relational operators

will be used and functions, constants and variables will have types. We use

FZT1—>T2

for a functionF" from typeT; (the domain of the function) to typg, (the range of the function)
and a variablé” of typeT will be defined ad/ : T'. An interval fromC; to C5 will be represented
as[Cy, (9] if the interval is closed and includes bath andCs, as(C1, Cy] if the interval is half-
open and include€’; and notC, and agC1, Cy) if the interval is half-open and includ€s and
not Cs.

Assume that time is measured in seconds and recorded as a value in the set Time and the depth of
the water is measured in metres and is a value in thBepth TimeandDepthare the set of real
numbers.

S1: Water level

The depth of the water in the sump depends on the rate at which water enters and leaves the sump
and this will change over time. Let us define the water |&Vaterat any time to be a function

from Timeto Depth

Water: Time— Depth
Let Flow be the rate of change of the depth of water measured in metres per second and be
represented by a real numb&vaterinandWaterOutare the rates at which water enters and leaves
the sump and, since these rates can change, they are function&ifneto Flow:

Waterln WaterOut: Time— Flow
The depth of water in the sump at timeis the sum of the depth of water at an earlier titmand

the difference between the amount of water that flows in and out in the time inerma). Thus
Vtl1,t2 : Time, t1 < t2;

"o
Water(t,) = Watel(t,) +/ (WaterlIn(t) — WaterOuft))dt
t1
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Real-Time Systems: An Informal Account 8

HighWaterandLowWaterare constants representing the positions of the high and low water level
sensors. For safe operation, the pump should be switched on when the water reaches the level
HighWaterand the level of water should always be kept below the IBagigerWater

DangerWater> HighWater> LowWater

If HighWater= LowWater the high and low water sensors would effectively be reduced to one
sensor.

S2: Methane level

The presence of methane is measured in units of pascals and recorded as a valuP efsyye
(areal number). There is a critical levBlangerMethangabove which the presence of methane is
dangerous.

The methane level is related to the flow of methane in and out of the mine. As for the water level,
we define a functioMethanefor the methane level at any time and the functidethanelnand
MethaneOut for the flow of methane in and out of the mine:

Methane: Time=- Pressure
MethanelnMethaneOut Time=- Pressure

andVty, ts : Time,
ta
Methanét,) = Methanét,) +/ (Methanelrft) — MethaneOu())dt
ty
S3: Assumptions

1. There is a maximum ratMaxWaterln: Flow at which the water level in the sump can
increase and at any timeWaterInt) < MaxWaterln

2. The pump can remove water with a rate of at I[éashpRate Flow, and this must be greater
than the maximum rate at which water can build MaxWaterin< PumpRate

3. The operation of the pump is represented by a predicate on Time which indicates when the
pump is operating:

Pumping: Time— Bool

and if the pump is operating at any timet will produce an outflow of water of at least
PumpRate

(Pumpindt) A Water(t) > 0) = (WaterOuft) > PumpRatg
4. There is enough reaction time before the water level becomes dangerous;

(HighWater+ MaxWaterln- (tp)) < DangerWater
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Real-Time Systems: An Informal Account 9

5. The maximum rate at which methane can enter the miMaigMethaneRate

If the methane sensor measures the methane level periodicallytgyemyits of time, and if
the time for the pump to switch on or offig, then the reaction tim&,; + ¢t must be such
that,

(MaxMethaneRatet,,, + HighMethang < MethaneMargim
(MaxMethaneRatet p + MethaneMargin < DangerMethane

whereHighMethane< MethaneMargin< DangerMethaneHighMethanas the safety limit

of methane and the methane is below this limit when the system starts. The controller should
start to turn the pump off when it receives a methane level greatetHiggMethanesignal

from the sensor.

6. The methane level does not reddbthaneMargimrmore than once in 1000 shifts; without this
limit, it is not possible to meet the operational requirement. Methane is generated naturally
during mining and is removed by ensuring a sufficient flow of fresh air, so this limit has some
implications for the air circulation system.

S4: Pump controller

The pump controller must ensure that, under the assumptions, the operation of the pump will keep
the water level within limits. At all times when the water level is high and the methane level is
not critical, the pump is switched on, and if the methane level is critical the pump is switched off.
Ignoring the reaction times, this can be specified as follows:

Watelr(t) > HighWaten

Vi € Time ( Methanégt) < DangerMethane) = Pumpingt)

A(Methanét) > DangerMethang=- —Pumpindt))

This cannot really be achieved so let us see how reaction times can be taken into account. Since
tp is the time taken to switch the pump on, a properly operating controller must ensure that:

) Methanét) < HighMethanen —Pumpindt)A
vt € Time ( Water(t) > HighWater
= dtg <tp- Pumpith + t())

So if the operator has not already switched the pump on, the pump controller must do so when the
water level reachedighWater Similarly, the methane sensor may take units of time to detect
a methane level and the pump controller must ensure that

Pumpindt)A

Vvt € Time- < Methanét) > HighMethane

) = 3ty < t, - "Pumpindt + ¢o)

S5: Sensors

Sensors are modelled by variables. The high water sensor provides information about the height of
the water at time in the form of predicateé/ W (¢) and LW (¢) which represent the cases where

the water level is abovelighWaterand LowW ater respectively. We assume that at all times a
correctly working sensor gives some reading (H8V (t) V —~HW (t)).
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The readings provided by the sensors are related to the actual water level in the sump:

Vit € Time- Water(t) > HighWater= HW (t)
AWater(t) > LowWater= LW (t)

Similarly, the methane level sensor reads the methane level periodically and signals to the con-
troller that eitherd M L(t) or —H M L(t):

vVt € Time Methangt) > HighMethane= HML(t)
AMethanét) < HighMethane=- -HML ()

S6: Actuators

The pump is switched on and off by an actuator which receives signals from the pump controller.
Once these signals are sent, the pump controller assumes that the pump acts accordingly. To
validate this assumption, another condition is set by the operation of the pump. The outflow
of water from the pump sets the conditidtumpOn; similarly, when there is no outflow, the
condition isPumpOff

The assumption that the pump really is pumping when it is on and is not pumping when it is off is
specified below: assume the pump takdsne units to react:

vVt € Time PumpOrft) = 3ty < & - Pumpindt + to)
PumpOfft) = Jtg < x - ~Pumpindt + o)

We can then refine the specification of the controller as

HW (t) AN LM (t) = 3t, < e - PumpOrt + t,)
HW(t) N HM(t) = 3t, < e - PumpOftt + t,)

wheres + k < tp.

The conditionPumpOnis set by the actual outflow and there may be a delay before the outflow
changes when the pump is switched on or off. If there were no delay, the implieatmyuld be
replaced by the two-way implicatialf f, represented by, and the two conditionBumpOnand
PumpOffcould be replaced by a single condition.

Theverificationof the system specification is about to prove

(Controller SpecificationA (Actuator SpecificationA (Sensors Sepecificatipas
(Assumptions=- (Requirement Specificatioh

2.4 Constructing the specification

The simple mathematical notation used so far provides a more abstract and a more precise de-
scription of the requirements than does the textual description. Having come so far, the next step
should be to combine the definitions givenSt — S6and use this to prove the safety properties
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Historical Background of Formal Techniques in Real-Time and Fault-Tolerance 11

of the system. The combined definition should also be suitable for transformation into a program
specification which can be used to develop a program.

Unfortunately, this is where the simplicity of the notation is a limitation. The definitiihs S6

can of course be made more detailed and perhaps taken a little further towards what could be a
program specification. But the mathematical set theory used for the specification is both too rich

and too complex to be useful in supporting program development. To develop a program, we need
to consider several levels of specification (and so far we have just outlined the beginnings of one

level) and each level must be shown to preserve the properties of the previous levels. The later
levels must lead directly to a program and an implementation and there is nothing so far in the

notation to suggest how this can be done.

What we need is a specification notation that has an underlying computational model which holds
for all levels of specification. The notation must have a calculus or a proof system for reasoning
about specifications and a method for transforming specifications to programs.

2.5 Analysis and implementation

The development of a real-time program takes us part of the way towards an implementation. The
next step is to analyze the timing properties of the program and, given the timing characteristics
of the hardware system, to show that the implementation of the program will meet the timing
constraints. It is not difficult to understand that for most time-critical systems, the speed of the
processor is of great importance. But how exactly is processing speed related to the statements of
the program and to timing deadlines?

A real-time system will usually have to meet many demands within limited time. The importance

of the demands may vary with their nature (e.g. a safety-related demand may be more important
than a simple data-logging demand) or with the time available for a response. The allocation
of the resources of the system needs to be planned so that all demands are met by the time of
their deadlines. This is usually done using a scheduler which implements a scheduling policy that
determines how the resources of the system are allocated to the program. Scheduling policies can
be analyzed mathematically so the precision of the formal specification and program development
stages can be complemented by a mathematical timing analysis of the program properties. Taken
together, specification, verification and timing analysis can provide accurate timing predictions for
a real-time system.

We will discuss the relation between schedulability and verification and refinement.

3 Historical Background of Formal Techniques in Real-Time and
Fault-Tolerance

Starting from the early work in the 1970’s, formal methods for concurrent and distributed systems
development have seen considerable development. They have made a significant contribution to
a better understanding of the behaviour of concurrent and distributed systems and to their correct
and reliable implementation. The most widely studied methods include:
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— Transition systems with temporal logic [74, 65, 30].
— Automata with Temporal logic [20, 11].
— Process algebras [32, 68].

Traditional temporal logic methods (and similar formalisms) udeserete everdpproach: this is

also the case wittransition systemé.g. [39, 74, 64, 41, 75]gutomatale.g. [20, 21]) andction
systemge.g. [9, 17]). Such models abstract away time in the behaviour and describe the ordering
of the events of a system.

Real-time is introduced into transition systems either by associating lower and upper bounds with
enabled transitions [76] or by introducing explicit clocks [6, 3]. For specification and verification,

a temporal logic is then extended either with the introduction of boundegu@ntizedl temporal
operators [76, 40] or with the addition of explicit clock variables [76, 5, 3]. The relationship
between the two approaches, the extent to which one can be translated into another, is investigated
in [30].

One approach to the construction of safe and dependable computing systems is to use formal
specification, development and verification methods as partfatilé&intolerance approachn

which the system safety and dependability are improvea Ipyiori fault avoidanceand fault
removal[8]. Another path towards this goal is throufgult-tolerance which is complementary to
fault-intolerance but not a substitute for it [8]. This is based on the use of protective redundancy:
a system is designed to lfeult-tolerantby incorporating additional components and algorithms

to ensure that the occurrence of an error state does not result in later system failures [77, 78,
46]. Although fault-tolerance is by no means a new concept [71], there was little work on formal
treatment of fault-tolerance until the 1980s [69, 81, 23, 50, 53, 54, 55]. These papers treat untimed
fault-tolerant systems only. Recent work [22, 80, 45, 56] has shown how fault-tolerance and timing
properties can formally be treated uniformly.

The issue of schedulability arises when a real-time program is to be implemented on a system with
limited resources (such as processors) [37]. An infeasible implementation of a real-time program
will not meet the timing requirement even though the program has been formally proven correct.
Schedulability has been for a long time a concern of scheduling theory (e.g. [49, 38, 47, 7, 14]) but
the models and techniques used there are quite different from those used in formal specification and
development methods. The relationship between the computational model used in a scheduling
analysis and the model (e.g. an interleaving model) used in a formal development is not clear.
Thus, results obtained in scheduling theory are hard to relate to or use in the formal development
of a system. It is however possible to verify the schedulability of a program within a formal
framework [73, 85, 27, 60, 63] and this provides a starting point for a proof-theoretic interpretation
of results from scheduling theory.

4 Overview of the Formal Framework

We now show how fault-tolerance and schedulability, as well as functional and time correctness,
can be specified and verified within a single formal framework. Werasssition systemf39, 74]

as the program model, and the Temporal Logic of Actions (TLA) [43, 44] as the specification
notation. Physical faults in a system are modelled as being caused by ao$éfault actions’

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau



Program Specification, Verification and Refinement 13

which perform state transformations in the same way as other program actions. Fault-tolerance
is achieved if the program can be made tolerant to these faults (e.g. by adding the appropriate
recovery actions [77, 78, 50, 53, 54, 55]). We shall show that proof of fault-tolerance is no different
to proof of any functional property.

Each actiorr of a real-time program is associated withaatile lower bound.(7) and avolatile
upper boundU (7), meaning that ‘action can be performed only if it has be@ontinuously
enabled for at least(7) time units, and- must not becontinuouslyenabled forJ () time units
without being performed’. The use of volatile time bounds or, correspondivgiigtile timers(or

clock variable} in the explicit-clock modelling approach has been described in the literature (e.g.
see the references in the previous subsection) to specify the time-criticality of an operation.

To deal with real-time scheduling, it is important to model actions and their pre-emption at a level
of abstraction suitable for measuring time intervals and to ensure that pre-emption of an execution
respects the atomicity of actions. To achieve this, wepgssistent time bound§7] to constrain

the cumulative execution timef an action in the execution of a program under a scheduler. The
persistent lower bount{7) for an actionr means that ‘action can be performed (or finished)

only if it has been executed by a processor for at ledeta of /() time units, not necessarily
continuously’; the persistent upper boumd-) means that# is not executed by a processor for a
total of u(7) time units without being completed'.

In TLA, programs and properties are specified as logical formulas, and this allows the logical
characterisation and treatment of fleéinement relatiorbetween programs. We shall show how,
using this approach, the untimed program, the fault assumptions, the timing assumptions, and
scheduling policies are specified as separate TLA formulas.

The use of a well established computational model and logic has significant advantages over the use
of a specially designed semantic model and logic (e.g. asin [81, 23, 22, 80] for fault-tolerance and
[73, 63, 26] for schedulability). First, less effort is needed to understand the model and the logic.
Second, existing methods for specification, refinement and verification can be readily applied to
deal with fault-tolerance and schedulability. Also, existing mechanical proof assistance (e.g. [25,
10] and model-checking methods and tools (e.g. [20, 4, 31]) can be used [6, 5, 11].

5 Program Specification, Verification and Refinement

This section introduces a transition system which is widely used as the computational model in
temporal logic. This model serves as the semantic model of TLA that we shall use for specification
and verification.

5.1 Introducing TLA

Values, variables and states TLA is a logic used for specifying and reasoning about programs
which manipulate data. Assume there is a\&@tof values where a value is a data item. We
assume thaval contains all the values, such as numbers 3ikstrings such as “abc” and sets like
Nat, needed for our programs.
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Assume that a program manipulates data by changirgjdts which is an assignment of values
to state variablesFor describing all possible programs, we assumiafimite setVar of variables,
which are represented by symbols likgy, z. A states is thus a mapping froriar to Val:

s : Var — Val

For a states, the value assigned to a variablan states is represented by[x] and the values
assigned to a subsebf variables is denoted fz]. Given a subset C Val of variables, we also
definea states overw to be a mapping frora to Val.

5.1.1 Examples of states

For state variablesz, y }, let

—s={zx—0,y— 1}, ={x—1,y+— 0}
— szl = 0,sly] = 1, s'[2] = 1, '[y] = 0

Assume{On, Off, Bright} are state variables used to model a light system:

— s1 = {Off — true,On— false, Bright — false}
so = {Off — false,On+ true, Bright — false}
s3 = {Off — false,On+ true, Bright — true}

— 51[0Nn] = false, s2[ON| = true, etc.

&

State predicates A state predicatecalled apredicatefor short, is a first-order Boolean-valued
expression built from variables and constant symbols. For exarples y — 3) A x € Nat.
The meaning/@] of a predicate is a mapping from states to Boole@sie, false} once an
interpretationis given to the predicate symbols like=" and the function symbols like~" used

in Q. We say that a statesatisfiesa predicate), denoted by = Q, iff [Q](s) = true.

Consider variable$z, y} and the states = {z — 0,y — 1} ands’ = {x — 1,y — 0}. Then
(x—1=y),(x+y >3),and(x —1 =y)V (z+y > 3) are all predicates. Assumeand

y take values from the integers and the meanings of the equality symfipirfequality symbol
">" and the function symbols-=” and "+” are those defined in the arithmetic on integers. We
can easily decide which of the predicates are satisfied by statd which bys’.

Actions The execution of a program changes the state of the program by the execwttomaf
actions called aractionsfor short. Anactionis a first-order Boolean-valued expression over the
variablesvar and their ‘primed versions/ar’. For examplez’ + 1 = y andz’ > ¢/ + (x — 1) are

actions.
For a given interpretation of the predicate symbols such=dsdhd “>" and an interpretation
of the function symbols such ag" and “—", an action defines a relation between treuesof

variables before and thealuesof primed variables after the execution of the action. Formally,
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given the interpretation of the predicate and function symbols, the megrijireg an actionr is a
relation between states, i.e. a function that assigns a Boolean value to(a, paiof states. We
thus defind 7] (s, s’) by considering to be thepre-r-stateands’ thepost-stateand[7] (s, s') is
obtained fromr by replacing each unprimed variahtét = by its values[z] in s and each primed
variablez’ in 7 by the values’[x] of z in s:

[7](s, s") = trueiff 7(s[z]/z, s'[z]/Z') holds

wherez andz’ are the sets of unprimed and primed variables.ilWe say that a paifs, s’) of
statessatisfiesan actionr, denoted by(s, s') = 7, iff [7](s, s’) = true. When(s, s') =7, (s, s')

is called ar-step

A predicate) can also be viewed as a particular action which does not have primed variables.
ThusQ is satisfied by a paifs, s’) of states iff it is satisfied by the first statén the pair. For an
actionr, leten(r) be the predicate, called tremabling condition(or guard) of =, which is true

of a states iff there exists a state’ such that(s, s’) = 7. Formally, letz], ...,z be the primed
variables that occur in, let z4, ..., Z, be new logical variables that do not occurrinand letr

be the formula obtained fromby replacing each occurrencedfby z;, fori =1,...,n:

enr) & 3z,... 407

Temporal formulas We consider an execution of a program to berdimite state sequence, and

take the semantics of the program to be the set of all its possible executions. Reasoning about
programs is reasoning about their executions and thus reasoning about state sequences. We shall
use TLA for this purpose.

Formulas in TLA are calledemporal formulasvhich are built from actions as treementary
temporal formulasising Boolean connectives and modal operators in Linear-Time Temporal Logic
[65]. Here we use onlyd (readalwayg and its dual operato® (readeventually defined as-0O-.
Quantification (i.edz, V) is possible over a set édgical (or rigid) variables, whose values are
fixed over states, and over a set of state variables, whose values can change from state to state

To use these formulas for describing state sequences, it requires to define the semantic meaning of
such a formula as a function from executions to Booleans. We must first lift the semantics of an
action based on pairs of states to one based on state sequences.

Given an infinite sequence= oy, o1, . .. of states,

— An action[r] (o) = trueiff [7](00,01) = true. Note that]r] is overloaded here.
— The first-order connectives and quantification over logical variables retain their standard se-
mantics.
— [O¢](0) = trueiff [¢](n) = true for any suffixn of o. This implies thaf< ] (o) = true
iff [©](n) = true for some suffix) of o.
— [Bz.¢](0) = true iff there is anm such thatr =, n and[¢](n), where the relatior =, n
holds between state sequeneeandy, iff o;[y] = n;[y] for any variabley which differs from
x and for anyi > 0. Thus,3x.p is true of s iff ¢ is true of some infinite state sequenge
that differs fromo only in the values assigned to the variable

We say that a formula is satisfied by, denoted by = o, if [¢] (o).

1In [43, 44], the bold version9 and8 are used to quantify state variables.

Report No. 323, May 2005 UNUI/IIST, P.O. Box 3058, Macau



Program Specification, Verification and Refinement 16

5.1.2 Question

For state variable§z, y} and a state sequence:
0 = 851,82,51,52,. -

wheres; = {x — 0,y — 1} andsy = {z — 1,y — 0}, which of the following relations hold?

oE(x=y-1)

cEO@+1=1)

cEOy+y =1)

o= 32.0((y > 0) A (z = 1))

o OOy =y—1),

ocEOO(Y =y+1),

oEOOWY =y-1DAOY =y+1))

o s~ w DN PP

o

&

A formula ¢ is valid if it is satisfied by any infinite state sequences ovar. A relatively com-

plete proof system is given in [43], with additional rules for using the logic for reasoning about
programs. Every valid TLA formula is provable from the axioms and proof rules of the TLA proof
system if all the valid action formulas are provable. As the temporal operatarsd & and the
semantic model are the same as those in [65], the rules and methods provided there for verification
can also be used.

5.1.3 Question

Which of the following formulas are valid?

- O(p V), 0p = @, 0 = Op, Op = Cp, O(p V) = Cp V O
= O AY) = O AOY, O(p V) = UpV Oy, O(p Ap) = Op A DY

5.2 The computational model and program specification

We now give a mathematical definition of a program.

Definition 1 A program will be represented as aaction systenfor a transition systejnwhich is
atupleP = (v,z,©, A) consisting of four components:

1. Afinite non-empty setof state variables
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2. A setz of internal variableswhich is a subset af and possibly empty. The values of these
internal variables are not observable to the environment of the program.

3. Aninitial condition © which is a state predicate referring to only variablesvithat defines
the set ofnitial statesof the program.

4. A finite setA of atomic actionsn which only variables irv and primed variables i’ can
occur..

The simple light control system can also be modelled as

)
Aé{a:(S—Off)/\(S/—On), b:(s=on)A (s = off), }
77 c:(s=on)A (s =bright), d: (s = bright) A (s’ = off)

Notice that this model is not quite precise yet as it does not say what cannot be changed by an
action. One can imagine think of combining actipandc by a disjunctionv, that will illustrate
the nondeterminism of a system.

Consider the composition of the two open systems:

— Light control systemLightC:

(s = off A button= pressedl A (s’ = on A buttori = released,
(s = on A button= pressedi A (s’ = off A buttorf = released,
(s = on A button= pressedi A (s’ = bright A buttori = released,
(s = bright A button= pressed A (s” = off A buttorl = released

— The Button:Buttonwith one action:

(button= released A (buttorf = pressed

LightC' || Button has the union of the set of variables and the union of the sets of actions of the
two components.

Definition 2 A computation (an execution, a run) of progran?® = (v,7,0, A) is an infinite
sequence = oy, 01, . . . overv such that the following two conditions hold:

Initiality : oo satisfiesd.
Consecution For all 7 > 0, eithero; = 0,11 (a stuttering stepor there is an actiorr in A such

that (o;, 0,41) is aT-step (adiligent step. In the latter case, we say thatrastep is
takenat position: of o.

Thus a computation either contains infinitely many diligent steps, or a diligent step takes it to a
terminating state after which only stuttering steps occur; in this case we say that the computation
is terminating

The set of all the computations of a progranstigttering closedif an infinite state sequenceis
a computation of the program, then so is any state sequence obtained lipadding or deleting
a finite number of stuttering steps.
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Remarks on atomicity, interleaving and concurrency

— Atomicity is a means of modellingnutual exclusion synchronization

— Guarded atomic actions are foonditional synchronizatian Notice that the guard of an
action here is the enabling condition of the action.

— A number of atomic actions can be execuite@arallel iff the order in which they take place
does not affect the changes in the states. In this model, the use of an interleaving semantics
works well for concurrent systems.

— An atomic action can be understood, and in faftén though not alwayisnplemented, as a
piece of a sequenti&rminatingprogram.

— A piece of a terminating concurrent program (nested parallelism) is equivalent to a non-
deterministic sequential program (this ia also captured by the expansion law of CCS [67] and
CSP [32)).

Notice that in this definition, an atomic action in a program is semantically taken just as a binary
relation on the states. Therefore, although the actions in thé ae¢ syntactically distinct from

each other, we do not require that the actions be mutually disjoint in their semantics; in particular,
one action can semantically be a sub-relation of another. This implies that it is possible that two
actions have the same effect on a single state. This does not cause any theoretical problem, as we
are to reason about properties of the execution of the program, not the effect of a individual action.
In practice, when we use this model to define the semantics of a concurrent program, each atomic
action defines a different piece of code of the program. Then the effect of all the actions obtained
from the program will be different in any state, as they at least modify different control variables,
such as process counter variables, which are usually internal variables.

An atomic action of a program usually changes only a subset of the variables of the program,
leaving the others unchanged. For a finitezsef variables, we define:

unchange¢g) = A (2 = z)
TEZ
For example, the atomic action in the form of the guarded command) — x := z — 1 can
be described as the action formula:
(x > 0) A (2’ = x — 1) Aunchange@ — {z})

in whichz > 0 is the enabling condition (i.e. the guard).

In the examples, we will simply omit thenchangegart when we specify an action, by assuming
it changes the values of only those variables whose primed versions are referred to in the action
formula.

To specify stuttering, we define also an abbreviation for an a¢teomd a finite set of state variables
Z

[T]z 2rv unchange(k)

asserting that a step is eitherrestep or a step which does not change the values of the state
variablesz.

We are ready to define two normal forms of program specifications.
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Definition 3 Given a programP = (v,z, ©, A), let:

Np 2 \/7’

TEA

Np is thestate-transition relatiofor the atomic actions aP. Theexact(or internal) specification
of P is expressed by the formula:

II(P) £ © A ONp]5

An exact specification defines all the possible sequences of values that may be taken by the state
variables, including thénternal variablesz. Existential quantification can be used to hide the
internal variableg which ‘automatically’ get their adequate values although they are not visible

to the observer.

Definition 4 Thecanonical (or external) safety specificationf P is given as:
&(P) = IZ.II(P)

An infinite state sequence over v satisfies®(P) iff there is an infinite state sequengethat
satisfiedI(P) and differs fromo only in the values assigned to the variablgsi = 1,...,n.

Importance of the stuttering closure property Stuttering closure is important when using a
specification of a system in a larger system. In that case, the actions of this subsystem will be
interleaved with other actions in the larger system, and the variables of the subsystem will not be
changed when actions of the rest of the system take place.

To understand this point, consider a digital clock that displays only the houhrltepresents the
clock’s display.

From any starting hour, say, the behaviour of the clock is trivially:
{hr — 11} — {hr — 12} — {hr — 1} — {hr — 2} - -

Each step is carried out by the action
HCnext2 hr’ = (hr mod12) + 1

The clock can be specified ByCinit A OHCnext whereHCinit is the initial condition that the
clock starts from any hour:

HCinit2 hr e NA (1 < hr < 12)
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This will work if the clock is considered in isolation and never related to another system. However,
this specification cannot be re-used when we model a device that displays the current hour and
temperature.

hr — 11, . hr — 12, . hr — 12, . hr — 12,
temp — 3.5 temp — 3.5 temp — 3 temp— 2.5 |7

Therefore, stuttering is essential for composition. We will also see later that the stuttering closure
property is the key to deal with refinement between two programs.

Exercise: Write a specificatiomempclocKor a digital clock that displays the current hour and
temperature such that:

TempClock= HClock A TempDisplay

where

HClock 2 HCinit A [HCnexth,

&

FormulaslI(P) and®(P) are safety properties, i.e. they are satisfied by an infinite state sequence
iff they are satisfied by every finite prefix of the sequence. Safety properties allow computations
in which a system performs correctly for a while and then leaves the values of all variables un-
changed.

For an actiorr, define the actiorir)= 2

fairness properties.

7 A =munchange(Z). Then we can specify the following

Weak fairness: W Fx(r) 2 (OO(T)z) V (OC—en({r)%))
Strong fairness: SFz(7) 2 (OC({1)z) V (CO—-en((7)z))

The weak fairness conditioi’ F(7) says that from any point in an execution, the actramust
eventually be performed if it remains enabled until it is performed. The strong fairness condition
S Fz(7) says that from any point in an execution, the actionust be eventually executed infinitely
often if it is infinitely often enabled.

The safety specificationd(P) and ®(P) are usually strengthened by conjoining them with one
or more fairness properties:

I(P)AL and 37 : (II(P) A L)
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5.3 Running example

The processor of a simple system isstezsd andwrite operations to be executed by the memory.
The processor-memory interface has two registers, represented by the following state variables:

op. Set by the processor to the chosen operation, and reset by the memory after execution; its
value space i$rdy, r, w}, for ready, read andwrite, respectively.

val: Set by the processor to the valu¢o be written by awrite, and by the memory to return the
result of aread its value space is the set of integéefs,

Let the interface be a prograi, with an (nternal) variabled when denotes the data in the

memory.
it 2 {op,val,d}
O, 2 (ope{rdy,r,wh)AdeZ initial condition
RY 2 (op = rdy) A (op’ =) processor issuesad
WP £ (op=rdy) A(op) =w) A (val' €Z) processor issuesrite
RM 2 (op=r)A(op) =rdy) A(val’ =d) memory executescad
wm = (op = w) A (op’ = rdy) A (d' =val) memory executesrite
Ay = {RY, WP R W™} actions of the program
P = (v1,61,4)) the program
Np, = RYVWPVRPVW™ state transition relation
I(P) = ©;A0Np]s exact specification
®(P) = 3d.6; AONp s, hiding the internal variable

The two actionsk} and W} of the processor can be combined into a single nondeterministic
action:

RW?P £ (op = rdy) A ((0p/ =7) V (op = w) A (val’ € Z))

5.4 \Verification and Refinement

In TLA, verification of a program property specified by a formylavhich does not contain free
internal variables is by proving the validity of the implicatidr{P) = . A relatively com-

plete proof system is given in [43], with additional rules for using the logic for reasoning about
programs. Every valid TLA formula is provable from the axioms and proof rules of the TLA
proof system if all the valid action formulas are provable. As the temporal opefatang & and

the computational model are the same as those in [65], the rules and methods provided there for
verification can be used.

Definition 5 The relationP, C P, between two programg = (v;, z, ©;, A;) and P, = (v, y, Op, Ap)
characterizesefinement, i.e. that programp; correctly implement$,. Let

(‘P(Pl) =3dJz.O; A D[Npl]gl and @(Ph) = E@@h A\ D[Nphl@h
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be canonical specifications &} and P, respectively, where
T={z1,...,zn}  Y={y1,- - ym}

Then theefinement relatioms formalised as:
P C P, iff ®F)= o)

To prove the implication, we must define state functigps . ., 7, in terms of the variables;

—~—

and prove the implicatiobl(P;) = II(P), wherell(P,) is obtained froniI(P,) by substituting

y; for all the free occurrences gf in I1(P), fori = 1,...,m. The collection of state functions
n,--.,Um is called arefinement mappingrhe substitutions can be applied also to a sub-formula
of IT(Py). g, is the ‘concrete’ state function with whidh implements the ‘abstract’ variabig of

Py,. The proof of the implication can be carried out in two steps:

1. initiality-preservation: ©; = éh;
2. step-simulation: Np, = [J\~/P,,,]@l.

As Np, is the disjunction of the actions df,, step-simulation can be proved by showing=-

[ﬁ/ph]@l for eachr € A;; each step of the state transition Bycorresponds to either a diligent step
or a stuttering step b¥,.

5.4.1 Completeness remarks

The validity of the implicationb(P;) = ®(F},) does not imply the existence of a refinement map-
ping, but in general, refinement mappings, can be found by adding dummy (or auxiliary) variables
to specifications [2]. Once a refinement mapping is found, the verification of the refinement is
straightforward and can be aided by mechanical means (e.g. [25]). However, finding a refinement
mapping may be difficult if it is not known how, is obtained fromP,. On the other hand, know-

ing how an abstract state variable Hy is implemented by the variables 1, it is possible to

define the mapping between them. Refinement supports step-wise development in which a small
number of abstract state variables are refined in each step.

5.5 Linking theories of programming to TLA

The use of atomic actions allows us to use most of the theories of sequential programming smoothly
in this framework. In concurrent programming, an atomic action is often implementeglasded
commanavhich can be a big piece of program text [24] (also see Morgan’s chapter on 'Probability
in the context of wp’ in this volume). A guarded command is of the fgrm— C, whereC can

be any programming statement such as

C = Ti=e
| C; C sequential composition
| cncC nondeterministic choice
| C<b<>C conditional choice
| bxC iteration
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For a given a command, we can calculate a desi§'] following the calculus of UTP [33]:

Pregc F Poste

The corresponding TLA action gf — C' is then
g A (Prec = Postc)

We can usé Prec = Postc) <1 g > Skip, as we allow stuttering.

Also, reasoning about TLA specifications, such as verifying an invariant propgptycan be
done by reasoning within UTP, Hoare Logic, or Dijkstra’s Calculus of Weakest Preconditions.
Refinement of a TLA specification can be carried out by refinement methods in UTP [33] or using
the refinement calculi of Morgan [70] and Back [9].

Note that an atomic action does not have to be implemented by a sequential command. It can be
implemented as a piece of concurrent program, say, written in Back’s action systems [9].

6 Fault-tolerance

There are several different ways in which a program can be developed using formal rules which
guarantee that it wikatisfya specification when executed on an fault-free system, e.g. [41, 9, 43].
However, when a component of a computer system fails, it will usually produce some undesirable
effects and it can be said to no longer behave according to its specification. Such a breakdown of a
component is called a fault and its consequence is called a failure. A fault may occur sporadically,
or it may be stable and cause the component to fail permanently. Even when it occurs instanta-
neously, a fault such as a memory fault may have consequences that manifest themselves after a
considerable time.

6.1 Introduction

Fault-tolerance is the ability of a system to function correctly despite the occurrence of faults.
Faults caused by errors (or bugs) in software are systematic and can be reproduced in the right
conditions. Formal methods can be used to address the problem of errors in software and, while
their use does not guarantee the absence of software errors, they do provide the means of making
a rigorous, additional check. Hardware errors may also be systematic but in addition they can
have random causes. The fact that a hardware component functions correctly at some time is no
guarantee of flawless future behaviour. Note that hardware faults often affect the correct behaviour
of software.

Of course, itis not possible to tolerate every fault. A failure hypothesis stipulates how faults affect
the behaviour of a system. An example of a failure hypothesis is the assumption that a communi-
cation medium might corrupt messages. With triple modular redundancy, a single component is
replaced by three replicas and a voter that determines the outcome, and the failure hypothesis is
that at any time at most one replica is affected by faults. A failure hypothesis divides abnormal be-
haviour, i.e. behaviour that does not conform to the specification, into exceptional and catastrophic

Report No. 323, May 2005 UNUI/IIST, P.O. Box 3058, Macau



Fault-tolerance 24

behaviours. Exceptional behaviour conforms to the failure hypothesis and must be tolerated, but
no attempt need be made to handle catastrophic behaviour (and, indeed, no attempt may be pos-
sible). For example, if the communication medium mentioned earlier repeatedly sends the same
message, then this may be catastrophic for a given fault-tolerance scheme. It is important to note
that normal behaviour does not mean perfect behaviour: after a time-out occurs, the retransmission
of a message by a sender is normal but it may result in two copies of the same message reaching
its destination. Exceptional and normal behaviours together form the acceptable behaviour that the
system must tolerate.

Fault-tolerant programs are required for applications where it is essentiftifisdo not cause a
program to have unpredictable execution behaviour. We assume that the failures do not arise from
design faults in the program, since methods such as those mentioned above can be used to construct
error-free programs. So, the only faults we shall consider are those caused by hardware and system
malfunctions or the environment of the component that is under development. Many such failures
can bemaskedrom the program using automatic error detection and correction methods, but there

is a limit to the extent to which this can be achieved at reasonable cost in terms of the resources
and the time needed for correction.

When the nature or frequency of the errors makes automatic detectébeorrection infeasible,

it may still be possible that erratetectioncan be performed. It is desirable that fault-tolerant
programs are able to perform predictably under these conditions: for example when using memory
with single bit error correction and double bit error detection which operates even when the error
correction is not effective. In fact, the provision of good program level fault-tolerance can make

it possible to reduce the amount of expensive system error correction needed, as program level
error recovery can often be focussed more precisely on the damage caused by an error than a
general-purpose error correction mechanism.

The task is then to develop programs which perform predictably in the presedetofedystem

errors, and this requires the representation of such errors in the execution of a program. Earlier
attempts to use formal proof methods for verifying the properties of fault-tolerant programs were
based on amformal description of the effects of faults, and this limits their applicability. Here we
shall instead model a fault as antionwhich performs state transformations in the same way as
other program actions, making it possible to extend a semantic model to include fault actions and
to use a single consistent method of reasoning for both program and fault actions.

Let P be a program satisfying the specificatiSp. Let the effect of each physical fault in the
system on whichP is executed be described a$aalt actionwhich transforms goodprogram
state into arerror state which violate$p. Physical faults are then modelled as the actions of
a fault program F' which interferes with the execution df. A failure at any point during the
execution ofP takes it into an error staté(is assumed not to change an error state into a good
state.).

In general a high level specification of a program is not sufficient to specify its behaviour in the
presence of system faults or to transform it into a fault-tolerant program. It is also necessary to
describe the hardware organisation of the system on which the program is to be executed, on its
use of the resources of the system and the nature of the possible faults in the system, e.g. which
processors and channels may fail; all of these factors can affect the execution of the program. Very
little can be said about the effects of a system fault on a program until it has been refined to the
level where these effects can be observed. There is need to represent faults and their effects at
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various levels of abstraction and here we shall use specifications to develop both the program and
the fault environment in which it executes.

6.2 Formal specification, verification and refinement of fault-tolerant programs

A physical faultoccurring during the execution of a prograth= (7,7, 9, A) can cause a transition
from a valid state of” into anerror state. This may lead tofailure state which violates the specification
of P. A physical fault can be modelled as an atoffaiglt-action

For example, a malicious fault may set the variables”d arbitrary values, a crash in a processor

may cause variables to become unavailable, and a fault may cause the loss of a message from a channel.
Physical faults can thus be described by a Betof atomic actions which interfere with the execution

of P by possibly changing the values of variablegirrhefault-environmen#’ can be specified by the

action formulaNx which is the disjunction of the action formulas of alE F.

ExecutingP = (v,7,0, A) on a system with a fault-environmeft is equivalent to interleaving the
execution of the actions d? and F'. Therefore, interference hiy on the execution of can be defined
as a transformatioft:

F(P,F) 2 (3,7,0,AUF)

The exact and canonical specifications of the computatio#3when executed on a system with faults
F are given by:

(F(P,F)) = ©ADNpVNply  and
O(F(P,F)) = 37.0 AONp V Nply

Definition 6 The fault-prone properties a? under F' can be derived from the properties &t P, F'),
the F-affected versionof P. A computation ofF (P, F') is an F-affected computationof P.

6.3 Running example continued

For the processor-memory interface, assume that the memory is faulty and that its value may be cor-
rupted. Such a fault can be represented by the atomic operation

fault 2 &' # d
Let the fault-environmenk; contain the single actiofault. The F;-affected version of?; is then:

F(Py, F1) = (01, {R}, WP R, W fault})
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Thus, N, = faultand:

Nrpy, ) = Np, Vfault
I(F (P, Fr)) = 01 ABWNEp o,
O(F (P, 1)) WI(F (P, Fy))

&

For a programP to tolerate a sefF' of faults, correcting actionsmust be carried out to prevent an
error stateentered by a fault transition from leading tdadlure statewhose occurrence will violate the
program requirement specification. In the example, Khaffected versionF(P;, Fy) of P is not a
refinement ofP; and this implies thaP; does not tolerate the fauft; .

Definition 7 For a given sef’ of faults, a progranP is called aF'-tolerant implementatioaf a property
(or requirement)p, if (P, F') is an implementation af:

O(F(P,F)) = ¢

This means that the behaviours Bfcomply with the specificatiorp despite the presence of faulks
When such a property is a canonical specification of a progrdmy,

®(P,) = 3.0, AO[Np, |z

a programp, is a F'-tolerant refinemenof P, denotedP, Cp P, if P, is a F-tolerant implementation
of (I)(Ph).

In general, a fault-tolerant program can be obtained from a fault-intolerant pragtayrj50, 53]

1. Adding checkpointing operationg (P) = Pc,
2. Addingrecovery operationsR(C(P)) = Prr.

C andR are required so thak(Prp, F') C P or Pep Cp P. There are other ways to construcPar
such thatPrr Cp P.

In [50, 55], checkpointing actions and recovery actions are abstractly defined and can be refined to
implement different kinds of fault-tolerant mechanisms.

The F-tolerant refinement relatioi ¢ is stronger than the ordinary refinement relation: i.eRjifis
a F'-tolerant refinement of?,, then P, is a refinement ofP, but in general the converse is not true.
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Further, F-tolerant refinement is generally not reflexive but it is transitive?ifCr P, and P, Cp Py,

thenP; Cp P,. Fault-tolerant refinements afault-monotonic if Np = Np, andP, T, Py, then

P, Cr P,. This means that a program which tolerates a set of faults also tolerates any subset of these
faults?.

Realistic modelling usually requires, in addition to the fault-actiorizlzaviouralfault assumptio3

about the global properties éf, such as the maximum number of memories corrupted at a time, and the
minimum time between faults. This suggests that the exact specification bf#ffected computations

of P should in general be specified H$F (P, F')) A Br, and theF'-tolerant refinement o, by P,
should be proved under the conditiBi:

—_~

(F(P,, F)) A Bp = TI(P,)

which is equivalent td3r = (II(F(P, F)) = II(P,)). This indicates that the proof df-tolerant
refinement ofP, by P, under53 can be established by proving initiality-preservation and step-simulation
under the assumptioirz. A behavioural fault assumption prevents certain fault transitions from taking
place from some states and is thus in general a safety property of thedffprise the equivalence of
Op1 A Opg andd(p; A p2), the formuIaD[Npl V Nz A Br can be transformed into an equivalent
formulad[V 5. Infact, asBr should not constrain the actionsBf V; is obtained from\Vp, and /N by
enhancing the enabling conditions of the fault actiong aeccording ta3r. ForII(F (P, F))ABr, there

is Fy such thall(F (P, F)) A Br equalsll(F(F,, F1)). This implies that the behavioural assumption
Br can be encoded into the set of fault actions and the two standard steps for proving refinement can
be directly applied to the transformed specificatlé(F (P, F;)). These two methods for proving a
fault-tolerant refinement will be demonstrated in the example at the end of this section.

The separation of fault actions and behavioural assumptions simplifies the specificatiof aiffeeted
computations of progran®;. Further, coding these assumptions into the fault action makes the proof
easier.

6.4 Running example continued

Let the fault-free memory of the processor-memory interf@cee implemented using three memories,
such that at any time at most one suffers from faults.

Letd;, i = 1,2, 3, be the data in the three memories and let menmdgy subject tdault,. The variables
fi with value spac€0, 1} indicate thatd; has been corrupted whefj = 1. The fault actions can be

2This is easily achieved in a linear time model, as with TLA. For a discussion of fault-monotonicity with a branching time
model, see [35].

Report No. 323, May 2005 UNUI/IIST, P.O. Box 3058, Macau



Fault-tolerance 28

specified as follows:

fault, = (d;#d;)A(fl =1) corruptsd;

F, 2 {fault,,fault,, fault,}

Nr, = fault Vv fault, v fault,

Br, 2 O(fi+f2+f3<1) atmostone corrupted memory at any time

Define the following auxiliary function:

x fx=yorz=z

A
votg(z, y, z) { y ifx#£yandx # 2

A programP, which tolerates the fault; by using thevote function to mask the corrupted copy of the
memory, and itd;-affected version are specified as follows:

ﬁ2 é {Opﬂ)al d17d27d37f17f27f3}
0y 2 (ope {rdy,r,w})A initially
(d1 =ds = dg) (A3, (d; € Z)) all contain the same value
A
R, = (op= rdy) (op' =)
Wi 2 (op=rdy) A(op/ = w) A (val' € Z)
A
Ry = (Op—r) (op' = rdy)A
val’ = vote(dy, da, d3) return the voted value
Wi 2 (op=w) A (op = rdy)A
A3y (d) = val)A write simultaneously
AL (fl=0) overwrite corrupted copy
Ay = {RE, WY Ry Wi} all actions
Py, = (U2,09,A5) program
Np, = REVWYvV RV W next-state relation
I(P,) = ©3A0NR]s exact specification
O(P) = 3(dy,ds,ds, f1, f2, f3).T(P) canonical specification
F(Py, Fy) = (D2,02,A3U F}) fault-affected program
N}-P’z F) = NPQVNFz
(F(P2, Fy)) = ©2AONp, VNE,a,
O(F(Py, Fy)) = 3(di,da,ds, f1, f2, f3) IU(F (P, F2))

To prove the refinement relatid?y T, P; under the assumptidfy,, define the mapping from the states
of 75 to those ofd: d = votgdy, da, ds). Then, according to the definition of fault-tolerant refinement,
we need to provel(F(FPs, F3)) A Br, = IT(\PT) whereH/(\f?) — II(P,)[d/d], obtained by substituting

d for all occurrences of in II( P ).
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Proof: [of the F»-tolerant Refinement] The initiality-preservatiéy = ©; holds trivially asd =
votgdy, da, d3), by definition. For step-simulation, we have:

Case 1 RL andW?, andR?* equalR?, WP and R, respectively;
Case 2 WJ" = ’V(v/{”, as the right hand side is
(op = w) A (op’ = rdy) A (votg(d}, da, dy) = val)

Case 3 No fault;-step, fori = 1,2,3, changes the values:l andop, and it is sufficient to show that

no fault;-step changed. We prove this fori = 1; the proofs fori = 2,3 are similar. By the
assumptiorBr, and the TLA rule for proving an invariance property, it is follows tAa,, F»)
has the following invariance property

D(fl =1= (d2 = d3))

Thus,fault; = (d), = da2) A (dy = d3) A (d, = d4) and this impliedault; = unchange(ii).

Q@
We can also prove the fault-tolerant refinement as follows.

e First transform9, A O[Np, V N, |5, A Br, into

T(F(Py, Fa1)) £ 03 ADNp, V Ny, s,

whereFy; = {faulty, : i = 1,2,3} and

2

fault,, = (fie1 = 0 A fima = 0) A (d) # di) A (fl =1)

whered is + modulo 3.

—_—~—

e Then provdI(F (P, F»1)) = II(P;) by establishing initiality-preservation and step-simulation.

&

7 Modelling real-time programs

The most common timing constraints over a program require its actions to be executedtneitreaty

nor too late for example, to use time for the synchronization between a processor and a memory to
ensure that a message written is not overwritten before being read, the memory must not execute the
read operation too slowly and the processor must not issueuthiée operation too soon. Let time be
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represented by the non-negative real numbBrs. Timing constraints over the execution of an action

in a programP can be specified by assigning to each actica volatile lower time bound.(7) from

R* and a volatile upper time bourid(7) which is either a value froR™, or the special valueo which
denotes the absence of an upper bound. Any real numb®t iis assumed to be less than, and the

lower bound is assumed not to exceed the upper bound for any action. Both the lower and upper time
bounds at the program level are volatile, and thus the semantic interpretaficandi/ is that an action

7 can be performed only if it has be@ontinuouslyenabled for at least(7) time units; 7 must be
performed if it has beeoontinuouslyenabled for/ (7) time units.

Definition 8 A real-time program can be represented as a triple” = (P, L,U), whereP is an
‘untimed’ program, defined in the previous section, dndnd U are functions of the atomic actions of
P defining the lower bound (7) and upper bound/ () for any actionr of P.

7.1 Specifying real time

As in the case of untimed programs, we shall need an exact specifi€gtih) of a real-time program
PT. We introduce a distinguished state variabtavto represent time, and an action to advance time,
under the following assumptions [3, 30]:

time starts at: initially now= 0.
time never decreasesl[now € (now, co)|now-

time diverges vVt € RT.O(now> t).

Time divergence is also called the Non-Zeno property and ensures that only a finite number of actions can
be performed in any finite interval of time. The three assumptions can be combined to specify real-time
evolution:

RT 2 (now= 0) A O[now € (now, co)jnowA V¢t € RT.O(now > t)

To preserve the atomicity of the actions in the program, we model the execution of the program so that
program state and time do not change simultaneously and that a program state can be changed only
by program actions, i.ec = (now = now) for each actionr of P. Then the conjunctiodl(P) A

RT specifies the interleaving of program actions and time evolution. The program actions are further
constrained by thelower boundandupper boundctonditions, and this is done by introducing auxiliary

state variables calletimers

%The methods and results apply to discrete time domains as well.
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7.2

Specifying time bounds

An actionT in P” cannot take place before it has been enabled.fe) time units and must take place
before it has been enabled for more thafr) units. We need to introduce auxiliary state variables to
record how long an action has been enabled.

Consider the hour-clock again. Assume it is now required that the clock displapthect real time
Following what has been described earlier, we have:

The newly added observable varialiew, representing time.

The change of the display is instantaneous, e.g.

hr — 12, hr — 12,
now— /247 [’ now— 2.5 [’ 7
now changes between of a change of display.

The requirement that the interval between two ticks is one hour plus or misesonds.

The need of a timet to record how much time has elapsed since the last tick.

tNxt(HCnxt)
Timer(t, HCnaxt)

(' =0) < HCnxt> (t' =t + (now’ — now))
(t = 0) A D[tNXt] (t,hr,now)

A
A
The timert cannot exceed60 + p before the next tick:
Max(t, 360 + p) 2 O(t < 360 + p)
After a tick, the clock cannot tick again befarbecomes60 + p:
Min(t, HCnxt 360 + p) 2 O[HCnxt= (¢ > 360 — p)]n,

The time bound specificatidAC is then the conjunction:

HCp 2 Timer(t, HCnazt) A Maxt, 360 + p) A Min(t, HCnxt 360 + p)

The exact specification of the real-time clock is:

RTHCZ HC A RTA HCp
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Definition 9 In general, given a progran? = (v, 7,0, A), letT € A andj be a non-negative real. We
can define a&ounting-up volatile timer:

Timer(t,,7) £ (t=0) AD[(t' = 0) < (< 7 >3 Ven(r)) >
(t" =t,; + (now' — TLOU)))](tTj,now)

whereA; <1 g > As denotes the actiop A Ay vV —As.

Then we can specify the time bounds of a real-time verstérof programP as follows:

Max 1 (r) 2 Ot < U(r))

Min 1 (r) = O =t > L(n)]@non

B, 1 2 Timer(t,,7) AMin 1 (1) AMax1 (1)
Bp 1 = N B

TEA

The exact specification @’ can be given asl(P) ARTA Bp 1.

Using counting-up timers gives a simpler specification of a real-time program. However, our experience
is that with them, the proof of a refinement is hard. We now defioeuater-down timer

Definition 10 Given a programP = (v,7z,0, A), let7 € A and ¢ be a non-negative real. We define
volatile §-timer ¢ which is a state variable not in. The behaviour of the timeris such that when is
enabled from a state in which it was disabledrais taken is assigned &lock timeof now+ § units of
time:

Volatile(t, 7,5,0) £ (((en(r) At =6))V (—en(r) At = o0)) A
o[ (en(7)" A (rV—enT))A (t' = now+ 0)
venT)AenT) AT At =t)
vV —en(r)’ A (1" = 00)) A (7,now) # (U, NOW)]; 7)

Informally, each line in the definition is explained as: the volatitémer is initially set tod (i.e. ¢ time
units ahead of the initial valugof now) if 7 is enabled, and tec otherwise, and then repeated in every
step:

1. the timert is reset ta) time units ahead afiowin the new state if;

(a) = becomes enabled in the new state from being disabled in the old state, or
(b) 7 is taken and it remains enabled in the new state;

2. the timert stays unchanged if remains enabled buthas not taken place in this step;
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3. the timert is reset toxo if 7 is disabled in the new state.

Using such a volatile timer, the property that a-step cannot take place until the timewreaches the
clock timet can be defined as:

MinTime(t, 7,7) 2 Ofr = (¢ < now)s

The conjunction of this formula andolatile(t, 7, 6, 7) can be used to specify a lower bound condition;
andVolatile(¢, 7, 4, v) can be used also for an upper bound when conjoined with the formula:

MaxTimét) 2 O[now < Jnow

For a given real-time progra®” = (P, L, U), let each action of P have a volatileL(7)-timert, and
volatile U (7)-timer T’-. Then the conjunction:

Volatile(t,, 7, L(7), ) A MinTimg(t,, 7, 7)

which istrue whenL(7) = 0, specifies the lower bound for actien A 7-step cannot take place within
L(7) time units of whenr becomes enabled, and the nexdtep cannot occur withi(7) time units of
whenr is re-enabled. The lower bound condition of the program is the conjunction of the lower bound
conditions for all its actions:

LB(PT) 2 ) (Volatile(t,,r, L(r),7) A MinTime(t,, 7,7))
TEA

Similarly, the upper bound condition of progra is specified by the formula:

UB(PT) £ )\ (Volatile(T,,,U(r),7) A MaxTimeTy))
TEA

whereVolatile(T", 7, U(7),v) A MaxTim&T’; ) equalstrue and thus can be eliminated from the conjunc-
tion if U(1) = oc.
The time bound specificatiai( P7) for the whole progran®’ is then the conjunctioh B(PT) A U B(PT).

Definition 11 The real-time executions of prograRi are exactly specified by tlexact specification

(PT) 2 TI(P) A RT A B(PT)
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Hiding the internal variablest and the auxiliary timers, denoted Bymer(PT), gives thecanonical

specificationof PT":

o(PT) 2 37, timer(PT).11(PT)

7.3 Running example continued

In the untimed processor-memory interfag let the processor and the memory be synchronised by
timing rather than by guarding the processor actions. Assume that the processor periodically issues an
operation every units of time. To ensure that an operation is executed by the memory before the next
operation is issued by the processomust be greater than the upper bound (or deadline) for the memory

to execute the operation. The real-time progigm=

U1 é {0p7 ’UCLl,d, C}
O £ (ope{rw})A(deZL)Ac
RWY £ (op' =7) A=V
(op' = w) A= A (val’ € Z)
R = (op=r)AN=cA (wal' =d) AN
wim = (op=w) A=c A (d =val) N
A A P m m
1 = {RW{, R, Wi"}
LiRWE) = UL(RWD) =
Li(Ry") = Li(Wi") =0
Ul(R{n) = Ul(Wlm):Dl <p
Pif - <@1a®17A17L13U1>

7.4 \Verification and refinement

(Py, L1,Uy) is described as follows:

add an internal variable
the op has not been completed

issues a read operation, or
a write operation

similar to the originalP;
similar to the originalP;

actions of the program
RW?!’s period

memory actions’ lower bound
memory actions’ upper bound
real-time program

The timed and untimed properties of programs can be specified in the same way in TLA. For example,
the bounded response property that opagcurs in an execution; must occur within time units can

be described as:

w&i P = Vt.O(p Anow=t = (Y Anow< ¢ +9))

To prove that the real-time prograRf satisfiegor implementsa timing property is to prove the impli-
cation of the property by the specificatidr{ P) of the program. For example, the real-time processor-

memory interfaceP satisfies the property:

Ad.((op=r ANd =) 2 (val = v))
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which asserts that the value of the memory will be output withinunits of time after the processor
issues a read operation. The implication:

®(Pl) = 3d.((op=rAnd=n) 2 (val = v))

can be proved by proving:

H(Pf):(opzr/\d:v)%(val:v)

Definition 12 Therefinementrelation /' C P! between the real-time progran®®’ and P! is defined
as the implicationd(P) = ®(PT') using a refinement mapping.

To verify initiality-preservation and step-simulation, convert the exact specification:
I(PT) 2 ©p A [Nz A RT A B(PT)

into the form® A [Nz, wherez equalsv plus now and the timers, an@® is obtained fromOp by
conjoining it with the initial conditions onowand the timers\/ is an action formula.

8 Combining Fault-Tolerance and Timing Properties

Fault-tolerant systems often have real-time constraints. So it is important that the timing properties of a
program are refined along with the functional and fault-tolerant properties defined in the program spec-
ification. This section extends the transformational approach for fault-tolerance by adding time bounds
to actions. This will allow the fault-tolerant redundant actions to be specified with time constraints.

The functional properties of faults are modelled by a Batf atomic actions specified by the action
formula . There are no time bounds on these actions (or, equivalently, the lower and upper bound of
each fault action are respectivélyandoc). Given a real-time program®” = (P, L, U), the F-affected
version of P” is defined as:

F(PT,F)2 (F(P,F),L,U)

where the domain of. andU is extended toA U F' and each action i’ is assigned time bounds 0f
andoo.

To achieve fault-tolerance in a real-time system, there must be a timing assumption on the occurrence of
faults, especially when deadlines are required to be met. Such an assumption is usually a constraint on
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the frequency of occurrence of faults, or the minimum time for which faults cannot occur. This period
should be long enough for the recovery of the computation to take place and for progress to be made
after recovery from a fault. For a formulaand a non-negative real numberet «» hold continuously

for € units of time:

O 2 Vi.(now=1t = 0(now<t +¢c = 1))

A fault is modelled as an atomic action and specified as an action formula. The timing assumption on
faults F' is a conjunction of assumptions, each of the fowhénever faultoccurs, faul§ cannot occur

within e units of timé If this assumption is denoted 1§}, the exact and canonical specifications of the
F-affected versio (PT, I) are, respectively,

H(F(PT,F) = OA[NpVNE)zARTABPYYABr ANTp
= TII(F(P,F))ART A B(PT)ABr AN Tr
®(F(PT,F)) = 3z, timer(PT).II(F(PT,F))

Thus theF-affected version of a real-time prograRY is also a real-time program. This normal form
allows the definition ofault-tolerance for real-time systeris be given in the same way as for untimed
systems. A real-time progra” is an F-tolerant implementatiorof a real-time property) if the
implication®(F(P7, F)) = ¢ holds. PT is an F-tolerant refinementf a real-time progran®! if the
implication®(F(P7, F)) = ®(PT') holds.

8.1 Running example continued

In Section 6, we showed how the untimed fault-free processor-memory intétfaan be implemented
by the untimed version aPs, using three faulty memories whose values may be corrupted by tl#g set
of faults with assumptio8x,. We show now how the timed versidi is Fy-tolerantly refined by a
timed version ofP.

Let the specification of the underlying untimed progr&mbe changed slightly by removing the guard
condition of the processor actions:

vy = {op,val,c, dl,dg,d37f1,f27f3}
O = (ope€{r,w})A
(dy =dy = d3) (/\f:l(di €17))
RWéD = (op = ’r’) =V ( p/ = w) A=c A (val’ S Z)
R = (op=r7r)A-cAc Aval' =votgdy,ds,ds)
Wit = (op=w) A=cAc AN (d =val A f] = 0)
Np, = RWEPV RV WY
H(PQ) = 62/ D[sz]iz
O(P) = 3(di,da,ds,c, f1, f2, f3).11(P2)
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Meeting the timing properties d?{ requires that the time bounds of the actions of the implementation
P, guarantee (a) that the period for the processor to issue an operation jsastdl (b) that the upper
boundD, for the memory to execute an operation to completion is not greatet/?han

Ly(RW3) = U2(RW3) = p
Ly(Ry) = Lo(W3) =0
Us(Ry') = Ux(W3") = Dy < Dy

To prove thatPQT Cr, PlT under the assumptiofiy,, we have to consider only the case when= D,

since simply lowering the upper bound (or raising the lower bound) of an action is obviously a refinement.
Define a refinement mapping from the states over the variablé¥ &f to the states over the internal
variables ofPlT, including the volatile timers as follows:

A

A ~
d = VOte(dl, do, dg) c=c¢
T A A
trwy = lrwy Trwr = Trwp
—— A - A

The implicationll( Py, %) A Br, = TI(P]’) can be proved in the same way as for the untimed fault-
tolerance in Section 6.

The assumptiolfr, can be relaxed to the timing assumption:

1>

3
Tr, /\ O(fi = 1= 0,40, (fig1 = 0A figa = 0))
i=1

which asserts that only one of the most recently written memories may be corrupted before the read
operation is completely executed. Thé’éf = (P, Ly, Uy) is also anF,-tolerant refinement oPlT
under the fault-assumptidfy, .

The specifications oP} and P] demonstrate a practical fact: to achieve fault-tolerance with timing
constraints, a more powerful (or faster) machine is often needed. The execution of the multiple assign-
mentW3" on such a machine should not be slower than the execution of the single assidhiftent

on a machine for an non-fault-tolerant implementation?Jf; and the execution of the multiple read
operationR3" with a voting function should not be slower than the execution of the single read operation
R7*. Otherwise, with a machine of the same speed, the original time bounds must have enough slack to
accommodate the redundant actions for fault-tolerance.

We can refinePzT further to P3T, where the actions of the three memories are executed by different
processes, and the voting action is done by another process. The specification of the variables, the initial
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condition and the actions d® are given below, fof := 1,2, 3:

E3 = {Opaval>opi7vali7diafi7ci7vi ‘ 1= 17273}
O3 = (op € {r,w})A—c1 A—ea A—esA
(op1 = opa = op3 = op) A —v1 A =3 A w3
RWE = = A=ch A~ch A ((0p, 01, 0ps, 0ps)! = (17,7, 1)V
((op, op1, 0p2, 0p3) = (w, w, w,w)) A (val' € Z))
Ry = (opi=7)N-¢ A (val, =d;) ANl A,
Wit = (op; = w) A—e; A (d], =val) A (f] =0) A
Vote = v Avs Avg A (val’ = votgualy, vals, valz)A
) A —wh A -
As = {RW} Vote, Ry, W3 | i=1,2,3}
Py = (v3,03,43)

The newly introduced internal variablesy;, contain the operations issued to the process denote
whether the operations issued to the proces® completedy; are used to synchronise the read actions
and the vote action such thadte is done only after all theeads are completed.

The timing properties of’{ require (a) that the time bounds of the actions in the implementation
guarantee that the period for the processor to issue an operation js @iillthat the upper bound,,;
for theith memory to execute an issued write is not greater thanand (c) that the sum of the upper
boundD,; of theith memory to execute an issued read operation and the upper ByndftheVote
action is not greater thab,: fori = 1,2, 3.

La(RIVE) = Ua(RWD) =

Ly(R3) = (W Y= Ly(Vote) =0 Us(WI™) = Dy,

Us(Ry") = Us(Vote) = Dyote
D w; SDQ Dri"’DvoteSDQ

The refinement and fault-tolerance can be proved by showing the validity of the implication:
(I)(f(P?;TaFQ)) A BF2 = (I)(‘F(PE7F2)) A BFZ

from the following refinement mapping whén,,, = Dy andD,., + D, = Do:

1>

¢ C1 A Co A C3
5 A d; if c1 Aca AesV—er A—ey A —es
d; = .
val otherwise
- min{TR;ni 11 =1,2,3} + Dyore 1 V3_1(0pi =7 A —;)
TRE’L = TVote if v1 ANva A V3
00 otherwise

—~—

Ty 2 min{TWBmi :1=1,2,3}

However, it is important to notice that it is easier to understand and provB;thefinement ofP; by
PT if this refinement is done step-wise:
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1. first refine P into a programPZ; by replacingj" in P, with the three write operationid’"
and setting/ (W™i) = Dy, i =1,2,3,;

2. then refineP}; into another progran®y, by replacingRy® in P3; (which is also inP) with the
three read operatior3;" plusVote and setting/ (R™) + U(Vote) = Ds, i :=1,2,3;

3. finally, scale down the upper bounds of the new operations t&§et

9 Feasible Real-Time Scheduling as Refinement

To model the parallel execution of a progrd, we partition the actiond of P into n sets processes
p1,---,Pn. A shared state variablis one which is used by actions in different processes, wipkivate

state variablds used only by the actions in one process. Two actior’3 cén be executed in paralliéf

they are not in the same process and do not share variables (shared variables are accessed under mutual
exclusion). In such a concurrent system, processes communicate by executing actions which use shared
variables. We assume that each process in a concurrent progsaauisntigli.e. at most one atomic

action in a process is enabled at a time, though an action of the process may be non-deterministic as it
may carry out transitions from the same state to different states in different executions.

Let the real-time prograr®” be implemented on a system by assigningigsocessestoasét, ..., m}

of processors and executing them undsclaeduler Such an implementation @rrectiff it meets both

the functional requirements defined by the actiong’aind the timing constraints defined by the time
bound functions., andU of PT. Rather than adding scheduling primitives to the programming (spec-
ification) language (e.g. as in [34]), the program and the scheduler will be modelled and specified in
a single semantic model but their correctness will be proved separately. The application of a scheduler
to a program on a given set of processors can be described as a transformation of the program, and
the schedulability of the program can be determined by reasoning about the transforschéduled
program.

Using transformations and separating the program from the scheduler helps to preserve the independence
of the program from scheduling decisions. The programmer does not need to take account of the system
and the scheduler until the program is ready to be implemented. This allows the feasibility of a program
under different schedulers and the effect of a scheduler on different programs to be investigated. Also,
the feasibility of the implementation of a program can be proved by considering a scheduling policy,
rather than low-level implementation details.

We shall first describe the functional and timing aspects of a scheduler, and then determine how they
affect the execution of the program.
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9.1 Untimed scheduling

Assume that a scheduler allocates a proceg3fofr execution by a processor using@bmit actionand
removes a process from a processor lgteeve action We shall say that a process is on a processor if
the process has been allocated to that processor.

An atomic action of a process can be executed only when the process is on a processor and the action is
enabled. Let the Boolean variabilan;, 1 < ¢ < n, betrue if processp; is on a processor. The effect of
scheduling is represented by a transformati@#’) in which each atomic action of P in the process

pi, 1 <1 < n, is transformed by strengthening its enabling condition by the Boolean variablelLet

r(7) denote the transformed actionofn G(P). Then:

A

r(7)

run; At

Thereforeen(r(7)) < run; A en(7), and a process; is being executednly when it is on a processor
and one of its actions is enabled.

A scheduler can be functionally described as an untimed prodtamiose initial conditionidle 2

Vi.—run; guarantees that there is no process on any processor and whose submit and retrieve actions
modify the variablesun;. We use agenericdescription so that the scheduler can be applied to any
programpP on a system with any number of processors. Progfaamd the set of processors will be left

as parameters, to be replaced respectively by a concrete program and the definition of a specific system.

Given S, the scheduling of” by S on a set of processors can be described as a transforngtion
The initial condition of the scheduled programP) is the conjunction of the initial conditions ¢f and
P, i.e.idle A ©. The actions ofZ(P) are formed by the union of the actions $fandG(P) and their
execution is interleaved.

An execution ofZ(P) is a state sequeneeover the union of the state variablesf the scheduler and
the variable® of the programP for which:

1. the initial states satisfies the initial condition® of P andidle of S,
2. for each stego;, 0j41), one of the following conditions holds:

(a) Oj+1 = 05, O
(b) 041 is produced fronw; by an action inS, or

(c) 041 is produced by the execution of an actioiin a procesg; whose enabling condition
and the predicateun; are both true i ;.

The set of executions @af( P) is then specified by:

II(Z(P)) =idle A© AO[Ng(p) V N5z
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We assume that does not change the state®fi.e. Ng = (v = v). This gives us the compositional
specification:

I(Z(P)) = II(S) ATI(G(P))

It can be seen thai7) = 7 holds for each action of P. So doedI(G(P)) = II(P). HencelI(Z(P))
impliesII(P). This shows thafZ (P) refinesP and the transformatiof (and thus the schedulé)
preserves the functional propertiesrof

9.2 Timed scheduling

The timing properties of the executionsKfP) depend on the number of processors and their execution
speed. Assume that therd execution tim@eeded for each atomic operatioron a processor lies in

a real intervall(7), u(7)]: i.e. if the execution of- on a processor starts at timend finishes at time

t + d, then thetotal execution timdor 7 in the interval[t, ¢ + d] lies in the intervall(7), u(7)]. The
functions/ and define the (persistent) time bounds of the action§ (#). The real-time program

G(P)" 2 (G(P),l,u), where for each(7) of G(P), I(r(7)) = I(7) andu(r(7)) = u(7).

To guarantee that the implementation/of satisfies its real-time deadlines, the computational overhead
of the submitandretrieveactions must be bounded. Let the sched$lérave time boundd.¢(7) and
Us(7) for each action of S and let the real-time scheduler 5&.

Definition 13 Thereal-time scheduled programZ (PT) 2 (Z(P), Lz(py, Uz(p)), Where the functions

Lz(py andUzp) are respectively the unidrof the functiond.s and!, and the union of/s andu.

This means that the execution speed of the processors and the timing properties of the scheduler deter-
mine the timing properties of the scheduled program.

As the actions of the scheduler are not interrupted, the time boligdsnd Ug of actions ofS are

volatile. However, an execution of a process action may be pre-empted, e.g. under a priority-based pre-
emptive scheduler. Thus, the time bouhadsidu for the actions irG(P) should be persistent in general.
Moreover, in a concurrent program, a pre-empted action may be disabled by the execution of the actions
of other processes. When the pre-empted process is resumed, this pre-empted (and disabled) action will
not be executed and another enabled action in this process will be selected for execution. For this reason,
we need the notion of a persistent timer.

4For functionsp from Set; to Set andg from Sets to Set, whereSet; andSet, are disjoint, theunionof p andg is the
function fromSet; U Sets to Set that equal® for elements inSet; andq for elements inSets.
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Definition 14 A persistento-timer ¢ for an actionr in process; is defined as follows:

Persistentt, 7, d,7) 2 t=6A

O (r(r) At =now+ 46 taken
venr(t)A-r(r) At =t running
vV —ent) At =now +§ disabled

VenT)A-run; At' =t + (now —now)) pre-empted
A((0,now)’ # (9, noW))] +,5,now

Informally,

1. the persisterd-timert is initially (i.e. whennow = 0) set tod;
2. it stayso time units ahead afowas long as is not enabled (i.e-en(7) holds);

3. it remains unchanged during any time wheiis both enabled and run (i.een(r(7)) holds) to
record the execution time;

4. itis reset either just after &step is taken or is disabled; and

5. it changes at the same ratermsvwhenr is enabled but not run (i.en(7) A —run; holds), i.e. the
time when a process is waiting for the processor or the executiersgire-empted should not be
counted as execution time.

Conditions (4) & (5) guarantee that timeis persistent only whenis pre-empted, and if is pre-empted
the intermediate state at the point of pre-emption is not observable to other actions.

The conjunction of the defining formula of a persisteit)-timer 7' for actionT andMaxTiméu(7)):
PersistentT, 7, u(7),7) A MaxTimeT})

is the specification of the upper persistent time bound condition for action and this asserts that the
T-step of state transition must take place if the accumulated time wheas been both enabled and run
reaches:(7). Similarly, the lower persistent time bound condition for actias specified by:

Persistentt,, 7,1(7),v) A MinTim&t,, r(7),v)

Notice that when there is no pre-emption in the execution of the program, i.e.:

O(en(r(7)) A —run, = (—en(t) V r(1)))

is ensured by the scheduler; the use of a persistent timeirothese two formulas is equivalent to the
use of a volatile timer of (7):
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1. Persisteft, 7,6, v) initially setst to ¢, and keeps resettingwith now+ ¢ as long as-en(r(7)).
This is the same as Mblatile(t, »(7), 6, 7) which setg to co and keeps it unchanged urgi(r (7))
becomesrue and sets it tawow + 4.

2. Assumeen(7) A —run; has beenrue since, saynow = now,, andt was set byPersisteltt, 7, 9, v)
to nowy + 6. Fromnow, Persisterit, 7, 0, 7) increases at the same rate by whigtowincreases
as there cannot be a pre-emption. This is the same éslatile(¢, (1), ,v) wheret was set to
oo and kept unchanged unless); becomesgrue whent is set tonow + 4.

Thus, persistent timers allow the treatment of both pre-emptive and non-pre-emptive scheduling.

The specification of the timing condition fei( P)” is defined as

B(G(P)T) £ /\ (Persistentt,, 7, 1(7),7) A MInTim&(t,, 7(7),7))A
TEA
/\ (PersistentT’., . u(r),7) A MaxTimeT))
TEA

The exact specification of the timed scheduled progfam’) is

= TI(S) ATI(G(P)) A RT A B(ST) A B(G(P)T)
= II(ST) ATI(G(P)T)

The correctness of the timed scheduled prog7di”) is determined with respect to the specification
of PT, which does not refer to the variablesvhich are modified by the schedulér These variables
(and those which are internal &) are therefore hidden in the canonical specification

We shall use this specification in the following section where we consider two ways of applying the
transformational approach to real-time scheduling.

9.3 Reasoning about scheduled programs

Consider the implementation of a real-time progrBfmusing a real-time scheduls” which satisfies a
propertyp. Proof that this implementation satisfies a high-level timing propgriwhose only free state
variables areow and the external variables 6f, can be used as the initial basis from which proofs of
more detailed low level properties can later be established.
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Because of the assumption that the program and the scheduler do not change the same vafiables, if
satisfies a property andp A ®(G(P)T) impliesy, thenZ(PT) satisfiesy. This is represented as the
proof rule:

1 oS8T =
2 FZeAGP)) =y

il SI(PT)) > o

Treating the effect of scheduling as a transformation of a program specification allows an abstract spec-
ification of a scheduler'policy to be used to prove the timing properties of the implementation of a
real-time program.

9.4 Feasibility: definition and verification

Definition 15 The timed scheduled prograhi PT) is feasibleif ®(Z(PT)) = ®(PT), i.e. if there is a
refinement mapping by which the following implication can be proved:

(Z(P")) = 1(PT)

Notice that the correctness of a scheduler is defined with respect to its specification (or its scheduling
policy) while feasibility relates the specification of the progr&h to be scheduled to the specification

of the scheduled program and requires the time bounds of all actions of the former to be met by the later.
Assuming thatb(ST) = ¢, the feasibility ofZ(P7) can be proved from Rule R1 as the implication:

(1) FzeAdGP)T) = o(PT)
This formula can be manipulated in steps, using a refinement mapping.

Step 1 Introduce auxiliary (dummy) timers in@(P)” corresponding to the timers &t”".

This can be understood as allowing the scheduler to have a copy of the tiniefs-ef( P, L, U). Define
a set of auxiliary variables:

dummies® {h-,H; | 7€ A}

whereh, andH- are respectively defined by the formuladatile(h., 7, L(7),v) andVolatile(H, 7, U(T), ).
Let:

D(dummies = /\ Volatile(h,,, L(),7) A Volatile(H., 7, U(r),7)
TEA
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Then (1) is equivalent to:
(2)  Idummiesz.p A ®(G(P)T) A D(dummies = &(PT)
Step 2 Define the refinement mapping.

Recall that the internal variables &f are assumed to be A refinement mappinffom the states over
7 Uz Utimer(G(P)T) Udummiedo the states over U timer(PT) is defined as follows:

H, ifyisatimerT, € timer(PT)

h, if yisatimert, € timer(PT)
j=
y ifyex

Let TimedSched* o ANTI(G(P)T) A D(dummieg. Then (2) can be proved by proving:

3) TimedSchees T1(PT)

Step 3 Discard identical substitutions.

— —

Recall thafl(P”) = T1(P) A RT A B(PT). Obviously,RT = RT andII(P) = TI(P). AlsoTI(G(P))

impliesII(G(P)), which in turn impliedI(P). Therefore RT andII(P) can be discarded from the right
hand side of the implication in (3).

P

4) TimedSchees B(PT)

Step 4 Discard the actions on timers.

B(PT) = N Volatile(h.,, L(r),7) AMinTime(h.,7,7) A
TEA
Volatile(H,,7,U(7),7) A MaxTimé H, )

= D(dummiesA /\ (MaxTimeH,) A (MinTimeh,, 7, 7))
TEA

SinceD(dummie$ appears on the left hand side of (4), what remains to be proved is that the following
implication holds for each actionof P.

(5) TimedSchees MaxTimé H..) A MinTimegh., 7,7)
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9.5 Proof rules for feasibility

Implication 5 suggests that the feasibility of an implementation of a real-time proffacan be proved
using the following rule:

1 ®ST) =
2 TimedScheds> MaxTimegH, ) forr € A
3 TimedScheds> MinTimeh,, 7,7) forr € A

h2. O(Z(PT)) = o(PT)

Notice that botiMaxTimé H ) andMinTime k., 7,v) contain primed state variables. Therefore, rules
for proving invariant properties cannot be used directly to establish the premises (2) and (3) in Rule R2.
We provide two rules for introducing invariants.

To prove premise (2) in Rule R2, we have the following rule:

1 (ST =
2 TimedSchees O(en(r) =T, < H,;)forr € A

1. TimedScheds> MaxTimegH, ) for r € A

By symmetry, for premise (3) in Rule R2:

1 oST) =
2 TimedSchee> O(run; = t, > h,) for 7 in p;
TimedSchee> MinTimgh., 7,v) for r € A

R4.

TimedSchedan be converted into a normal form as the conjunction of a safety property and a liveness
property:

JZ.OAON]F AL

whereZ andy are sets of variable®) is a state predicatéy is an action and_ is the time divergence
property,Vt.O(now > t).

Let this formula be denoted Ky. An invariant@ of 2 can be proved using the rule:

1 6=Q Initially @ holds
2 QAN = @Q Each step of the transition preser¥gs
R5.
Q= 0Q
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9.6 Feasibility of fault-tolerant real-time programs

The occurrence of a fault-action does not depend on the scheduler afehffected scheduled program
of PT by a schedules is modelled as(Z(PT), F) whose exact specification is:

I(F(Z(PT), F)) = I(S) ATI(F(G(P), F)) A RT A B(ST) A B(G(PT))
Let TimedSchedfrom the previous subsection) be redefined as:
TimedSche& ¢ A TI(F(G(PT), F)) A D(dummie$

Definition 16 Taking the same set of dummy variables dummies and the refinement mapping from the
previous subsection, the implementatibP?) is F-tolerantly feasible if the following implication
holds:

TimedSchees II(F(PT, F))

Then all the equations and rules in the previous section remain valid for fault-tolerant feasibility.

Assume that a real-time prograff = (P, L, U) is aF-tolerant refinement of a prograﬁf for a given
setF of fault-actions. Then any-tolerant feasible implementation &f' is a F-tolerant refinement of
pr.

This assumes that the execution of the scheduler is not faultyy'@onterance is provided by the program

to be scheduled. It is also possible for a non-fault-tolerant or a fault-tolerant program to be executed un-
der a specially designed scheduler so that the implementation of the faulty program is fault-tolerant [55].
For example, a scheduler can be designed to tolerate processor failures. Assume each pitess of
keeps taking checkpoints of its local states by a transform&tiéti ). We add recovery process(es) to

C(PT) by a transformatio® (C(PT)). Faults and their effects on processes are modelled as before. The
implementation transformatiah is applied toaF (R(C(PT)), F). When a processor fails, the scheduler

must submit the recovery process to a non-failed processor. If the processéai-sigp, no check-

pointing or recovery may be needed. The scheduler only needs to re-schedule a process executing on a
failed processor to a non-failed processor, where that is possible.

9.7 Scheduling open systems

In the model of programs given so far, we have assumed that a real-time program implements the spec-
ification of aclosed systemvalues are supplied to the program through the initial values of variables or
by executing a nondeterminisiicput operation.
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In many cases, a program is linked to an external environment from which it receives data and to which
it must send responses. The appearance of the inputs often follows a timing pattern, for example with
periodicor aperiodicrepetition.

Definition 17 Anopen systenis a pairO = (FE, P) consisting of a progran® which interacts with an
environmentF. The set, of variables ofO is the union of the sets andy of local variableof P and
E and the set of interface variablethrough whichP and E interact.

Let programP consist of an initial predicat®z over its local variable¥ and a set of atomic actions
on the program variables, = = Uv. Let the environment consist of an initial predicat® over the
environment variables, = 7 U 7 and a set of atomic actions on the variabigs

Letv be an action formula that defines the state transitions by wihichanges the values of the interface
variables. It is then required [3] that:

Np=vVv(@®=1v) and Ng= vV @ =07)
As before, we define:
(P) 2 0 AO[-v A (F =7) VNpls, and &(P)2 3z11(P)

(E)2OA0WA @ =7) VNegls, and ®(E)2 35I(E)

The specification?(O) of an open systen® = (FE, P) then defines the condition under which the
system guarantees the propeftyP) if the environment satisfies the assumptip(Er).

P(0)=P(FE)= O(P)

The conjunction®(E) A ®(P) describes the closed system consisting®aind its environmenk’ and
is:

37,5.0 A Oz A ONp V Ngls,

Programp, refines (or implements) a prograhy in environment¥ iff:
(®(E) = ©(F)) = (B(E) = 2(Fhn))

and this reduces to:

O(E) N ®(P) = ©(Fn)

Report No. 323, May 2005 UNUI/IIST, P.O. Box 3058, Macau



Feasible Real-Time Scheduling as Refinement 49

The program and its environment can be treated as the real-time programs(P, L,U) and ET =
(E, L., U.) respectively. Since time is global, it need not be advanced by both of them. We choose to let
the program advance time and define:

o(ET) £ 3y, timer(ET) II(E) A B(ET)
Thereal-time open syste@” = (E7, PT) is specified by:
o(07) £ ®(ET) = o(P7)

A real-time propertyy of an open systen®’ = (ET, PT) states that progran®? guarantees the
propertyy under the environment assumptiéf'. This requires proving the implication:

o(0") = (2(ET) = ¢)
or, equivalently,
BETYADPT) = ¢

In a real-time environmenE?, implementation of a real-time progra®’ by a schedules” on a set

of processors can be described by transformafi@”’) £ (ET,Z(PT)), in whichZ(P7) is as defined
in Section 4.2 for a closed system, andenotes the variables that may be changed by the scheduler.

The feasibility of the implementation relies on proving the refinement relatioge?) C O7 i.e. the
implication

®(Z(0™)) = ¢(07)
or equivalently on proving:
6) @(ET)A®EIZ(PT)) = o(PT)

It is easy to see that Rules R1-R5 apply also to open systems.

5The canonical form of an open real-time specification given here is simpler than that in [3] but is sufficient for our purposes
as we shall not be considering the problem of composing open systems.

Report No. 323, May 2005 UNUI/IIST, P.O. Box 3058, Macau



Feasible Real-Time Scheduling as Refinement 50

9.8 Running example continued

In the timed fault-tolerance processor-memory interface progtéaniet RW?2 be an environment action
with its lower and upper bounds (i.e. period) septd artition the remaining actions into four processes:

ps = {Vote} p; = {R5", W3} fori=1,2,3
Ly(Vote) =0 Ly(RM) = La(Wi™) =0 fori=1,2,3
U3(Rgn"’)=Dm Ug(Wgn"’):Dwi < Dy fori=1,2,3
U3(V0te) = Dyote Dri 4+ Dyote < Do for: = 1,2,3

whereD; is the deadline of the memory actions in the real-time interface progtanmplemented by
P

Let the memory processes be implemented on a single processor using a non-deterministic scheduler.
Ignore the details of the scheduler program: e.g. assume that it randomly chooses an enabled process.
If there is no overhead in the scheduling, the scheduler can be specified as a real-time fbgeam
(S,L,U):

z 2 {un; i=1,2,3,4)
© 2 ide
gi £ trueif an action ofp; is enablecklsefalse, i =1,2,3,4
4 4
sch 2 \/(gl A (idle V =gie1 A =gae) Arun}) vV (/\ —g;) Aidle/
=1 =1
U(sch) = 0

Now assume that the computation times for the actions of the processes satisfy the following condition:

I(Vote) = 1(R3"") = (W3") =0 fori=1,2,3
w(W3) + w(W3'?) + u(W3™) < min{D,,} fori=1,2,3
w(RE"™) + u(R5"?) + u(Ry"®) < min{D,,} fori =1,2,3
u(Vote) < Dyote

Then it can be proved using the rules in Section 9.4 that the implementatidh by the schedules”
on the given processor 15 -fault-tolerantly feasible.

Intuitively, the processor actions ensure thatd andwrite tasks do not arrive at the same time. Once a
write Or aread operation is issued, all the three-ite or read tasks are enabled in the three processes.

The scheduler selects one process at a time to execute until all of them are executed; in total, this takes at
most the sum of the computation times of the three tasks.VIdte procesg, can be ready only when

the other processes are not ready.
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Proof: [sketch ofF5-tolerant feasibility] Rule 3 in Section 9.5 requires that we prove that the following
predicates are invariants of ti@-implementation:

. A .
I N op; =1 = Tpmi < Hpmi fori =1,2,3
Ly, N op; = w = Tyymi < Hyym: fori=1,2,3
Iy = v A2 ANVv3 = Tvote < Hyote

The proofs of these invariants are very similar. We present only a sketch of the prdéﬁf. foet u; be
used foru(R3"), H; for HRQH , andT; for Tng i =1,2,3.

In general, it may not always possible to prove an invar@rdirectly from RuleR5 in Section 9.5.
Instead, we have to use this rule to prove a stronger invariant which im@lid® prove thatl}% is an
invariant, prove the following invariant§ — I7, the conjunction of which is an invariant and impligs

3 3
I 2 (N (opi = r A=runy)) = (/\ (H: = now+ D) A (T} = now+u;))

=1 =1

Notice that:

3
@) L= ((Nepi=rr-mum)=( N (H-T>u+w)))
i=1 ki j#k

Informally, I; is an invariant because (a) the timéfs and7; are respectively set withow+ D, and
now+ u; whenop; = r is changed fronmyalse to true and (b) there is no overhead in the scheduling
and thusmowcannot advance before one of the three ready processes is scheduled for execution.

If after a read operation is issued, the scheduler chooses prpgdisst for execution, we have the
following invariant.

3
Igé(/\(opi:’l“)/\rung)?Hl—TlZ’U,g—f—TQ—I"IOW
=1

The proof of this invariant uses invariaftand its implication 7 together with the following two facts:

3 3
1. A transition from a non/\(opi = r) A runp-state to a/\ (op; = r) A runy-state can only be

i=1 =1
3

a transition from a/\ (op; = r A —run;)-state and carried out by an scheduling action. This
i=1
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scheduling action does not chanyewvand the timers. Formally, leV; be this action:

3
N 2 (/\(opi =7 A —run;)) A run,

=1
By I; and implication (7), we have:
N1 = (T = now+ uz) A (now, Hy — Th > ug + uz) A unchangedH;, Ty, T»)
Hence,
N = (H{ = T{ > us + T5 — now)

3
2. The amount of time for WhiCl’}/\(opi = ) A runy has remainedrue up to now is the time
i=1
uz — (T> — now) spent on the execution @f;'* that has been added1d as it has been persistent.
The only action which may falsifys is:

Nz £ (opr=7) A(opz =7) A (ops = 7) Arum,
A (now > now) A (17 = 11 + (now — now))
A (T =Ty) A(Hy = Hy)

where we ignore the changes in other variables which are irrelevdpt @learly o A Ny = 1,
as:

H{*Tll HlleanV\/‘FnOW
us + T — NOW— now + now
uz + T5 — now

[IAVARI

Similar to I>, we have the following invariant if the scheduler choogefirst for execution:

3
I3 é (/\(opi:r)/\rung) = Hy —T1 > us + T35 — now
i=1

If the scheduler chooses for execution first, then:

3
.[4é (/\(OpZ :T)/\runl) :>H1 —T1 Zul + us
i=1

These four invariants consider the cases when none of the three processes has completed the issued read
operation. We have the following three invariants about the cases when one of or petnafps have
completed the operation.
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If po has completed the operation, we have the invariant:

1>

Is = (op1 =7r) A(opa # 1) A (ops =71) A—runy = Hy — Ty > T5 — now

This characterises the fact that the time spent on the whole executitff*aind on the partial execution
of R5"™ has been added th,. The proof of this invariant uses. Similarly, if p» has completed the
operation we have the invariant:

I 2 (op1 =71) A (op2 =7) A (op3 £ r) A—runy = Hy — T} > Tp — now

Finally, we have the invariant:

1>

I; = (opr=7)A((op2 1)V (ops £ 7)) = H —T1 >0

This characterises the fact that the time spent on the execution of one or Wit @nd R5" has been
added tdly. ©

The nondeterministic scheduler can be refined to a deterministic one by assigning priorities to the pro-
cesses. For example, let procgshiave a higher priority thap; if i < j. Modify the actionsch of the
scheduler int@ch such that the process with the highest priority among the ready processes is scheduled
for execution but no pre-emption is allowed:

schy 2 idle A g1 A runj
Vo idle A =g1 A ga A run,
Vo idle A =g A —ga A g3 Arung
Vv oidle A =gy A ga A —gs A ga A runy
4

v/ (run; A —g; Aldle))

i=1

Then the modified scheduler also gives a feasiflgolerant implementation oP{ on the given pro-
cessor, as the new actisoh action implies the oldch.

&

9.9 Fixed priority scheduling with pre-emption

The techniques presented in the previous subsections can be used to produce results similar to those
obtained using scheduling theory. We demonstrate this by proving the feasibility condition given in [14]
for implementing a set of independent tasks using fixed priority scheduling with pre-emption.
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Consider an open systeth = (E, P) where progranP consists of: independent processes (or tasks)
which are represented by the atomic actiens .., 7,. The environment is used to represent the
actions of releasing (or invoking, or activating) the tasks periodically. In general, these actions may be
clock events or external events to which the processes need to respong.beethe period of;, for
1=1,...,n.

9.10 Specification of the program

To specify the system in TLA, léhv; andcom be integer variables representing the number of invoca-
tions and completions of each taiskThen the specification of the real-time systérh = (E7, P™) can
be given as: foi = 1,...,n

S 2 (0<inv <1)A(com = 0)

o 2 inv, =inv; + 1 action of E for task invocation
Ti 2 iny; > com A conf =com +1 action of P for task completion
v 2 v, (conf = com + 1)

L) = Ulwy) =p; period of invocation

L(;) = 0andU(r;) = D; deadline of task

A basic (functional) requirement for the system is that each invocation of a task is completed before its
next invocation, i.e.

o(E") A@(PT) = /\ O(inv; > com > inv; — 1)
i=1

From the rules for proving an invariant in TLA, this implication hold$if < p;. It must now be shown
that an implementation of the progra®f on a uniprocessor system is feasible.

9.11 Specification of the scheduling policy

Let the system be implemented on a single processor using a pre-emptive, fixed-priority s€heduler
assume that there is no scheduling overheadrileave a higher priority than; if 7 < j. Letg; denote

the enabling condition of task, andhr; assert that; has the highest priority among the current enabled
(or ready) tasks:

A . A . .
g; = inv; > com hry = g; ANVj < i.7g;

®Specifications of various scheduling policies can be found in [60].
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Then the scheduler, denoted BY = (S, L, U), can be specified as follows:

sch = idle A hr; A run, higher task runs first
Vo 3j #d.(run; A hr; Arun; A —run’) - higher task pre-empts lower task
n
Ns = \/ sch
i=1
U(sch) = L(sch) =0 no overhead

According toS”', at any time at most one process is running on the processor:

Valid £ 0(i # j = —(run; A run;))

9.12 Feasibility

Let the computation time for each taskbe in the interval0, C;], i.e.l(r;) = 0 andu(r;) = C;. Assume

pi, D; andC; are non-negative integers foe= 1,...,n. The worst-case response time (or completion
time) R; for each task; can be defined as a recursive equation [38]. We shall instead use the equivalent
recurrence relation defined in [14]. The + 1)th response tim&!" " for process is:

()

R™
— 1 xC;
Pj '

-1

j=1
It R is initially setC;, and:

R; = lim R™

7
n— o0

scheduling theory shows that:

the implementation of the program by the scheduler on the given procedsaisibleiff
R; < Dl',fOI"L' = 1,...,71.

This condition can be shown to be necessary by finding an execution in which a task misses its deadline
if the condition does not hold. However, to prove formally that the condition is sufficient, we need to
prove the following refinement.
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Theorem 1 For the given programQ? = (ET, PT), the scheduleis”, and the processor
(0T c ot
providedR; < D; fori:=1,...,n.

By Implication (6) in Section 9.7, this is equivalent to showing that the following holds:

9 T(ET)AT(ST) ATI(G(PT)) A D(dummies = TI(PT)

whereD(dummie$ and refinement mapping are as defined in Section 5.1.

Before proving (9), let us discuss how the persistent tifjeis used to predict the completion time of
an invocation of task; by considering its first invocation.

As a special case, consider any timaw before the completion of thérst invocation of taskr; (i.e.
whencom = 0 andinv; > 0). Assume all tasks;, j = 1,...,¢ — 1, with higher priorities than; have
met their deadlines so far. Then, in the worst case, when all tgskseC; units of computation time,
the time spent up taowon executing higher priority processes is:

i—1

i—1
(10) Comg(i, now) 2 > com; x Cj + > (inv; — comy) x (C; — (T, — now))

Jj=1 Jj=1

whereC; — (Tr; — now) is the time spent so far on the last invocatiompfThus (10) becomes:

i—1 i—1
(11) Compgi,now) = Z inv; x C; — Z(invj —comy) x (T, — now)
j=1 j=1

Assumed is the time already spent anup tonow. Then:
now= Comgi, now) + §
As T’ has been persistent during the time when tasks of higher priorities are being executed, we have

T., = Comgi, now) + C;
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Thus,T;, = now+ (C; — §) predictsthat the cumulative time needed to completafternowwill not
exceedC; — ¢; this time may be divided into smaller units whose surii’is For the first invocation of
7; to be completed before its deadlirf, should never exceeH ., (which is always equal t®; before
the completion of).

Thus, we need to prove that the left hand side (or LHS) of Implication (9) has the following predicate as
an invariant:

(com =0 Ainv; > com) = T, < C; + Comyi, now)

In general, at any time before an invocationmpis completed H,, — D; records the timé, (i.e. the
value ofnowat that time) of the current invocation of at that timeH,, wast,+ D; and it has remained
unchanged as has not been completed. The definition of the longest possible@oragi, now), spent

on executing tasks with priorities higher than thaté defined by Equation (11) can be generalised as:

1—1 .
Z['an x pj — (Hr, — Di)W % C,

Comg, now) 2
Pj

<

=1
i—1

= (inv; — comy) x (T, — now)

j=1

This leads to the following lemma which implies Theorem 1.

Lemma 1 LHS(9) has the following invariants: far=1,...,n
Ii; = (com <inv;) = T, < C; + Comgi,now) + (H-, — D;)
1—1
Iy £ (com <inv;) = Comgi,now) < Y _[(now— (H, — D;))/p;] x C;
j=1
Is; 2 (com < inv;) = C; + Comgi, now) < R;
Ly 2 inv;—1<com <iny

Proof: [of Lemma 1] The proof follows the general routine of proving invariants by showing that each
of the I's holds initially and is preserved by each allowed state transition in the program.

It is easy to check that these invariants hold#ee 1. Assume that they hold for somie- 1, where
1 > 1. We prove they hold fof.

Take the case wheH,, = D, for the first invocation ofr, i.e. the execution of the first invocation of
(The proof of the general case is very similar.)
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For the special case, the lemma is rewritten as follows:

I; = (com =0)A(inv; >0) =T, <C;+ Comgi, how)
1—1
Iy 2 (com = 0) A (inv; > 0) = Comgi, now) < Z[now/pﬂ x C}
j=1
I3 = (com = 0) A (inv; > 0) = C; + Comgi, now) < R;
A .
Iy; = Inv; —1<com <iny;

where:
i—1 i—1
Compi,now) = Y "inv; x C; — > _(inv; — comy) x (T, — now)
Jj=1 Jj=1

Initially, I;; holds asT;, = C;. We analyze all the possible state transitions allowed ByS(9) which
may change the states of variables occurrinGampgi, now).

Casel Forj=1,...,i—1,let
Ay, £ com =0AInV; =inv; + 1
In this case/;, is
conf = 0 = T, < C; 4+ Comgi,now) + C; — (T, — now)
Itis easy to prove that H.S(9) = O(C; — (T, — now> 0)). Thus,
I N Ay = I
Case 2 Forj =1,...,7— 1, consider
Ag;j 2 com=0A conf, = com; + L A (T7, = now+ Cj)

By the induction assumption that(inv; — 1 < conmy < inv;), we know that/}, is equal to

1—1
comf=0 = T, < Ci+2invj x Cj
j=1
— Y (invg — comy) x (T, — now)
Py

Thus,I; A Agj = Iiz holds.
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Case3 Forj=1,...,i— 1, define

As; 2 com = 0 A (com; < inv;) Arun;
A (now > now) AT =T, + (NowW — now) A ¢

where

p2 N (com, <inv, & (T, =T, + (now — now)))

i>k£j

Note that(invy, — com,) = 0 iff =(com, < inv;) by the induction assumption fér < . Thus,
I{, becomes

com=0 = T., + (now — now)
i—1
< C;+ Zinvk x Cp—
k=1
Z (invy, —com,) x (T, — now) — (T, — now)

i>k#j
This is the same as

i—1
com=0=1T, < Ci+Zinvk><Ck—

k=1
i—1

> (inv — com,) x (T, — now)
k=1

Thus,I; A Agj = I{z holds.

Case 4 Finally consider:

Ay 2 (com = 0) Arun; A A (NOW > now)

wherey is defined as itCase 3 except forj being taken into account. Then, the same argument
as inCase 3leads tol;; becoming:

1—1
com=0=1T, < Ci+2invjxcjf

j=1
1—1

Z(invj —comy) x (T, — now)
j=1
And I}; A Ay = I7, holds.

These four cases prove Invaridnt. The proof forly; follows from the facts:

now=m x p; iff inv; < (m + 1) andinv; — com; = 1 and7’, = now+ C;
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and

[now/p;| > inv; if now=m x p; + to, where0 < ty < p;

To prove thatls; is an invariant, note thaflaxTime 7", ) requires:

(12) now < T, < C; + Comgi, now)

For any allowed transitiod, assume that’; + Comgi, now) < R; A A. Then byly; and the inequa-
tion (12):

i—1

Comgi,now) + C; < ) [now/p;] x C; + C; I,; of the lemma
-
< ) _[(Ci+ Comyi,now)/p;] + C;  inequation (12)
j=1
1—1
< Y [Ri/pj] x Cj + CiR; Definition of R;

Jj=1

The general cases féy;, I»; and/s; can be proved in the same way. From the assumptionithat D;,
these three cases together guaranteefifidt, < H.,) and thus the deadline for the task is always met.
This ensured,; holds. Notice thafy; is not used in the proof, though;, forj = 1,...,7 — 1, are used
as the induction assumption. Therefore, we have proved the Lefima.

The proof of Theorem 1 follows Rule R3 in Section 9.4 in a straightforward way from this Lemma.

9.13 Discussion

The example in Section 9.9 deals with independent periodic tasks with fixed priorities. The method in
scheduling theory used for these tasks has been extended to deal with communicating tasks. For example,
tasks may communicate with each other asynchronously thropgitected shared obje¢PSO) [14].

These tasks may be periodicsporadic For a scheduler witheiling priorities, the worst response time

R; for a taskr; can be calculated by the recurrence relation:

i—1
R =B+ i+ 3T

Jj=1

R
Pj

1 x Cj

where B; is the worst blocking time for; by a task of lower priority, ang; is minimum inter-arrival
time of taskr; (which is the period of; if 7; is periodic).
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In the feasibility analysis of fault-tolerant real-time tasks [12], the recurrence relation for the worst
response timer; for a taskr; has been extended to deal with fault-tolerant tasks: by re-execution of
the affected task, by forward recovery, by recovery blocks, by checkpointing and backward recovery. In
the case of fault-tolerance by re-execution, the responseRijrier a taskr; can be calculated by the
recurrence relation:

(k+1 Y R}
RV = Bt it Y [ x O+ [h—] xmax{C;: 1< j < i}
J

=1 P

whereF} is the minimum time between two occurrences of faults.

The formal method for scheduling analysis presented here can be applied to communicating, fault-
tolerant tasks. This allows us to combine this work with our previous work on fault-tolerance and
real-time [50, 53, 54, 55, 56], which formally treat re-execution, forward recovery, recovery blocks, and
checkpointing and backward recovery, and provide a means of formally dealing with real-time program
refinement, fault-tolerance and schedulability in a single and consistent framework.

10 Related Work

There have been a number of other approaches to formalising real-time scheduling. Using the Duration
Calculus [86], Zhou Chaochen et al [85, 84] have also separately specified a scheduler and a scheduled
program. However, the Duration Calculus does not at present have powerful verification tools for proving
program refinement. It would be useful to unify the theories of Linear Temporal Logics and Duration
Calculus for the specification and analysis of real-time systems. Work in this direction is making slow
progress [61, 18, 19].

[63] describes a case study using a ‘scheduling-oriented model for real-time systems’ called TAM. The
work of [26] extends Back’s action systems [9] with timing and priorities and useZ thatation for
specification and refinement. The models used there appear to be more complicated than is necessary.
For example, priorities and scheduling can be defined using only simple state variables and standard
actions, as we have shown here, and complex models and structures are not needed.

Using timed CCS, [35, 36] deals with dynamic scheduling in the presence of faults by modelling re-
sources and schedulers as processes. This serves well as a model but event-based process algebras tend
to have a very different syntax to most traditional programming languages; it is possible to consider
extensions to this work which make use of persistent timers and this would enable pre-emption to be
modelled. The similar approach should also be applicable to the framework of CSP presented in Chap-

ter 2 of this volume. For example, [72] deals with physical faults and verification of fault-tolerance by
using the notation of CSP. As in our earlier work [60], these approaches use volatile time bounds (ei-
ther explicitly or implicitly) for both program verification and scheduling analysis. When dealing with
pre-emption (interruption) in real-time scheduling, the use of volatile time bounds requires a scheduled
action to beexplicitly divided into smaller actions (or steps) between whose execution pre-emption can
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occur. The atomicity of the original action has to be preserved and this requires the introduction of
auxiliary internal variables. The feasibility of the implementation is established by reasoning about this
‘step-level’ program. The use of these devices makes it difficult to reason about and make formal use of
the methods and results from scheduling theory, especially as this does in fact make (informal) use of the
accumulated execution time of tasks.

Another approach to the verification of schedulability uses algorithms for compyuengtitativeinfor-

mation of an implementation, such as the lower bound and upper bound on the delay between two (or
two sets of) states [16, 15]. The quantitative information is then used to determine the feasibility of the
implementation and to verify other timing properties usgygnbolic model checkinigchniques [66].

There are some significant differences between that work and what we have described:

1. The algorithms and the model-checking procedures described in [16] work effectively with a dis-
crete time domain and a finite-state system; in contrast, in our analysis time is modelled by the
reals and systems may have a finite or an infinite set of states.

2. Our framework allows program development through refinement to be integrated with scheduling
theory so that the methods and results from the latter can be formal interpreted, verified and used
correctly. [16] uses a scheduling algorithm to obtain an implementation and then tests for schedu-
lability. There is no verification of whether a theorem in scheduling theory is valid for the program
model used (compare this with Section 9.9). In fact, application of Theorem 1 and the recurrence
relation 8 to the Aircraft Control System example of [16, 15] leads directly to the same feasibility
conclusion obtained there.

3. Compared with the work in [16, 15] which concentrates on timing aspects, this treatment deals with
the much wider range of inter-related issues of concurrency, timing, fault-tolerance and schedula-
bility, as well as refinement techniques for fault-tolerant and real-time programs.

In general, model checking techniques are especially effective and necessary in many safety-critical
applications (please see Chapter 7 David Deharbe on Model Checking). However, their general appli-
cability has been restricted by questions of undecidability [6] and by complexity issues [5], especially
for systems using a continuous time domain. These problems are very much more serious when both
fault-tolerance and real-time have to be considered. Model-checking and the more general verification
methods used here are complementary and neither can be totally replaced by the other. We recognize a
role for model-checking as a decision procedure in a proof-checker, to be applied when possible.

It is usually impossible to give an exact prediction for the occurrence of faults in a program execution,
or to achieve one hundred per cent fault-tolerance. Therefore, fault-tolerance is often addressed with
the concepts of dependability and reliability. The occurrence of faults is associated with a probability
distribution and verification of fault-tolerance is thus related to the calculation of reliability based on the
probability distribution. There is no much work on formal models to support effective reasoning about
reliability. We believe interesting work can be done by combining the model in this chapter with that of
Chapter 3 by Morgan on Probability. The idea of Unifying Theories of Programm in [33] will be very
useful for this combination.
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11 Conclusions

Formal development and verification of a real-time program requires a logical structure in which func-
tional and timing properties of the program can be specified and reasoned about. In many practical cases,
such programs are executed under a scheduler whose actions control the program’s execution and thus
its timing properties. A program is also often executed on a failure-prone system and thus fault-tolerance
is needed. However, fault-tolerance and schedulability affect each other and they both affect the func-
tionality and timing of the program. This chapter presents a framework which we believe is suitable for

a coherent understanding of the relationship between theories of concurrency, real-time, fault-tolerance
and schedulablity analysis; and for formal and systematic development of safety and/or timing critical
computer systems.

Scheduling theory provides powerful techniques for determining the timing properties of a restricted
class of real-time programs; however, it does not provide any means of verifying functional properties.
Such methods must be augmented by more traditional program verification techniques, but these use a
different analytical framework, making it hard to relate the results in a rigorous way. This is particularly
important when mechanised verification is to be performed and the program’s properties certified, as is
necessary in many safety-critical applications.

In a separate paper [60], we showed how the schedulability of a real-time program could be established
using techniques very similar to those used here. An important observation that can be made about
that work is that to simplify verification it is useful to reduce the number of actions by specifying them

at as higha level as possible. However, for accurate verification of timing properties it is necessary
to have a fine level of granularity in the time bounds for each action and each deadline: this requires
specifying actions aas lowa level as possible, so that pre-emption can be precisely modelled and the
timing properties related to those obtained from scheduling theory.

We address this issue in this chapter by providing two kinds of timers: volatile timers that record times
for which actions are continuously enabled, and persistent timers that sum the duration for which actions
are executed. The use of persistent timers allows the timing effects of lower-level actions, like pre-
emption, to be considered abstractly and at a higher-level. It no longer matters exactly when an action
is pre-empted: what is important is the time for which it executed before pre-emption and the time for
which it is pre-empted. Thus an action may be pre-empted a number of times and still make use of a
single timer to record its timing properties.

The use of two kinds of timers solves a problem that has been the cause of a major restriction in the
application of formal verification methods in the validation of real-time programs. It makes it feasible
to use automated verification for such programs at the specification level, allowing timing properties
to be considered well before the details of the implementation have been finalised. Naturally, once the
implementation is complete, scheduling analysis will still be required to validate and provide independent
certification of the timing properties.

The method presented in this chapter is independent of a programming language. Also, both the program
and the scheduler specifications can be refined, with feasibility and correctness being preserved at each
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step. This has the great advantage that proving feasibility does not first require the code of the program
to be developed.

There are many advantages to using a single, consistent treatment of fault-tolerance, timing and schedu-
lability. Not only does it allow a unified view to be taken of the functional and non-functional properties

of programs and a simple transformational method to be used to combine these properties, it also makes
it possible to use a uniform method of verification. Verification of schedulability within a proof frame-
work will inevitably be more cumbersome than using a simple schedulability test from scheduling theory.
However, the use of a common framework means that during formal verification, the test for schedula-
bility can be defined as a theorem whose verification is not actually done within the proof theory but
instead by invoking an oracle or decision procedure which uses scheduling theory for rapid analysis.

The plan of our future work includes the combination of the techniques presented in this chapter with
those developed in our recent work on object-oriented and component based systems [29, 51]. We hope
such a combination will lead to a multi-view and multi-notational framework for modelling, design,
analysis and verification of real-time and fault-tolerant systems at different levels of abstraction. It will
also support transformational, incremental and iterative development [52, 83] aided with transformation
and verification tools [48, 62, 82, 1].

12 Exercises

1. Relating the notation of this chapter with other formalisms.

(a) Specify sequential composition as TLA action?
T1; T2
where each action is treated as an atomic action.
What about when the whole composedr ; » > is treated as an atomic action?
(b) Model the conditional choice as a TLA action

if b, then 7 else 1

(c) Define Hoare triplgp}r{q} as a TLA action.
(d) Define the Morgan’s specification statement [p; ¢| as a TLA action.
(e) Define the non-deterministic choiege ™ 75 in TLA.

(f) Understand how does the TLA notation unify the semantics of deterministic choice and non-
deterministic choice.

2. Consider the problem of Dinning Philosophers. Assume there are five philosopheis=
1,...,5, and five chopsticksg;, ¢ = 1,...,5, that are placed in five positions a dinning table
. The life of each philosopher is repeatettiynkingandeating Assume that initially, all philoso-
phers are thinking. After thinking, a philosophghbecomes hungry and want to eat. To eat, he has
to come to the position (i.e. chair) at the dinning table reserved form him and gets the chopstick
¢; on his left and then the one;, 1, on his right. A philosopher cannot start to eat before he gets
both sticks. After eating, a philosopher puts down both chopsticks and goes back to think.
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(a) Write a TLA specification of the problem of the dinning philosophers.

(b) Specify in TLA that the fairness condition that an eating philosopher will eventually put
down the chopsticks.

(c) Specify the liveness property that no philosopher can be starved.

(d) Does your specification for part (a) satisfies the liveness property under the fairness condition
(deadlock freedom)?

(e) Suggest solutions to fix deadlock problem in the specification of part (a), and write the TLA
specifications for these solutions.

3. Consider the Gas Burner example in [79, 42]. This case study formulates the safety requirement
of a gas burner in terms of a variallleakdenoting an undesirable but unavoidable state which
represents the presence of unlit gas.

For safety, gas must never leak for more than 4 seconds in any period of at most 30 seconds
This is specified by the bounded critical duration property:

To meet the requiremeReq two design decisions are made:

Des-1 any occurrence of leak must be stopped within 4 seconds, and

Des-2 two occurrences of leaks must be separated by a period of 26 seconds in which the burner
does not leak; in other words L&akis stopped it may not reoccur within 26 seconds.

(a) Write TLA specifications for the above design decisions.

(b) Reason within TLA that the above two design decisions are met by the timed transition
system defined below:

GB; = ( ©Ojp:true
71 : Leak N —Leak’ [0,4]
Ty : = Leak A Leak’ [26, 00)
)

(c) After the initial design,GB; can be refined. For example, the transition syst@eB) in
Figure 3 is a refinement @&B;.
GB; has the followingphases
Idle: Await heat request with no gas and no ignition. It enteusge within e time units

on heat request. The parametdn this example is the system wide upper bound
for reactions

Purge: Pauses for 30 seconds and then entgngel within e time units.

Ignitel: Turns on ignition and gas and after one second exits withalgnite?2.

Ignite2: Monitors the flame, if it is sensed within one secdutn is entered, otherwise it
returns tadle within e while turning the gas off.

Burn: Ignition is switched off, but gas is still on. THBurn phase is stable until heat
request goes off. Gas is then turned off ddié is entered withire.

This refinement uses a simple error recovery: returtdi® from Ignite2. We assume no
flame failure in theBurn phase. Therefore, in this implementatidugakcan only occur in
thelgnitel andlgnite2 phases.
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FlOn
0, €]

Owut30,
30,30 + €]

Outla,

[L,1+¢€]

Figure 3: A refinement o6B;

(d) Formalize in TLA the full and canonical specification®B,, and decide the constanisuch
thatGB, also meets the two design decisions Gi; .

4. A Project for Self Study: Apply the notation and techniques to the development of the realtime

mine pump system described in Section 1 (please see [13]). Then extend the solution to deal with
fault-tolerance (please see Chapter 8 in [13]).
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