
UNU/IIST
International Institute for
Software Technology

UNU/IIST Report No. 323 R

Real-Time and Fault-Tolerant Systems
– Specification, verification, refinement and scheduling

Zhiming Liu and Mathai Joseph

May 2005

UNU-IIST and UNU-IIST Reports

UNU-IIST (United Nations University International Institute for Software Technology) is a Research and Training
Centre of the United Nations University (UNU). It is based in Macau, and was founded in 1991. It started oper-
ations in July 1992.UNU-IIST is jointly funded by the Governor of Macau and the governments of the People’s
Republic of China and Portugal through a contribution to the UNU Endownment Fund. As well as providing two-
thirds of the endownment fund, the Macau authorities also supplyUNU-IIST with its office premises and furniture
and subsidise fellow accommodation.

The mission ofUNU-IIST is to assist developing countries in the application and development of software tech-
nology.

UNU-IIST contributes through its programmatic activities:

1. Advanced development projects, in which software techniques supported by tools are applied,

2. Research projects, in which new techniques for software development are investigated,

3. Curriculum development projects, in which courses of software technology for universities in developing
countries are developed,

4. University development projects, which complement the curriculum development projects by aiming to
strengthen all aspects of computer science teaching in universities in developing countries,

5. Schools and Courses, which typically teach advanced software development techniques,

6. Events, in which conferences and workshops are organised or supported byUNU-IIST, and

7. Dissemination, in which UNU-IIST regularly distributes to developing countries information on interna-
tional progress of software technology.

Fellows, who are young scientists and engineers from developing countries, are invited to actively participate in
all these projects. By doing the projects they are trained.

At present, the technical focus ofUNU-IIST is on formal methods for software development.UNU-IIST is an
internationally recognised center in the area of formal methods. However, no software technique is universally
applicable. We are prepared to choose complementary techniques for our projects, if necessary.

UNU-IIST produces a report series. Reports are either ResearchR , Technical T , CompendiaC or Adminis-

trative A . They are records ofUNU-IIST activities and research and development achievements. Many of the
reports are also published in conference proceedings and journals.

Please write toUNU-IIST at P.O. Box 3058, Macau or visitUNU-IIST’s home page:http://www.iist.unu.edu, if
you would like to know more aboutUNU-IIST and its report series.

G. M. Reed, Director

UNU/IIST
International Institute for
Software Technology

P.O. Box 3058

Macau

Real-Time and Fault-Tolerant Systems
– Specification, verification, refinement and scheduling

Zhiming Liu and Mathai Joseph

Abstract

Fault-tolerance and timing have often been considered to be implementation issues of a program, quite
distinct from the functional safety and liveness properties. Recent work has shown how these non-
functional and functional properties can be verified in a similar way. However, the more practical ques-
tion of determining whether a real-time program will meet its deadlines, i.e., showing that there is a
feasible schedule, is usually done using scheduling theory, quite separately from the verification of other
properties of the program. This makes it hard to use the results of scheduling analysis in the design, or
redesign, of fault-tolerant and real-time programs. In this paper we show how fault-tolerance, timing,
and schedulability can be specified and verified using a single notation and model. This allows a unified
view to be taken of the functional and nonfunctional properties of programs and a simple transforma-
tional method to be used to combine these properties. It also permits results from scheduling theory to
be interpreted and used within a formal proof framework. The notation and model are illustrated using a
simple example.

Keywords: Specification, Verification, Refinement, Real-Time, Fault-Tolerance, Scheduling, TLA

Zhiming Liu is a research fellow at UNU/IIST. His research interests include theory of computing
systems, including sound methods for specification, verification and refinement of fault-tolerant, real-
time and concurrent systems, and formal techniques for OO development. His teaching interests are
Communication and Concurrency, Concurrent and Distributed Programming, Internet Security, Software
Engineering, Formal specification and Design of Computer Systems. E-mail: Z.Liu@iis.unu.edu.

Mathai Joseph is Executive Vice President of Tata Consultancy Services and the Executive Director of
Tata Research and Design Development Centre (TRDDC), Pune, India. During 1986-1994, he worked
as a professor in Computer Science at the University of Warwick in England. Professor. Mathai Joseph
is the Chairman of the Board of UNU-IIST. In addition to his management position, Prof. Joseph is
interested in applications of formal method to software tool development for industry software. E-Mail:
mathai.joseph@tcs.com.

Copyright c© 2005by UNU/IIST, Zhiming Liu and Mathai Joseph

Contents i

Contents

1 Introduction 1

2 Real-Time Systems: An Informal Account 1
2.1 Real-time computing . 2
2.2 An example real-time system: mine pump . 5
2.3 Developing a specification . 7
2.4 Constructing the specification . 10
2.5 Analysis and implementation . 11

3 Historical Background of Formal Techniques in Real-Time and Fault-Tolerance 11

4 Overview of the Formal Framework 12

5 Program Specification, Verification and Refinement 13
5.1 Introducing TLA . 13

5.1.1 Examples of states . 14
5.1.2 Question . 16
5.1.3 Question . 16

5.2 The computational model and program specification . 16
5.3 Running example . 21
5.4 Verification and Refinement . 21

5.4.1 Completeness remarks . 22
5.5 Linking theories of programming to TLA . 22

6 Fault-tolerance 23
6.1 Introduction . 23
6.2 Formal specification, verification and refinement of fault-tolerant programs 25
6.3 Running example continued . 25
6.4 Running example continued . 27

7 Modelling real-time programs 29
7.1 Specifying real time . 30
7.2 Specifying time bounds . 31
7.3 Running example continued . 34
7.4 Verification and refinement . 34

8 Combining Fault-Tolerance and Timing Properties 35
8.1 Running example continued . 36

9 Feasible Real-Time Scheduling as Refinement 39
9.1 Untimed scheduling . 40
9.2 Timed scheduling . 41
9.3 Reasoning about scheduled programs . 43
9.4 Feasibility: definition and verification . 44
9.5 Proof rules for feasibility . 46

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Contents ii

9.6 Feasibility of fault-tolerant real-time programs . 47
9.7 Scheduling open systems . 47
9.8 Running example continued . 50
9.9 Fixed priority scheduling with pre-emption . 53
9.10 Specification of the program . 54
9.11 Specification of the scheduling policy . 54
9.12 Feasibility . 55
9.13 Discussion . 60

10 Related Work 61

11 Conclusions 63

12 Exercises 64

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Introduction 1

1 Introduction

A real-time system must meet functional and timing properties when implemented on a chosen hardware
platform. Some timing properties can be derived from the specification of the system and others from the
design choices made in the implementation. Yet other properties can be determined only by examining
the timing characteristics of the implementation.

Real-time systems often need to meet critical safety requirements under a variety of operating conditions.
One factor that then needs attention is the ability of the system to overcome the effects of faults that may
occur in the system. Such faults are usually defined in terms of a fault-model. The degree offault-
toleranceof the system must be established in terms of the fault-model and the effect of faults upon the
execution of the system.

In this chapter, we show that functional and many non-functional properties of a real-time system, such
as schedulability, or proving that its implementation meets its timing constraints, can be verified in a
similar way. Likewise, the fault-tolerance of a system can be proved using the same techniques. We
use a single notation and model and take a unified view of the functional and non-functional properties
of programs. A simple transformational method is used to combine these properties [58, 59]. We show
how the theory of concurrency, fault-tolerance, real-time and scheduling can be built on the theories of
sequential programming, such as those of Dijkstra’s calculus of weakest preconditions [24], Hoare Logic
[28], Morgan’s refinement calculus [70] and Hoare and He’s UTP [33]. These theories are discussed and
used in Chapter 3 and Chapter 5.

Section 2 gives an informal account of real-time systems. Section 3 presents a historic background on
formal techniques in real-time and fault-tolerance. Section 4 gives an outline of the approach used in
this chapter. Section 5 introduces the computational model and the Temporal Logic of Actions [43] used
for program specification, verification, and refinement. In Section 6, we show how physical faults are
specified, how fault-tolerance is achieved by transforming a non-fault-tolerant program, and how fault-
tolerance is verified and refined. Section 7 extends the method given in Section 5 for the specification
and verification of real-time programs. In Section 8 we combine the techniques used for fault-tolerance
and real-time. Section 9 shows how real-time scheduling policies can be specified and combined with
the program specification for verification of schedulability of a program. Proof rules for feasibility and
fault-tolerant feasibility are also developed and it is shown how methods and results from scheduling
theory can be formally verified and used. The notation, model and techniques are illustrated using a
simple processor-memory interface program.

2 Real-Time Systems: An Informal Account

Consider a car moving along a road that passes through some hills. Assume that there is an external
observer who is recording the movement of the car using a pair of binoculars and a stopwatch. With a
fast moving car, the observer must move the binoculars at sufficient speed to keep the car within sight.
If the binoculars are moved too fast, the observer will view an area before the car has reached there; too

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Real-Time Systems: An Informal Account 2

slow, and the car will be out of sight because it is ahead of the viewed area. If the car changes speed
or direction, the observer must adjust the movement of the binoculars to keep the car in view; if the car
disappears behind a hill, the observer must use the cars recorded time, speed and direction to predict
when and where it will re-emerge.

Suppose that the observer replaces the binoculars by an electronic camera which requiresn seconds to
process each frame and determine the position of the car. When the car is behind a hill, the observer
must predict the position of the car and point the camera so that it keeps the car in the frame even though
it is seen only at intervals ofn seconds. To do this, the observer must model the movement of the car
and, based on its past behaviour, predict its future movement. The observer may not have an explicit
model of the car and may not even be conscious of doing the modelling; nevertheless, the accuracy of
the prediction will depend on how faithfully the observer models the actual movement of the car.

Finally, assume that the car has no driver and is controlled by commands radioed by the observer. Being
a physical system, the car will have some inertia and a reaction time, and the observer must use an
even more precise model if the car is to be controlled successfully. Using information obtained everyn
seconds, the observer must send commands to adjust throttle settings and brake positions, and initiate
changes of gear when needed. The difference between a driver in the car and the external observer, or
remote controller, is that the driver has a continuous view of the terrain in front of the car and can adjust
the controls continuously during its movement. The remote controller gets snapshots of the car everyn
seconds and must use these to plan changes of control.

2.1 Real-time computing

A real-time computer controlling a physical device or process has functions very similar to those of
the observer controlling the car. Typically, sensors will provide readings at periodic intervals and the
computer must respond by sending signals to actuators. There may be unexpected or irregular events and
these must also receive a response. In all cases, there will be a time-bound within which the response
should be delivered. The ability of the computer to meet these demands depends on its capacity to
perform the necessary computations in the given time.

If a number of events occur close together, the computer will need to schedule the computations so that
each response is provided within the required time-bounds. It may be that, even so, the system is unable
to meet all the possible demands and in this case we say that the system lacks sufficient resources (since
a system with unlimited resources and capable of processing at infinite speed could satisfy any such
timing constraint). Failure to meet the timing constraint for a response can have different consequences:
in some cases, there may be no effect at all; in other cases, the effects may be minor and correctable; in
yet other cases, the results may be catastrophic. Looking at the behaviour required of the observer allows
us to define some of the properties needed for successful real-time control.

A real-time program must

• interact with an environment which has time-varying properties,

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Real-Time Systems: An Informal Account 3

• exhibit predictable time-dependent behaviour, and

• execute on a system with limited resources.

Let us compare this description with that of the observer and the car. The movement of the car through
the terrain certainly has time-varying properties (as must any movement). The observer must control this
movement using information gathered by the electronic camera; if the car is to be steered safely through
the terrain, responses must be sent to the car in time to alter the setting of its controls correctly. During
normal operation, the observer can compute the position of the car and send control signals to the car at
regular intervals.

If the terrain contains hazardous conditions, such as a flooded road or icy patches, the car may behave
unexpectedly, e.g. skidding across the road in an arbitrary direction. If the observer is required to
control the car under all conditions, it must be possible to react in time to such unexpected occurrences.
When this is not possible, we can conclude that the real-time demands placed on the observer, under
some conditions, may make it impossible to react in time to control the car safely. In order for a real-
time system to manifest predictable time-dependent behaviour it is thus necessary for the environment
to make predictable demands. With a human observer, the ability to react in time can be the result of
skill, training, experience or just luck. How do we assess the real-time demands placed on a computer
system and determine whether they will be met? If there is just one task and a single processor computer,
calculating the real-time processing load may not be very difficult. As the number of tasks increases, it
becomes more difficult to make precise predictions; if there is more than one processor, it is once again
more difficult to obtain a definite prediction. There may be a number of factors that make it difficult to
predict the timing of responses [13].

• A task may take different times under different conditions. For example, predicting the speed of a
vehicle when it is moving on level ground can be expected to take less time than if the terrain has
a rough and irregular surface. If the system has many such tasks, the total load on the system at
any time can be very difficult to calculate accurately.

• Tasks may have dependencies: Task A may need information from Task B before it can com-
plete its calculation, and the time for completion of Task B may itself be variable. Under these
conditions, it is only possible to set minimum and maximum bounds within which Task A will
finish.

• With large and variable processing loads, it may be necessary to have more than one processor in
the system. If tasks have dependencies, calculating task completion times on a multi-processor
system is inherently more difficult than on a single processor system.

• The nature of the application may require distributed computing, with nodes connected by com-
munication lines. The problem of finding completion times is then even more difficult, as commu-
nication between tasks can take varying times.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Real-Time Systems: An Informal Account 4

Real-time
Application

Requirements

Program
Specification

Program
Design

Program
Implementation

Hardware System

Application
dependent

Mathehematical
definition

Formal or
semi-formal
rules

Programming
Language

Figure 1: Real-Time System Development

Requirements, specification and implementation

The demands placed on a real-time system arise from the needs of the application and are often
called the requirements. Deciding on the precise requirements is a skilled task and can be carried
out only with very good knowledge and experience of the application. Failures of large systems
are often due to errors in defining the requirements. For a safety related real-time system, the
operational requirements must then go through a hazard and risk analysis to determine the safety
requirements. Requirements are often divided into two classes: functional requirements, which
define the operations of the system and their effects, and non-functional requirements, such as
timing properties. A system which produces a correctly calculated response but fails to meet
its timing-bounds can have as dangerous an effect as one which produces a spurious result on
time. So, for a real-time system, the functional and non-functional requirements must be precisely
defined and together used to construct the specification of the system.

A specification is a mathematical statement of the properties to be exhibited by a system. A
specification should be abstract so that

– it can be checked for conformity against the requirement, and

– its properties can be examined independently of the way in which it will be implemented, i.e.
as a program executing on a particular system.

This means that a specification should not enforce any decisions about the structure of the software,
the programming language to be used or the kind of system on which the program is to be executed:
these are properly implementation decisions. A specification is transformed into an application
by taking design decisions, using formal or semi-formal rules, and converted into a program in
some language (see Figure 1). We shall consider how a real-time system can be specified and
implemented to meet the requirements. A notation will be used for the specification and it will

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Real-Time Systems: An Informal Account 5

be shown how the properties of the implementation can be checked. It will be noticed as the
specifications unfold that there are many hidden complexities in even apparently simple real-time
problems. This is why mathematical description and analysis have an important role to play, as they
help to deal with this complexity. For both classical scheduling analysis and formal specification
and verification in different notations, we refer the reader to [13].

2.2 An example real-time system: mine pump

We illustrate the problem of real-time by a well-known case study [13]. Water percolating into a
mine is collected in a sump to be pumped out of the mine (see Figure 2). The water level sensorsD
andE detect when water is above a high and a low level respectively. A pump controller switches
the pump on when the water reaches the high water level and off when it goes below the low water
level. If, due to a failure of the pump, the water cannot be pumped out, the mine must be evacuated
within one hour.

Pump

Pump Controller

E

D

 C
B

A

Log

Operator

Sump

A Carbon Monoxide sensor
B Methane sensor
C Airflow sensor
D High water sensor
E Low water sensor

Figure 2: Mine pump and control system (originally from Burns and Lister, 1991)

The mine has other sensors(A,B,C) to monitor the carbon monoxide, methane and airflow levels.
An alarm must be raised and the operator informed within one second of any of these levels be-
coming critical so that the mine can be evacuated within one hour. To avoid the risk of explosion,
the pump must be operated only when the methane level is below a critical level.

Human operators can also control the operation of the pump, but within limits. An operator can
switch the pump on or off if the water is between the low and high water levels. A special operator,
the supervisor, can switch the pump on or off without this restriction. In all cases, the methane
level must be below its critical level if the pump is to be operated.

Readings from all sensors, and a record of the operation of the pump, must be logged for later
analysis.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Real-Time Systems: An Informal Account 6

Safety requirements

From the informal description of the mine pump and its operations we obtain the following safety
requirements:

1. The pump must not be operated if the methane level is critical.

2. The mine must be evacuated within one hour of the pump failing.

3. Alarms must be raised if the methane level, the carbon monoxide level or the air-flow level
is critical.

Operational requirement

The mine is normally operated for three shifts a day, and the objective is for no more than one shift
in 1000 to be lost due to high water levels.

Problem Write and verify a specification for the mine pump controller under which it can be
shown that the mine is operated whenever possible without violating the safety requirements.

Comments The specification is to be the conjunction of two conditions: the mine must be op-
erated when possible, and the safety requirements must not be violated. If the specification read
The mine must not be operated when the safety requirements are violated, then it could be trivially
satisfied by not operating the mine at all! The specification must obviate this easy solution by
requiring the mine to be operated when it is safely possible.

Note that the situation may not always be clearly defined and there may be times when it is difficult
to determine whether operating the mine would violate the safety requirements. For example, the
pump may fail when the water is at any level; does the time of one hour for the evacuation of the
mine apply to all possible water levels? More crucially, how is pump failure detected? Is pump
failure always complete or can a pump fail partially and be able to displace only part of its normal
output?

It is also important to consider under what conditions such a specification will be valid. If the
methane or carbon monoxide levels can rise at an arbitrarily fast rate, there may not be time to
evacuate the mine, or to switch off the pump. Unless there are bounds on the rate of change
of different conditions, it will not be possible for the mine to be operated and meet the safety
requirements. Sensors operate by sampling at periodic intervals and the pump will take some time
to start and to stop. So the rate of change of a level must be small enough for conditions to not
become dangerous during the reaction time of the equipment.

The control system obtains information about the level of water from theHighwaterandLowWater
sensors and of methane from theMethanesensor. Detailed data is needed about the rate at which
water can enter the mine, and the frequency and duration of methane leaks; the correctness of the
control software is predicated on the accuracy of this information. Can it also be assumed that the
sensors always work correctly?

The description explains conditions under which the mine must be evacuated but does not indicate
how often this may occur or how normal operation is resumed after an evacuation. For example,

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Real-Time Systems: An Informal Account 7

can a mine be evacuated more than once in a shift? After an evacuation, is the shift considered to
be lost? If the mine is evacuated, it would be normal for a safety procedure to come into effect and
for automatic and manual clearance to be needed before operation of the mine can resume. This
information will make it possible to decide on how and when an alarm is reset once it has been
raised.

2.3 Developing a specification

We shall start by describing the requirements in terms of some properties, using a simple mathe-
matical notation. This is a first step towards making a formal specification and we shall see various
different, more complete, specifications of the problem in later chapters. Properties will be defined
with simple predicate calculus expressions using the logical operators∧ (and),∨ (or),⇒ (implies)
and⇔ (iff), and the universal quantifier∀ (for all). The usual mathematical relational operators
will be used and functions, constants and variables will have types. We use

F : T1 → T2

for a functionF from typeT1 (the domain of the function) to typeT2 (the range of the function)
and a variableV of typeT will be defined asV : T . An interval fromC1 to C2 will be represented
as[C1, C2] if the interval is closed and includes bothC1 andC2, as(C1, C2] if the interval is half-
open and includesC2 and notC1 and as[C1, C2) if the interval is half-open and includesC1 and
notC2.

Assume that time is measured in seconds and recorded as a value in the set Time and the depth of
the water is measured in metres and is a value in the setDepth; TimeandDepthare the set of real
numbers.

S1: Water level
The depth of the water in the sump depends on the rate at which water enters and leaves the sump
and this will change over time. Let us define the water levelWaterat any time to be a function
from Timeto Depth:

Water: Time→ Depth

Let Flow be the rate of change of the depth of water measured in metres per second and be
represented by a real number;WaterInandWaterOutare the rates at which water enters and leaves
the sump and, since these rates can change, they are functions fromTimeto Flow:

WaterIn, WaterOut: Time→ Flow

The depth of water in the sump at timet2 is the sum of the depth of water at an earlier timet1 and
the difference between the amount of water that flows in and out in the time interval[t1, t2]. Thus
∀t1, t2 : Time, t1 ≤ t2;

Water(t2) = Water(t1) +
∫ t2

t1

(WaterIn(t)−WaterOut(t))dt

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Real-Time Systems: An Informal Account 8

HighWaterandLowWaterare constants representing the positions of the high and low water level
sensors. For safe operation, the pump should be switched on when the water reaches the level
HighWaterand the level of water should always be kept below the levelDangerWater:

DangerWater> HighWater> LowWater

If HighWater= LowWater, the high and low water sensors would effectively be reduced to one
sensor.

S2: Methane level
The presence of methane is measured in units of pascals and recorded as a value of typePressure
(a real number). There is a critical level,DangerMethane, above which the presence of methane is
dangerous.

The methane level is related to the flow of methane in and out of the mine. As for the water level,
we define a functionMethanefor the methane level at any time and the functionsMethaneInand
MethaneOut for the flow of methane in and out of the mine:

Methane: Time⇒ Pressure
MethaneIn, MethaneOut: Time⇒ Pressure

and∀t1, t2 : Time,

Methane(t2) = Methane(t1) +
∫ t2

t1

(MethaneIn(t)−MethaneOut(t))dt

S3: Assumptions

1. There is a maximum rateMaxWaterIn : Flow at which the water level in the sump can
increase and at any timet, WaterIn(t) ≤ MaxWaterIn.

2. The pump can remove water with a rate of at leastPumpRate: Flow, and this must be greater
than the maximum rate at which water can build up:MaxWaterIn< PumpRate.

3. The operation of the pump is represented by a predicate on Time which indicates when the
pump is operating:

Pumping: Time→ Bool

and if the pump is operating at any timet it will produce an outflow of water of at least
PumpRate:

(Pumping(t) ∧Water(t) > 0) ⇒ (WaterOut(t) > PumpRate)

4. There is enough reaction timetP before the water level becomes dangerous;

(HighWater+ MaxWaterIn· (tP)) < DangerWater

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Real-Time Systems: An Informal Account 9

5. The maximum rate at which methane can enter the mine isMaxMethaneRate.

If the methane sensor measures the methane level periodically everytM units of time, and if
the time for the pump to switch on or off istP , then the reaction timetM + tP must be such
that,

(MaxMethaneRate· tm + HighMethane) < MethaneMargin∧
(MaxMethaneRate· tP + MethaneMargin) < DangerMethane

whereHighMethane< MethaneMargin< DangerMethane. HighMethaneis the safety limit
of methane and the methane is below this limit when the system starts. The controller should
start to turn the pump off when it receives a methane level greater thanHighMethanesignal
from the sensor.

6. The methane level does not reachMethaneMarginmore than once in 1000 shifts; without this
limit, it is not possible to meet the operational requirement. Methane is generated naturally
during mining and is removed by ensuring a sufficient flow of fresh air, so this limit has some
implications for the air circulation system.

S4: Pump controller
The pump controller must ensure that, under the assumptions, the operation of the pump will keep
the water level within limits. At all times when the water level is high and the methane level is
not critical, the pump is switched on, and if the methane level is critical the pump is switched off.
Ignoring the reaction times, this can be specified as follows:

∀t ∈ Time·
(

Water(t) > HighWater∧
Methane(t) < DangerMethane

)
⇒ Pumping(t)

∧(Methane(t) ≥ DangerMethane) ⇒ ¬Pumping(t))

This cannot really be achieved so let us see how reaction times can be taken into account. Since
tP is the time taken to switch the pump on, a properly operating controller must ensure that:

∀t ∈ Time·
(

Methane(t) < HighMethane∧ ¬Pumping(t)∧
Water(t) ≥ HighWater

)

⇒ ∃t0 ≤ tP · Pumping(t + t0)

So if the operator has not already switched the pump on, the pump controller must do so when the
water level reachesHighWater. Similarly, the methane sensor may taketM units of time to detect
a methane level and the pump controller must ensure that

∀t ∈ Time·
(

Pumping(t)∧
Methane(t) ≥ HighMethane

)
⇒ ∃t0 ≤ tp · ¬Pumping(t + t0)

S5: Sensors
Sensors are modelled by variables. The high water sensor provides information about the height of
the water at timet in the form of predicatesHW (t) andLW (t) which represent the cases where
the water level is aboveHighWaterandLowWater respectively. We assume that at all times a
correctly working sensor gives some reading (i.e.HW (t) ∨ ¬HW (t)).

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Real-Time Systems: An Informal Account 10

The readings provided by the sensors are related to the actual water level in the sump:

∀t ∈ Time· Water(t) ≥ HighWater⇒ HW (t)
∧Water(t) ≥ LowWater⇒ LW (t)

Similarly, the methane level sensor reads the methane level periodically and signals to the con-
troller that eitherHML(t) or¬HML(t):

∀t ∈ Time· Methane(t) ≥ HighMethane⇒ HML(t)
∧Methane(t) < HighMethane⇒ ¬HML(t)

S6: Actuators
The pump is switched on and off by an actuator which receives signals from the pump controller.
Once these signals are sent, the pump controller assumes that the pump acts accordingly. To
validate this assumption, another condition is set by the operation of the pump. The outflow
of water from the pump sets the conditionPumpOn; similarly, when there is no outflow, the
condition isPumpOff.

The assumption that the pump really is pumping when it is on and is not pumping when it is off is
specified below: assume the pump takesκ time units to react:

∀t ∈ Time· PumpOn(t) ⇒ ∃t0 ≤ κ · Pumping(t + t0)
PumpOff(t) ⇒ ∃t0 ≤ κ · ¬Pumping(t + t0)

We can then refine the specification of the controller as

HW (t) ∧ LM(t) ⇒ ∃to ≤ ε · PumpOn(t + to)
HW (t) ∧HM(t) ⇒ ∃to ≤ ε · PumpOff(t + to)

whereε + κ ≤ tP .

The conditionPumpOnis set by the actual outflow and there may be a delay before the outflow
changes when the pump is switched on or off. If there were no delay, the implication⇒ could be
replaced by the two-way implicationiff , represented by⇔, and the two conditionsPumpOnand
PumpOffcould be replaced by a single condition.

Theverificationof the system specification is about to prove

(Controller Specification) ∧ (Actuator Specification) ∧ (Sensors Sepecification) ⇒
(Assumptions⇒ (Requirement Specification))

2.4 Constructing the specification

The simple mathematical notation used so far provides a more abstract and a more precise de-
scription of the requirements than does the textual description. Having come so far, the next step
should be to combine the definitions given inS1 – S6and use this to prove the safety properties

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Historical Background of Formal Techniques in Real-Time and Fault-Tolerance 11

of the system. The combined definition should also be suitable for transformation into a program
specification which can be used to develop a program.

Unfortunately, this is where the simplicity of the notation is a limitation. The definitionsS1 – S6
can of course be made more detailed and perhaps taken a little further towards what could be a
program specification. But the mathematical set theory used for the specification is both too rich
and too complex to be useful in supporting program development. To develop a program, we need
to consider several levels of specification (and so far we have just outlined the beginnings of one
level) and each level must be shown to preserve the properties of the previous levels. The later
levels must lead directly to a program and an implementation and there is nothing so far in the
notation to suggest how this can be done.

What we need is a specification notation that has an underlying computational model which holds
for all levels of specification. The notation must have a calculus or a proof system for reasoning
about specifications and a method for transforming specifications to programs.

2.5 Analysis and implementation

The development of a real-time program takes us part of the way towards an implementation. The
next step is to analyze the timing properties of the program and, given the timing characteristics
of the hardware system, to show that the implementation of the program will meet the timing
constraints. It is not difficult to understand that for most time-critical systems, the speed of the
processor is of great importance. But how exactly is processing speed related to the statements of
the program and to timing deadlines?

A real-time system will usually have to meet many demands within limited time. The importance
of the demands may vary with their nature (e.g. a safety-related demand may be more important
than a simple data-logging demand) or with the time available for a response. The allocation
of the resources of the system needs to be planned so that all demands are met by the time of
their deadlines. This is usually done using a scheduler which implements a scheduling policy that
determines how the resources of the system are allocated to the program. Scheduling policies can
be analyzed mathematically so the precision of the formal specification and program development
stages can be complemented by a mathematical timing analysis of the program properties. Taken
together, specification, verification and timing analysis can provide accurate timing predictions for
a real-time system.

We will discuss the relation between schedulability and verification and refinement.

3 Historical Background of Formal Techniques in Real-Time and
Fault-Tolerance

Starting from the early work in the 1970’s, formal methods for concurrent and distributed systems
development have seen considerable development. They have made a significant contribution to
a better understanding of the behaviour of concurrent and distributed systems and to their correct
and reliable implementation. The most widely studied methods include:

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Overview of the Formal Framework 12

– Transition systems with temporal logic [74, 65, 30].

– Automata with Temporal logic [20, 11].

– Process algebras [32, 68].

Traditional temporal logic methods (and similar formalisms) use adiscrete eventapproach: this is
also the case withtransition systems(e.g. [39, 74, 64, 41, 75]),automata(e.g. [20, 21]) andaction
systems(e.g. [9, 17]). Such models abstract away time in the behaviour and describe the ordering
of the events of a system.

Real-time is introduced into transition systems either by associating lower and upper bounds with
enabled transitions [76] or by introducing explicit clocks [6, 3]. For specification and verification,
a temporal logic is then extended either with the introduction of bounded (orquantized) temporal
operators [76, 40] or with the addition of explicit clock variables [76, 5, 3]. The relationship
between the two approaches, the extent to which one can be translated into another, is investigated
in [30].

One approach to the construction of safe and dependable computing systems is to use formal
specification, development and verification methods as part of afault-intolerance approachin
which the system safety and dependability are improved bya priori fault avoidanceand fault
removal[8]. Another path towards this goal is throughfault-tolerance, which is complementary to
fault-intolerance but not a substitute for it [8]. This is based on the use of protective redundancy:
a system is designed to befault-tolerantby incorporating additional components and algorithms
to ensure that the occurrence of an error state does not result in later system failures [77, 78,
46]. Although fault-tolerance is by no means a new concept [71], there was little work on formal
treatment of fault-tolerance until the 1980s [69, 81, 23, 50, 53, 54, 55]. These papers treat untimed
fault-tolerant systems only. Recent work [22, 80, 45, 56] has shown how fault-tolerance and timing
properties can formally be treated uniformly.

The issue of schedulability arises when a real-time program is to be implemented on a system with
limited resources (such as processors) [37]. An infeasible implementation of a real-time program
will not meet the timing requirement even though the program has been formally proven correct.
Schedulability has been for a long time a concern of scheduling theory (e.g. [49, 38, 47, 7, 14]) but
the models and techniques used there are quite different from those used in formal specification and
development methods. The relationship between the computational model used in a scheduling
analysis and the model (e.g. an interleaving model) used in a formal development is not clear.
Thus, results obtained in scheduling theory are hard to relate to or use in the formal development
of a system. It is however possible to verify the schedulability of a program within a formal
framework [73, 85, 27, 60, 63] and this provides a starting point for a proof-theoretic interpretation
of results from scheduling theory.

4 Overview of the Formal Framework

We now show how fault-tolerance and schedulability, as well as functional and time correctness,
can be specified and verified within a single formal framework. We usetransition systems[39, 74]
as the program model, and the Temporal Logic of Actions (TLA) [43, 44] as the specification
notation. Physical faults in a system are modelled as being caused by a setF of ‘fault actions’

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Program Specification, Verification and Refinement 13

which perform state transformations in the same way as other program actions. Fault-tolerance
is achieved if the program can be made tolerant to these faults (e.g. by adding the appropriate
recovery actions [77, 78, 50, 53, 54, 55]). We shall show that proof of fault-tolerance is no different
to proof of any functional property.

Each actionτ of a real-time program is associated with avolatile lower boundL(τ) and avolatile
upper boundU(τ), meaning that ‘actionτ can be performed only if it has beencontinuously
enabled for at leastL(τ) time units, andτ must not becontinuouslyenabled forU(τ) time units
without being performed’. The use of volatile time bounds or, correspondingly,volatile timers(or
clock variables) in the explicit-clock modelling approach has been described in the literature (e.g.
see the references in the previous subsection) to specify the time-criticality of an operation.

To deal with real-time scheduling, it is important to model actions and their pre-emption at a level
of abstraction suitable for measuring time intervals and to ensure that pre-emption of an execution
respects the atomicity of actions. To achieve this, we usepersistent time bounds[57] to constrain
thecumulative execution timeof an action in the execution of a program under a scheduler. The
persistent lower boundl(τ) for an actionτ means that ‘actionτ can be performed (or finished)
only if it has been executed by a processor for at least atotal of l(τ) time units, not necessarily
continuously’; the persistent upper boundu(τ) means that ‘τ is not executed by a processor for a
total of u(τ) time units without being completed’.

In TLA, programs and properties are specified as logical formulas, and this allows the logical
characterisation and treatment of therefinement relationbetween programs. We shall show how,
using this approach, the untimed program, the fault assumptions, the timing assumptions, and
scheduling policies are specified as separate TLA formulas.

The use of a well established computational model and logic has significant advantages over the use
of a specially designed semantic model and logic (e.g. as in [81, 23, 22, 80] for fault-tolerance and
[73, 63, 26] for schedulability). First, less effort is needed to understand the model and the logic.
Second, existing methods for specification, refinement and verification can be readily applied to
deal with fault-tolerance and schedulability. Also, existing mechanical proof assistance (e.g. [25,
10] and model-checking methods and tools (e.g. [20, 4, 31]) can be used [6, 5, 11].

5 Program Specification, Verification and Refinement

This section introduces a transition system which is widely used as the computational model in
temporal logic. This model serves as the semantic model of TLA that we shall use for specification
and verification.

5.1 Introducing TLA

Values, variables and states TLA is a logic used for specifying and reasoning about programs
which manipulate data. Assume there is a setVal of values, where a value is a data item. We
assume thatVal contains all the values, such as numbers like3, strings such as “abc” and sets like
Nat, needed for our programs.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Program Specification, Verification and Refinement 14

Assume that a program manipulates data by changing itsstate, which is an assignment of values
to state variables. For describing all possible programs, we assume aninfinitesetVar of variables,
which are represented by symbols likex, y, z. A states is thus a mapping fromVar to Val:

s : Var 7−→ Val

For a states, the value assigned to a variablex in states is represented bys[x] and the values
assigned to a subsetz of variables is denoted bys[z]. Given a subsetv ⊆ Val of variables, we also
definea states overv to be a mapping fromv to Val.

5.1.1 Examples of states

For state variables:{x, y}, let

– s = {x 7→ 0, y 7→ 1}, s′ = {x 7→ 1, y 7→ 0}
– s[x] = 0, s[y] = 1, s′[x] = 1, s′[y] = 0

Assume{On, Off, Bright} are state variables used to model a light system:

– s1 = {Off 7→ true, On 7→ false, Bright 7→ false}
s2 = {Off 7→ false, On 7→ true, Bright 7→ false}
s3 = {Off 7→ false, On 7→ true, Bright 7→ true}

– s1[On] = false, s2[On] = true, etc.

♣

State predicates A state predicate, called apredicatefor short, is a first-order Boolean-valued
expression built from variables and constant symbols. For example,(x = y − 3) ∧ x ∈ Nat.
The meaning[[Q]] of a predicate is a mapping from states to Booleans{true, false} once an
interpretationis given to the predicate symbols like “=” and the function symbols like “−” used
in Q. We say that a states satisfiesa predicateQ, denoted bys |= Q, iff [[Q]](s) = true.

Consider variables{x, y} and the statess = {x 7→ 0, y 7→ 1} ands′ = {x 7→ 1, y 7→ 0}. Then
(x − 1 = y), (x + y > 3), and(x − 1 = y) ∨ (x + y > 3) are all predicates. Assumex and
y take values from the integers and the meanings of the equality symbol ”=”, inequality symbol
”>”, and the function symbols ”−” and ”+” are those defined in the arithmetic on integers. We
can easily decide which of the predicates are satisfied by states and which bys′.

Actions The execution of a program changes the state of the program by the execution ofatomic
actions, called anactionsfor short. Anaction is a first-order Boolean-valued expression over the
variablesVar and their ‘primed versions’Var′. For example,x′ + 1 = y andx′ ≥ y′ + (x− 1) are
actions.

For a given interpretation of the predicate symbols such as “=” and “≥” and an interpretation
of the function symbols such as “+” and “−”, an action defines a relation between thevaluesof
variables before and thevaluesof primed variables after the execution of the action. Formally,

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Program Specification, Verification and Refinement 15

given the interpretation of the predicate and function symbols, the meaning[[τ]] of an actionτ is a
relation between states, i.e. a function that assigns a Boolean value to a pair(s, s′) of states. We
thus define[[τ]](s, s′) by considerings to be thepre-τ -stateands′ thepost-τ -stateand[[τ]](s, s′) is
obtained fromτ by replacing each unprimed variablex it τ by its values[x] in s and each primed
variablex′ in τ by the values′[x] of x in s:

[[τ]](s, s′) = true iff τ(s[z]/z, s′[z]/z′) holds

wherez andz′ are the sets of unprimed and primed variables inτ . We say that a pair(s, s′) of
statessatisfiesan actionτ , denoted by(s, s′) |= τ , iff [[τ]](s, s′) = true. When(s, s′) |= τ , (s, s′)
is called aτ -step.

A predicateQ can also be viewed as a particular action which does not have primed variables.
ThusQ is satisfied by a pair(s, s′) of states iff it is satisfied by the first states in the pair. For an
actionτ , let en(τ) be the predicate, called theenabling condition(or guard) of τ , which is true
of a states iff there exists a states′ such that(s, s′) |= τ . Formally, letx′1, . . . , x

′
n be the primed

variables that occur inτ , let x̂1, . . . , x̂n be new logical variables that do not occur inτ , and letτ̂
be the formula obtained fromτ by replacing each occurrence ofx′i by x̂i, for i = 1, . . . , n:

en(τ) ∆= ∃x̂1, . . . x̂n.τ̂

Temporal formulas We consider an execution of a program to be aninfinitestate sequence, and
take the semantics of the program to be the set of all its possible executions. Reasoning about
programs is reasoning about their executions and thus reasoning about state sequences. We shall
use TLA for this purpose.

Formulas in TLA are calledtemporal formulaswhich are built from actions as theelementary
temporal formulasusing Boolean connectives and modal operators in Linear-Time Temporal Logic
[65]. Here we use only2 (readalways) and its dual operator3 (readeventually) defined as¬2¬.
Quantification (i.e.∃x, ∀x) is possible over a set oflogical (or rigid) variables, whose values are
fixed over states, and over a set of state variables, whose values can change from state to state1.

To use these formulas for describing state sequences, it requires to define the semantic meaning of
such a formula as a function from executions to Booleans. We must first lift the semantics of an
action based on pairs of states to one based on state sequences.

Given an infinite sequenceσ = σ0, σ1, . . . of states,

– An action[[τ]](σ) = true iff [[τ]](σ0, σ1) = true. Note that[[τ]] is overloaded here.

– The first-order connectives and quantification over logical variables retain their standard se-
mantics.

– [[2ϕ]](σ) = true iff [[ϕ]](η) = true for any suffixη of σ. This implies that[[3ϕ]](σ) = true
iff [[ϕ]](η) = true for some suffixη of σ.

– [[∃x.ϕ]](σ) = true iff there is anη such thatσ =x η and[[ϕ]](η), where the relationσ =x η
holds between state sequencesσ andη iff σi[y] = ηi[y] for any variabley which differs from
x and for anyi ≥ 0. Thus,∃x.ϕ is true ofσ iff ϕ is true of some infinite state sequenceη
that differs fromσ only in the values assigned to the variablex.

We say that a formulaϕ is satisfied byσ, denoted byσ |= ϕ, if [[ϕ]](σ).
1In [43, 44], the bold versions9 and8 are used to quantify state variables.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Program Specification, Verification and Refinement 16

5.1.2 Question

For state variables{x, y} and a state sequence:

σ = s1, s2, s1, s2, . . .

wheres1 = {x 7→ 0, y 7→ 1} ands2 = {x 7→ 1, y 7→ 0}, which of the following relations hold?

1. σ |= (x = y − 1)

2. σ |= 2(x + 1 = 1)

3. σ |= 2(y + y′ = 1)

4. σ |= ∃x.2((y ≥ 0) ∧ (x = 1))

5. σ |= 23(y′ = y − 1),
σ |= 23(y′ = y + 1),

6. σ |= 2(3(y′ = y − 1) ∧3(y′ = y + 1))

♣

A formula ϕ is valid if it is satisfied by any infinite state sequences overVar. A relatively com-
plete proof system is given in [43], with additional rules for using the logic for reasoning about
programs. Every valid TLA formula is provable from the axioms and proof rules of the TLA proof
system if all the valid action formulas are provable. As the temporal operators2 and3 and the
semantic model are the same as those in [65], the rules and methods provided there for verification
can also be used.

5.1.3 Question

Which of the following formulas are valid?

– 2(ϕ ∨ ¬ϕ), 2ϕ ⇒ ϕ, ϕ ⇒ 3ϕ, 2ϕ ⇒ 3ϕ, 3(ϕ ∨ ψ) ⇒ 3ϕ ∨3ψ

– 3(ϕ ∧ ψ) ⇒ 3ϕ ∧3ψ, 2(ϕ ∨ ψ) ⇒ 2ϕ ∨2ψ, 2(ϕ ∧ ψ) ⇒ 2ϕ ∧2ψ

♣

5.2 The computational model and program specification

We now give a mathematical definition of a program.

Definition 1 A program will be represented as anaction system(or a transition system) which is
a tupleP = (v, x,Θ, A) consisting of four components:

1. A finite non-empty setv of state variables.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Program Specification, Verification and Refinement 17

2. A setx of internal variables, which is a subset ofv and possibly empty. The values of these
internal variables are not observable to the environment of the program.

3. An initial conditionΘ which is a state predicate referring to only variables inv that defines
the set ofinitial statesof the program.

4. A finite setA of atomic actionsin which only variables inv and primed variables inv′ can
occur..

The simple light control system can also be modelled as

– v
∆= {s}, x

∆= { }
– Θ ∆= (s = off

– A
∆=

{
a : (s = off) ∧ (s′ = on), b : (s = on) ∧ (s′ = off),
c : (s = on) ∧ (s′ = bright), d : (s = bright) ∧ (s′ = off)

}

Notice that this model is not quite precise yet as it does not say what cannot be changed by an
action. One can imagine think of combining actionb andc by a disjunction∨, that will illustrate
the nondeterminism of a system.

Consider the composition of the two open systems:

– Light control system:LightC:

(s = off∧ button= pressed) ∧ (s′ = on∧ button′ = released),
(s = on∧ button= pressed) ∧ (s′ = off∧ button′ = released),
(s = on∧ button= pressed) ∧ (s′ = bright∧ button′ = released),
(s = bright∧ button= pressed) ∧ (s′ = off∧ button′ = released)

– The Button:Buttonwith one action:

(button= released) ∧ (button′ = pressed)

LightC ‖ Button has the union of the set of variables and the union of the sets of actions of the
two components.

Definition 2 A computation (an execution, a run) of programP = (v, x,Θ, A) is an infinite
sequenceσ = σ0, σ1, . . . overv such that the following two conditions hold:

Initiality : σ0 satisfiesΘ.

Consecution: For all i ≥ 0, eitherσi = σi+1 (a stuttering step) or there is an actionτ in A such
that (σi, σi+1) is aτ -step (adiligent step). In the latter case, we say that aτ step is
takenat positioni of σ.

Thus a computation either contains infinitely many diligent steps, or a diligent step takes it to a
terminating state after which only stuttering steps occur; in this case we say that the computation
is terminating.

The set of all the computations of a program isstuttering closed: if an infinite state sequenceσ is
a computation of the program, then so is any state sequence obtained fromσ by adding or deleting
a finite number of stuttering steps.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Program Specification, Verification and Refinement 18

Remarks on atomicity, interleaving and concurrency

– Atomicity is a means of modellingmutual exclusion synchronization.

– Guarded atomic actions are forconditional synchronization. Notice that the guard of an
action here is the enabling condition of the action.

– A number of atomic actions can be executedin parallel iff the order in which they take place
does not affect the changes in the states. In this model, the use of an interleaving semantics
works well for concurrent systems.

– An atomic action can be understood, and in factoften though not alwaysimplemented, as a
piece of a sequentialterminatingprogram.

– A piece of a terminating concurrent program (nested parallelism) is equivalent to a non-
deterministic sequential program (this ia also captured by the expansion law of CCS [67] and
CSP [32]).

Notice that in this definition, an atomic action in a program is semantically taken just as a binary
relation on the states. Therefore, although the actions in the setA are syntactically distinct from
each other, we do not require that the actions be mutually disjoint in their semantics; in particular,
one action can semantically be a sub-relation of another. This implies that it is possible that two
actions have the same effect on a single state. This does not cause any theoretical problem, as we
are to reason about properties of the execution of the program, not the effect of a individual action.
In practice, when we use this model to define the semantics of a concurrent program, each atomic
action defines a different piece of code of the program. Then the effect of all the actions obtained
from the program will be different in any state, as they at least modify different control variables,
such as process counter variables, which are usually internal variables.

An atomic action of a program usually changes only a subset of the variables of the program,
leaving the others unchanged. For a finite setz of variables, we define:

unchanged(z) =
∧

x∈z

(x′ = x)

For example, the atomic action in the form of the guarded commandx > 0 −→ x := x − 1 can
be described as the action formula:

(x > 0) ∧ (x′ = x− 1) ∧ unchanged(v − {x})

in whichx > 0 is the enabling condition (i.e. the guard).

In the examples, we will simply omit theunchangedpart when we specify an action, by assuming
it changes the values of only those variables whose primed versions are referred to in the action
formula.

To specify stuttering, we define also an abbreviation for an actionτ and a finite set of state variables
z:

[τ]z
∆= τ ∨ unchanged(z)

asserting that a step is either aτ -step or a step which does not change the values of the state
variablesz.

We are ready to define two normal forms of program specifications.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Program Specification, Verification and Refinement 19

Definition 3 Given a programP = (v, x,Θ, A), let:

NP
∆=

∨

τ∈A

τ

NP is thestate-transition relationfor the atomic actions ofP . Theexact(or internal) specification
of P is expressed by the formula:

Π(P) ∆= Θ ∧2[NP]v

An exact specification defines all the possible sequences of values that may be taken by the state
variables, including theinternal variablesx. Existential quantification can be used to hide the
internal variablesx which ‘automatically’ get their adequate values although they are not visible
to the observer.

Definition 4 Thecanonical (or external) safety specificationof P is given as:

Φ(P) ∆= ∃x.Π(P)

An infinite state sequenceσ over v satisfiesΦ(P) iff there is an infinite state sequenceη that
satisfiesΠ(P) and differs fromσ only in the values assigned to the variablesxi, i = 1, . . . , n.

Importance of the stuttering closure property Stuttering closure is important when using a
specification of a system in a larger system. In that case, the actions of this subsystem will be
interleaved with other actions in the larger system, and the variables of the subsystem will not be
changed when actions of the rest of the system take place.

To understand this point, consider a digital clock that displays only the hour. Lethr represents the
clock’s display.

From any starting hour, say11, the behaviour of the clock is trivially:

{hr 7→ 11} −→ {hr 7→ 12} −→ {hr 7→ 1} −→ {hr 7→ 2} · · ·

Each step is carried out by the action

HCnext
∆= hr′ = (hr mod12) + 1

The clock can be specified byHCinit ∧ 2HCnext, whereHCinit is the initial condition that the
clock starts from any hour:

HCinit
∆= hr ∈ N ∧ (1 ≤ hr ≤ 12)

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Program Specification, Verification and Refinement 20

This will work if the clock is considered in isolation and never related to another system. However,
this specification cannot be re-used when we model a device that displays the current hour and
temperature.

{
hr 7→ 11,
temp 7→ 3.5

}
−→

{
hr 7→ 12,
temp 7→ 3.5

}
−→

{
hr 7→ 12,
temp 7→ 3

}
−→

{
hr 7→ 12,
temp 7→ 2.5

}
...

Therefore, stuttering is essential for composition. We will also see later that the stuttering closure
property is the key to deal with refinement between two programs.

Exercise: Write a specificationTempclockfor a digital clock that displays the current hour and
temperature such that:

TempClock= HClock∧ TempDisplay

where

HClock
∆= HCinit ∧ [HCnext]hr

♣

FormulasΠ(P) andΦ(P) are safety properties, i.e. they are satisfied by an infinite state sequence
iff they are satisfied by every finite prefix of the sequence. Safety properties allow computations
in which a system performs correctly for a while and then leaves the values of all variables un-
changed.

For an actionτ , define the action〈τ〉z ∆= τ ∧ ¬unchanged(z). Then we can specify the following
fairness properties.

Weak fairness: WFz(τ) ∆= (23〈τ〉z) ∨ (23¬en(〈τ〉z))
Strong fairness: SFz(τ) ∆= (23〈τ〉z) ∨ (32¬en(〈τ〉z))

The weak fairness conditionWFz(τ) says that from any point in an execution, the actionτ must
eventually be performed if it remains enabled until it is performed. The strong fairness condition
SFz(τ) says that from any point in an execution, the actionτ must be eventually executed infinitely
often if it is infinitely often enabled.

The safety specificationsΠ(P) andΦ(P) are usually strengthened by conjoining them with one
or more fairness properties:

Π(P) ∧ L and ∃x : (Π(P) ∧ L)

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Program Specification, Verification and Refinement 21

5.3 Running example

The processor of a simple system issuesreadandwrite operations to be executed by the memory.
The processor-memory interface has two registers, represented by the following state variables:

op: Set by the processor to the chosen operation, and reset by the memory after execution; its
value space is{rdy, r, w}, for ready, read andwrite, respectively.

val: Set by the processor to the valuev to be written by awrite, and by the memory to return the
result of aread; its value space is the set of integers,Z.

Let the interface be a programP1 with an (internal) variabled when denotes the data in the
memory.

v1
∆= {op, val, d}

Θ1
∆= (op ∈ {rdy, r, w}) ∧ d ∈ Z initial condition

Rp
1

∆= (op = rdy) ∧ (op′ = r) processor issuesread

W p
1

∆= (op = rdy) ∧ (op′ = w) ∧ (val′ ∈ Z) processor issueswrite

Rm
1

∆= (op = r) ∧ (op′ = rdy) ∧ (val′ = d) memory executesread

Wm
1

∆= (op = w) ∧ (op′ = rdy) ∧ (d′ = val) memory executeswrite

A1 = {Rp
1,W

p
1 , Rm

1 , Wm
1 } actions of the program

P1 = (v1,Θ1, A1) the program
NP1 = Rp

1 ∨W p
1 ∨Rm

1 ∨Wm
1 state transition relation

Π(P1) = Θ1 ∧2[NP1]v1 exact specification
Φ(P1) = ∃d.Θ1 ∧2[NP1]v1 hiding the internal variabled

The two actionsRp
1 and W p

1 of the processor can be combined into a single nondeterministic
action:

RW p
1

∆= (op = rdy) ∧ ((op′ = r) ∨ (op′ = w) ∧ (val′ ∈ Z))

♣

5.4 Verification and Refinement

In TLA, verification of a program property specified by a formulaϕ which does not contain free
internal variables is by proving the validity of the implicationΦ(P) ⇒ ϕ. A relatively com-
plete proof system is given in [43], with additional rules for using the logic for reasoning about
programs. Every valid TLA formula is provable from the axioms and proof rules of the TLA
proof system if all the valid action formulas are provable. As the temporal operators2 and3 and
the computational model are the same as those in [65], the rules and methods provided there for
verification can be used.

Definition 5 The relationPl v Ph between two programsPl = (vl, x,Θl, Al) andPh = (vh, y, Θh, Ah)
characterizesrefinement, i.e. that programPl correctly implementsPh. Let

Φ(Pl) = ∃x.Θl ∧2[NPl
]vl

and Φ(Ph) = ∃y.Θh ∧2[NPh
]vh

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Program Specification, Verification and Refinement 22

be canonical specifications ofPl andPh respectively, where

x = {x1, . . . , xn} y = {y1, . . . , ym}

Then therefinement relationis formalised as:

Pl v Ph iff Φ(Pl) ⇒ Φ(Ph)

To prove the implication, we must define state functionsỹ1, . . . , ỹm in terms of the variablesvl

and prove the implicationΠ(Pl) ⇒ Π̃(Ph), whereΠ̃(Ph) is obtained fromΠ(Ph) by substituting
ỹi for all the free occurrences ofyi in Π(Ph), for i = 1, . . . , m. The collection of state functions
ỹ1, . . . , ỹm is called arefinement mapping. The substitutions can be applied also to a sub-formula
of Π(Ph). ỹi is the ‘concrete’ state function with whichPl implements the ‘abstract’ variableyi of
Ph. The proof of the implication can be carried out in two steps:

1. initiality-preservation: Θl ⇒ Θ̃h;

2. step-simulation:NPl
⇒ [ÑPh

]evl
.

As NPl
is the disjunction of the actions ofPl, step-simulation can be proved by showingτ ⇒

[ÑPh
]evl

for eachτ ∈ Al; each step of the state transition byPl corresponds to either a diligent step
or a stuttering step byPh.

5.4.1 Completeness remarks

The validity of the implicationΦ(Pl) ⇒ Φ(Ph) does not imply the existence of a refinement map-
ping, but in general, refinement mappings, can be found by adding dummy (or auxiliary) variables
to specifications [2]. Once a refinement mapping is found, the verification of the refinement is
straightforward and can be aided by mechanical means (e.g. [25]). However, finding a refinement
mapping may be difficult if it is not known howPl is obtained fromPh. On the other hand, know-
ing how an abstract state variable inPh is implemented by the variables inPl, it is possible to
define the mapping between them. Refinement supports step-wise development in which a small
number of abstract state variables are refined in each step.

5.5 Linking theories of programming to TLA

The use of atomic actions allows us to use most of the theories of sequential programming smoothly
in this framework. In concurrent programming, an atomic action is often implemented as aguarded
commandwhich can be a big piece of program text [24] (also see Morgan’s chapter on ’Probability
in the context of wp’ in this volume). A guarded command is of the formg −→ C, whereC can
be any programming statement such as

C ::= x := e
| C; C sequential composition
| C u C nondeterministic choice
| C ¢ b ¢ ¤C conditional choice
| b ∗ C iteration

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Fault-tolerance 23

For a given a commandC, we can calculate a design[[C]] following the calculus of UTP [33]:

PreC ` PostC

The corresponding TLA action ofg −→ C is then

g ∧ (PreC ⇒ PostC)

We can use(PreC ⇒ PostC) ¢ g ¤ Skip, as we allow stuttering.

Also, reasoning about TLA specifications, such as verifying an invariant property2Q, can be
done by reasoning within UTP, Hoare Logic, or Dijkstra’s Calculus of Weakest Preconditions.
Refinement of a TLA specification can be carried out by refinement methods in UTP [33] or using
the refinement calculi of Morgan [70] and Back [9].

Note that an atomic action does not have to be implemented by a sequential command. It can be
implemented as a piece of concurrent program, say, written in Back’s action systems [9].

6 Fault-tolerance

There are several different ways in which a program can be developed using formal rules which
guarantee that it willsatisfya specification when executed on an fault-free system, e.g. [41, 9, 43].
However, when a component of a computer system fails, it will usually produce some undesirable
effects and it can be said to no longer behave according to its specification. Such a breakdown of a
component is called a fault and its consequence is called a failure. A fault may occur sporadically,
or it may be stable and cause the component to fail permanently. Even when it occurs instanta-
neously, a fault such as a memory fault may have consequences that manifest themselves after a
considerable time.

6.1 Introduction

Fault-tolerance is the ability of a system to function correctly despite the occurrence of faults.
Faults caused by errors (or bugs) in software are systematic and can be reproduced in the right
conditions. Formal methods can be used to address the problem of errors in software and, while
their use does not guarantee the absence of software errors, they do provide the means of making
a rigorous, additional check. Hardware errors may also be systematic but in addition they can
have random causes. The fact that a hardware component functions correctly at some time is no
guarantee of flawless future behaviour. Note that hardware faults often affect the correct behaviour
of software.

Of course, it is not possible to tolerate every fault. A failure hypothesis stipulates how faults affect
the behaviour of a system. An example of a failure hypothesis is the assumption that a communi-
cation medium might corrupt messages. With triple modular redundancy, a single component is
replaced by three replicas and a voter that determines the outcome, and the failure hypothesis is
that at any time at most one replica is affected by faults. A failure hypothesis divides abnormal be-
haviour, i.e. behaviour that does not conform to the specification, into exceptional and catastrophic

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Fault-tolerance 24

behaviours. Exceptional behaviour conforms to the failure hypothesis and must be tolerated, but
no attempt need be made to handle catastrophic behaviour (and, indeed, no attempt may be pos-
sible). For example, if the communication medium mentioned earlier repeatedly sends the same
message, then this may be catastrophic for a given fault-tolerance scheme. It is important to note
that normal behaviour does not mean perfect behaviour: after a time-out occurs, the retransmission
of a message by a sender is normal but it may result in two copies of the same message reaching
its destination. Exceptional and normal behaviours together form the acceptable behaviour that the
system must tolerate.

Fault-tolerant programs are required for applications where it is essential thatfaultsdo not cause a
program to have unpredictable execution behaviour. We assume that the failures do not arise from
design faults in the program, since methods such as those mentioned above can be used to construct
error-free programs. So, the only faults we shall consider are those caused by hardware and system
malfunctions or the environment of the component that is under development. Many such failures
can bemaskedfrom the program using automatic error detection and correction methods, but there
is a limit to the extent to which this can be achieved at reasonable cost in terms of the resources
and the time needed for correction.

When the nature or frequency of the errors makes automatic detectionandcorrection infeasible,
it may still be possible that errordetectioncan be performed. It is desirable that fault-tolerant
programs are able to perform predictably under these conditions: for example when using memory
with single bit error correction and double bit error detection which operates even when the error
correction is not effective. In fact, the provision of good program level fault-tolerance can make
it possible to reduce the amount of expensive system error correction needed, as program level
error recovery can often be focussed more precisely on the damage caused by an error than a
general-purpose error correction mechanism.

The task is then to develop programs which perform predictably in the presence ofdetectedsystem
errors, and this requires the representation of such errors in the execution of a program. Earlier
attempts to use formal proof methods for verifying the properties of fault-tolerant programs were
based on aninformaldescription of the effects of faults, and this limits their applicability. Here we
shall instead model a fault as anactionwhich performs state transformations in the same way as
other program actions, making it possible to extend a semantic model to include fault actions and
to use a single consistent method of reasoning for both program and fault actions.

Let P be a program satisfying the specificationSp. Let the effect of each physical fault in the
system on whichP is executed be described as afault actionwhich transforms agoodprogram
state into anerror state which violatesSp. Physical faults are then modelled as the actions of
a fault programF which interferes with the execution ofP . A failure at any point during the
execution ofP takes it into an error state (F is assumed not to change an error state into a good
state.).

In general a high level specification of a program is not sufficient to specify its behaviour in the
presence of system faults or to transform it into a fault-tolerant program. It is also necessary to
describe the hardware organisation of the system on which the program is to be executed, on its
use of the resources of the system and the nature of the possible faults in the system, e.g. which
processors and channels may fail; all of these factors can affect the execution of the program. Very
little can be said about the effects of a system fault on a program until it has been refined to the
level where these effects can be observed. There is need to represent faults and their effects at

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Fault-tolerance 25

various levels of abstraction and here we shall use specifications to develop both the program and
the fault environment in which it executes.

6.2 Formal specification, verification and refinement of fault-tolerant programs

A physical faultoccurring during the execution of a programP = (v, x,Θ, A) can cause a transition
from a valid state ofP into anerror state. This may lead to afailure state which violates the specification
of P . A physical fault can be modelled as an atomicfault-action.

For example, a malicious fault may set the variables ofP to arbitrary values, a crash in a processor
may cause variables to become unavailable, and a fault may cause the loss of a message from a channel.
Physical faults can thus be described by a set,F , of atomic actions which interfere with the execution
of P by possibly changing the values of variables inv. Thefault-environmentF can be specified by the
action formulaNF which is the disjunction of the action formulas of allτ ∈ F .

ExecutingP = (v, x,Θ, A) on a system with a fault-environmentF is equivalent to interleaving the
execution of the actions ofP andF . Therefore, interference byF on the execution ofP can be defined
as a transformationF :

F(P, F) ∆= (v, x, Θ, A ∪ F)

The exact and canonical specifications of the computations ofP when executed on a system with faults
F are given by:

Π(F(P, F)) = Θ ∧2[NP ∨NF]v and
Φ(F(P, F)) = ∃x.Θ ∧2[NP ∨NF]v

Definition 6 The fault-prone properties ofP underF can be derived from the properties ofF(P, F),
theF -affected versionof P . A computation ofF(P, F) is anF -affected computationof P .

6.3 Running example continued

For the processor-memory interface, assume that the memory is faulty and that its value may be cor-
rupted. Such a fault can be represented by the atomic operation

fault
∆= d′ 6= d

Let the fault-environmentF1 contain the single actionfault. TheF1-affected version ofP1 is then:

F(P1, F1) = (Θ1, {Rp
1,W

p
1 , Rm

1 , Wm
1 , fault})

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Fault-tolerance 26

Thus,NF1 = fault and:

NF(P1,F1) = NP1 ∨ fault
Π(F(P1, F1)) = Θ1 ∧2[NF(P1,F1)]v1

Φ(F(P1, F1)) = ∃d.Π(F(P1, F1))

♣

For a programP to tolerate a setF of faults, correcting actionsmust be carried out to prevent an
error stateentered by a fault transition from leading to afailure statewhose occurrence will violate the
program requirement specification. In the example, theF1-affected versionF(P1, F1) of P1 is not a
refinement ofP1 and this implies thatP1 does not tolerate the faultF1.

Definition 7 For a given setF of faults, a programP is called aF -tolerant implementationof a property
(or requirement)ϕ, if F(P, F) is an implementation ofϕ:

Φ(F(P, F)) ⇒ ϕ

This means that the behaviours ofP comply with the specificationϕ despite the presence of faultsF .
When such a propertyϕ is a canonical specification of a programPh,

Φ(Ph) = ∃y.Θh ∧2[NPh
]z

a programPl is aF -tolerant refinementof Ph, denotedPl vF Ph, if Pl is aF -tolerant implementation
of Φ(Ph).

In general, a fault-tolerant program can be obtained from a fault-intolerant programP by [50, 53]

1. Addingcheckpointing operations: C(P) = PC ,

2. Adding recovery operations: R(C(P)) = PFT .

C andR are required so thatF(PFT , F) v P or PFT vF P . There are other ways to construct aPFT

such thatPFT vF P .

In [50, 55], checkpointing actions and recovery actions are abstractly defined and can be refined to
implement different kinds of fault-tolerant mechanisms.

The F -tolerant refinement relationvF is stronger than the ordinary refinement relation: i.e. ifPl is
a F -tolerant refinement ofPh, thenPl is a refinement ofPh but in general the converse is not true.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Fault-tolerance 27

Further,F -tolerant refinement is generally not reflexive but it is transitive: ifPll vF Pl andPl vF Ph,
thenPll vF Ph. Fault-tolerant refinements arefault-monotonic: if NF ⇒ NF1 andPl vF1 Ph, then
Pl vF Ph. This means that a program which tolerates a set of faults also tolerates any subset of these
faults2.

Realistic modelling usually requires, in addition to the fault-actions, abehaviouralfault assumptionBF

about the global properties ofF , such as the maximum number of memories corrupted at a time, and the
minimum time between faults. This suggests that the exact specification of theF -affected computations
of P should in general be specified asΠ(F(P, F)) ∧ BF , and theF -tolerant refinement ofPh by Pl

should be proved under the conditionBF :

Π(F(Pl, F)) ∧ BF ⇒ Π̃(Ph)

which is equivalent toBF ⇒ (Π(F(Pl, F)) ⇒ Π̃(Ph)). This indicates that the proof ofF -tolerant
refinement ofPh byPl underBF can be established by proving initiality-preservation and step-simulation
under the assumptionBF . A behavioural fault assumption prevents certain fault transitions from taking
place from some states and is thus in general a safety property of the form2ϕ. Use the equivalence of
2ϕ1 ∧ 2ϕ2 and2(ϕ1 ∧ ϕ2), the formula2[NPl

∨ NF]v ∧ BF can be transformed into an equivalent
formula2[N1]v. In fact, asBF should not constrain the actions ofPl,N1 is obtained fromNPl

andNF by
enhancing the enabling conditions of the fault actions ofF according toBF . ForΠ(F(Pl, F))∧BF , there
is F1 such thatΠ(F(Pl, F)) ∧ BF equalsΠ(F(Pl, F1)). This implies that the behavioural assumption
BF can be encoded into the set of fault actions and the two standard steps for proving refinement can
be directly applied to the transformed specificationΠ(F(Pl, F1)). These two methods for proving a
fault-tolerant refinement will be demonstrated in the example at the end of this section.

The separation of fault actions and behavioural assumptions simplifies the specification of theF -affected
computations of programPl. Further, coding these assumptions into the fault action makes the proof
easier.

6.4 Running example continued

Let the fault-free memory of the processor-memory interfaceP1 be implemented using three memories,
such that at any time at most one suffers from faults.

Let di, i = 1, 2, 3, be the data in the three memories and let memoryi be subject tofaulti. The variables
fi with value space{0, 1} indicate thatdi has been corrupted whenfi = 1. The fault actions can be

2This is easily achieved in a linear time model, as with TLA. For a discussion of fault-monotonicity with a branching time
model, see [35].

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Fault-tolerance 28

specified as follows:

faulti = (d′i 6= di) ∧ (f ′i = 1) corruptsdi

F2
∆= {fault1, fault2, fault3}

NF2 = fault1 ∨ fault2 ∨ fault3
BF2

∆= 2(f1 + f2 + f3 ≤ 1) at most one corrupted memory at any time

Define the following auxiliary function:

vote(x, y, z) ∆=
{

x if x = y or x = z
y if x 6= y andx 6= z

A programP2 which tolerates the faultsF2 by using thevote function to mask the corrupted copy of the
memory, and itsF2-affected version are specified as follows:

v2
∆= {op, val, d1, d2, d3, f1, f2, f3}

Θ2
∆= (op ∈ {rdy, r, w})∧ initially

(d1 = d2 = d3) ∧ (∧3
i=1(di ∈ Z)) all contain the same value

Rp
2

∆= (op = rdy) ∧ (op′ = r)
W p

2
∆= (op = rdy) ∧ (op′ = w) ∧ (val′ ∈ Z)

Rm
2

∆= (op = r) ∧ (op′ = rdy)∧
val′ = vote(d1, d2, d3) return the voted value

Wm
2

∆= (op = w) ∧ (op′ = rdy)∧
∧3

i=1(d
′
i = val)∧ write simultaneously

∧3
i=1(f

′
i = 0) overwrite corrupted copy

A2 = {Rp
2,W

p
2 , Rm

2 ,Wm
2 } all actions

P2 = (v2, Θ2, A2) program
NP2 = Rp

2 ∨W p
2 ∨Rm

2 ∨Wm
2 next-state relation

Π(P2) = Θ2 ∧2[NP2]v2 exact specification
Φ(P2) = ∃(d1, d2, d3, f1, f2, f3).Π(P2) canonical specification

F(P2, F2) = (v2, Θ2, A2 ∪ F2) fault-affected program
NF(P2,F2) = NP2 ∨NF2

Π(F(P2, F2)) = Θ2 ∧2[NP2 ∨NF2]v2

Φ(F(P2, F2)) = ∃(d1, d2, d3, f1, f2, f3).Π(F(P2, F2))

To prove the refinement relationP2 vF2 P1 under the assumptionBF2 , define the mapping from the states
of v2 to those ofd: d̃ = vote(d1, d2, d3). Then, according to the definition of fault-tolerant refinement,

we need to proveΠ(F(P2, F2)) ∧ BF2 ⇒ Π̃(P1), whereΠ̃(P1) = Π(P1)[d̃/d], obtained by substituting
d̃ for all occurrences ofd in Π(P1).

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Modelling real-time programs 29

Proof: [of the F2-tolerant Refinement] The initiality-preservationΘ2 ⇒ Θ̃1 holds trivially asd̃ =
vote(d1, d2, d3), by definition. For step-simulation, we have:

Case 1: Rp
2 andW p

2 , andRm
2 equalR̃p

1, W̃ p
1 andR̃m

2 , respectively;

Case 2: Wm
2 ⇒ W̃m

1 , as the right hand side is

(op = w) ∧ (op′ = rdy) ∧ (vote(d′1, d2, d
′
3) = val′)

Case 3: No faulti-step, fori = 1, 2, 3, changes the valuesval andop, and it is sufficient to show that
no faulti-step changes̃d. We prove this fori = 1; the proofs fori = 2, 3 are similar. By the
assumptionBF2 and the TLA rule for proving an invariance property, it is follows thatF(P2, F2)
has the following invariance property

2(fi = 1 ⇒ (d2 = d3))

Thus,fault1 ⇒ (d′2 = d2) ∧ (d′3 = d3) ∧ (d′2 = d′3) and this impliesfault1 ⇒ unchanged(d̃).

♥
We can also prove the fault-tolerant refinement as follows.

• First transformΘ2 ∧2[NP2 ∨NF2]v2 ∧ BF2 into

Π(F(P2, F21))
∆= Θ2 ∧2[NP2 ∨NF21]v2

whereF21 = {fault2i : i = 1, 2, 3} and

fault2i
∆= (fi⊕1 = 0 ∧ fi⊕2 = 0) ∧ (d′i 6= di) ∧ (f ′i = 1)

where⊕ is + modulo 3.

• Then proveΠ(F(P2, F21)) ⇒ Π̃(P1) by establishing initiality-preservation and step-simulation.

♣

7 Modelling real-time programs

The most common timing constraints over a program require its actions to be executed neithertoo early
nor too late; for example, to use time for the synchronization between a processor and a memory to
ensure that a message written is not overwritten before being read, the memory must not execute the
read operation too slowly and the processor must not issue thewrite operation too soon. Let time be

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Modelling real-time programs 30

represented by the non-negative real numbers3 R+. Timing constraints over the execution of an action
in a programP can be specified by assigning to each actionτ a volatile lower time boundL(τ) from
R+ and a volatile upper time boundU(τ) which is either a value fromR+, or the special value∞ which
denotes the absence of an upper bound. Any real number inR+ is assumed to be less than∞, and the
lower bound is assumed not to exceed the upper bound for any action. Both the lower and upper time
bounds at the program level are volatile, and thus the semantic interpretation ofL andU is that an action
τ can be performed only if it has beencontinuouslyenabled for at leastL(τ) time units; τ must be
performed if it has beencontinuouslyenabled forU(τ) time units.

Definition 8 A real-time program can be represented as a tripleP T = 〈P,L, U〉, whereP is an
‘untimed’ program, defined in the previous section, andL andU are functions of the atomic actions of
P defining the lower boundL(τ) and upper boundU(τ) for any actionτ of P .

7.1 Specifying real time

As in the case of untimed programs, we shall need an exact specificationΠ(P T) of a real-time program
P T . We introduce a distinguished state variablenow to represent time, and an action to advance time,
under the following assumptions [3, 30]:

time starts at0: initially now= 0.

time never decreases: 2[now′ ∈ (now,∞)]now.

time diverges: ∀t ∈ R+.3(now> t).

Time divergence is also called the Non-Zeno property and ensures that only a finite number of actions can
be performed in any finite interval of time. The three assumptions can be combined to specify real-time
evolution:

RT
∆= (now= 0) ∧2[now′ ∈ (now,∞)]now∧ ∀t ∈ R+.3(now> t)

To preserve the atomicity of the actions in the program, we model the execution of the program so that
program state and time do not change simultaneously and that a program state can be changed only
by program actions, i.e.τ ⇒ (now′ = now) for each actionτ of P . Then the conjunctionΠ(P) ∧
RT specifies the interleaving of program actions and time evolution. The program actions are further
constrained by theirlower boundandupper boundconditions, and this is done by introducing auxiliary
state variables calledtimers.

3The methods and results apply to discrete time domains as well.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Modelling real-time programs 31

7.2 Specifying time bounds

An actionτ in P T cannot take place before it has been enabled forL(τ) time units and must take place
before it has been enabled for more thanU(τ) units. We need to introduce auxiliary state variables to
record how long an action has been enabled.

Consider the hour-clock again. Assume it is now required that the clock display thecorrect real time.
Following what has been described earlier, we have:

• The newly added observable variable,now, representing time.

• The change of the display is instantaneous, e.g.

{
hr 7→ 12,

now 7→ √
2.47

}
,

{
hr 7→ 12,

now 7→ √
2.5

}
, · · · ,

• now changes between of a change of display.

• The requirement that the interval between two ticks is one hour plus or minusρ seconds.

• The need of a timert to record how much time has elapsed since the last tick.

tNxt(HCnxt) ∆= (t′ = 0) C HCnxtB (t′ = t + (now′ − now))
Timer(t,HCnxt) ∆= (t = 0) ∧2[tNxt](t,hr,now)

• The timert cannot exceed360 + ρ before the next tick:

Max(t, 360 + ρ) ∆= 2(t ≤ 360 + ρ)

• After a tick, the clock cannot tick again beforet becomes360 + ρ:

Min(t, HCnxt, 360 + ρ) ∆= 2[HCnxt⇒ (t ≥ 360− ρ)]hr

• The time bound specificationHCB is then the conjunction:

HCB
∆= Timer(t, HCnxt) ∧Maxt, 360 + ρ) ∧Min(t, HCnxt, 360 + ρ)

The exact specification of the real-time clock is:

RTHC
∆= HC∧ RT∧ HCB

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Modelling real-time programs 32

Definition 9 In general, given a programP = (v, x,Θ, A), let τ ∈ A andδ be a non-negative real. We
can define acounting-up volatile timer:

Timer(tτ , τ) ∆= (t = 0) ∧2[(t′ = 0) C (< τ >v ∨¬en(τ)′) B
(t′τ = tτ + (now′ − now))](tτ ,v,now)

whereA1 ¢ g ¤ A2 denotes the actiong ∧A1 ∨ ¬A2.

Then we can specify the time bounds of a real-time versionP T of programP as follows:

Max ↑ (τ) ∆= 2(tτ ≤ U(τ))
Min ↑ (τ) ∆= 2[τ ⇒ t ≥ L(τ)](v,now)

Bτ ↑ ∆= Timer(tτ , τ) ∧Min ↑ (τ) ∧Max ↑ (τ)
BP ↑ ∆=

∧

τ∈A

Bτ

The exact specification ofP T can be given asΠ(P) ∧ RT∧BP ↑.

Using counting-up timers gives a simpler specification of a real-time program. However, our experience
is that with them, the proof of a refinement is hard. We now define acounter-down timer.

Definition 10 Given a programP = (v, x,Θ, A), let τ ∈ A and δ be a non-negative real. We define
volatile δ-timer t which is a state variable not inv. The behaviour of the timert is such that whenτ is
enabled from a state in which it was disabled orτ is taken,t is assigned aclock timeof now+ δ units of
time:

Volatile(t, τ, δ, v) ∆= (((en(τ) ∧ t = δ)) ∨ (¬en(τ) ∧ t = ∞)) ∧
2[(en(τ)′ ∧ (τ ∨ ¬en(τ)) ∧ (t′ = now+ δ)
∨ en(τ) ∧ en(τ)′ ∧ ¬τ ∧ (t′ = t)
∨ ¬en(τ)′ ∧ (t′ = ∞)) ∧ (v, now)′ 6= (v, now)](t,v)

Informally, each line in the definition is explained as: the volatileδ-timer t is initially set toδ (i.e. δ time
units ahead of the initial value0 of now) if τ is enabled, and to∞ otherwise, and then repeated in every
step:

1. the timert is reset toδ time units ahead ofnow in the new state if:

(a) τ becomes enabled in the new state from being disabled in the old state, or

(b) τ is taken and it remains enabled in the new state;

2. the timert stays unchanged ifτ remains enabled butτ has not taken place in this step;

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Modelling real-time programs 33

3. the timert is reset to∞ if τ is disabled in the new state.

Using such a volatile timert, the property that aτ -step cannot take place until the timenowreaches the
clock timet can be defined as:

MinTime(t, τ, v) ∆= 2[τ ⇒ (t ≤ now)]v

The conjunction of this formula andVolatile(t, τ, δ, v) can be used to specify a lower bound condition;
andVolatile(t, τ, δ, v) can be used also for an upper bound when conjoined with the formula:

MaxTime(t) ∆= 2[now′ ≤ t]now

For a given real-time programP T = 〈P, L, U〉, let each actionτ of P have a volatileL(τ)-timer tτ and
volatileU(τ)-timerTτ . Then the conjunction:

Volatile(tτ , τ, L(τ), v) ∧MinTime(tτ , τ, v)

which istrue whenL(τ) = 0, specifies the lower bound for actionτ . A τ -step cannot take place within
L(τ) time units of whenτ becomes enabled, and the nextτ step cannot occur withinL(τ) time units of
whenτ is re-enabled. The lower bound condition of the program is the conjunction of the lower bound
conditions for all its actions:

LB(PT) ∆=
∧

τ∈A

(Volatile(tτ , τ, L(τ), v) ∧MinTime(tτ , τ, v))

Similarly, the upper bound condition of programP T is specified by the formula:

UB(PT) ∆=
∧

τ∈A

(Volatile(Tτ , τ, U(τ), v) ∧MaxTime(Tτ))

whereVolatile(Tτ , τ, U(τ), v)∧MaxTime(Tτ) equalstrue and thus can be eliminated from the conjunc-
tion if U(τ) = ∞.

The time bound specificationB(P T) for the whole programP T is then the conjunctionLB(P T)∧UB(P T).

Definition 11 The real-time executions of programP T are exactly specified by theexact specification:

Π(PT) ∆= Π(P) ∧RT ∧B(PT)

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Modelling real-time programs 34

Hiding the internal variablesx and the auxiliary timers, denoted bytimer(P T), gives thecanonical
specificationof P T :

Φ(PT) ∆= ∃x, timer(PT).Π(PT)

7.3 Running example continued

In the untimed processor-memory interfaceP1, let the processor and the memory be synchronised by
timing rather than by guarding the processor actions. Assume that the processor periodically issues an
operation everyρ units of time. To ensure that an operation is executed by the memory before the next
operation is issued by the processor,ρ must be greater than the upper bound (or deadline) for the memory
to execute the operation. The real-time programP T

1 = 〈P1, L1, U1〉 is described as follows:

v1
∆= {op, val, d, c} add an internal variablec

Θ1
∆= (op ∈ {r, w}) ∧ (d ∈ Z) ∧ ¬c the op has not been completed

RW p
1

∆= (op′ = r) ∧ ¬c′∨ issues a read operation, or
(op′ = w) ∧ ¬c′ ∧ (val′ ∈ Z) a write operation

Rm
1

∆= (op = r) ∧ ¬c ∧ (val′ = d) ∧ c′ similar to the originalP1

Wm
1

∆= (op = w) ∧ ¬c ∧ (d′ = val) ∧ c′ similar to the originalP1

A1
∆= {RW p

1 , Rm
1 ,Wm

1 } actions of the program
L1(RW p

1) = U1(RW p
1) = ρ RW p

1 ’s period
L1(Rm

1) = L1(Wm
1) = 0 memory actions’ lower bound

U1(Rm
1) = U1(Wm

1) = D1 < ρ memory actions’ upper bound
PT

1 = 〈v1,Θ1, A1, L1, U1〉 real-time program

♣

7.4 Verification and refinement

The timed and untimed properties of programs can be specified in the same way in TLA. For example,
the bounded response property that onceϕ occurs in an execution,ψ must occur withinδ time units can
be described as:

ϕ
δ
; ψ

∆= ∀t.2(ϕ ∧ now= t ⇒ 3(ψ ∧ now≤ t + δ))

To prove that the real-time programP T satisfies(or implements) a timing property is to prove the impli-
cation of the property by the specificationΦ(P) of the program. For example, the real-time processor-
memory interfaceP T

1 satisfies the property:

∃d.((op = r ∧ d = v) D1
; (val = v))

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Combining Fault-Tolerance and Timing Properties 35

which asserts that the value of the memory will be output withinD1 units of time after the processor
issues a read operation. The implication:

Φ(PT
1) ⇒ ∃d.((op = r ∧ d = v) D1

; (val = v))

can be proved by proving:

Π(PT
1) ⇒ (op = r ∧ d = v) D1

; (val = v)

Definition 12 Therefinement relationP T
l v P T

h between the real-time programsP T
l andP T

h is defined
as the implicationΦ(P T

l) ⇒ Φ(P T
h) using a refinement mapping.

To verify initiality-preservation and step-simulation, convert the exact specification:

Π(PT) ∆= ΘP ∧ [N]v ∧RT ∧B(PT)

into the formΘ ∧ [N]z, wherez equalsv plus now and the timers, andΘ is obtained fromΘP by
conjoining it with the initial conditions onnowand the timers.N is an action formula.

8 Combining Fault-Tolerance and Timing Properties

Fault-tolerant systems often have real-time constraints. So it is important that the timing properties of a
program are refined along with the functional and fault-tolerant properties defined in the program spec-
ification. This section extends the transformational approach for fault-tolerance by adding time bounds
to actions. This will allow the fault-tolerant redundant actions to be specified with time constraints.

The functional properties of faults are modelled by a setF of atomic actions specified by the action
formulaNF . There are no time bounds on these actions (or, equivalently, the lower and upper bound of
each fault action are respectively0 and∞). Given a real-time programP T = 〈P,L, U〉, theF -affected
version ofP T is defined as:

F(PT , F) ∆= 〈F(P, F), L, U〉

where the domain ofL andU is extended toA ∪ F and each action inF is assigned time bounds of0
and∞.

To achieve fault-tolerance in a real-time system, there must be a timing assumption on the occurrence of
faults, especially when deadlines are required to be met. Such an assumption is usually a constraint on

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Combining Fault-Tolerance and Timing Properties 36

the frequency of occurrence of faults, or the minimum time for which faults cannot occur. This period
should be long enough for the recovery of the computation to take place and for progress to be made
after recovery from a fault. For a formulaψ and a non-negative real numberε, let ψ hold continuously
for ε units of time:

2εψ
∆= ∀t.(now= t ⇒ 2(now≤ t + ε ⇒ ψ))

A fault is modelled as an atomic action and specified as an action formula. The timing assumption on
faultsF is a conjunction of assumptions, each of the form ‘whenever fault1 occurs, fault2 cannot occur
within ε units of time’. If this assumption is denoted byTF , the exact and canonical specifications of the
F -affected versionF(P T , F) are, respectively,

Π(F(PT , F)) = Θ ∧ [(NP ∨NF)]v ∧RT ∧B(PT) ∧ BF ∧ TF

= Π(F(P, F)) ∧RT ∧B(PT) ∧ BF ∧ TF

Φ(F(PT , F)) = ∃x, timer(PT).Π(F(PT , F))

Thus theF -affected version of a real-time programP T is also a real-time program. This normal form
allows the definition offault-tolerance for real-time systemsto be given in the same way as for untimed
systems. A real-time programP T is an F -tolerant implementationof a real-time propertyψ if the
implicationΦ(F(P T , F)) ⇒ ψ holds.P T is anF -tolerant refinementof a real-time programP T

h if the
implicationΦ(F(P T , F)) ⇒ Φ(P T

h) holds.

8.1 Running example continued

In Section 6, we showed how the untimed fault-free processor-memory interfaceP1 can be implemented
by the untimed version ofP2, using three faulty memories whose values may be corrupted by the setF2

of faults with assumptionBF2 . We show now how the timed versionP T
1 is F2-tolerantly refined by a

timed version ofP2.

Let the specification of the underlying untimed programP2 be changed slightly by removing the guard
condition of the processor actions:

v2 = {op, val, c, d1, d2, d3, f1, f2, f3}
Θ2 = (op ∈ {r, w}) ∧ ¬c

(d1 = d2 = d3) ∧ (∧3
i=1(di ∈ Z))

RW p
2 = (op′ = r) ∧ ¬c′ ∨ (op′ = w) ∧ ¬c′ ∧ (val′ ∈ Z)

Rm
2 = (op = r) ∧ ¬c ∧ c′ ∧ val′ = vote(d1, d2, d3)

Wm
2 = (op = w) ∧ ¬c ∧ c′ ∧ ∧3

i=1(d
′
i = val ∧ f ′i = 0)

NP2 = RW p
2 ∨Rm

2 ∨Wm
2

Π(P2) = Θ2 ∧2[NP2]v2

Φ(P2) = ∃(d1, d2, d3, c, f1, f2, f3).Π(P2)

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Combining Fault-Tolerance and Timing Properties 37

Meeting the timing properties ofP T
1 requires that the time bounds of the actions of the implementation

P2 guarantee (a) that the period for the processor to issue an operation is stillρ and (b) that the upper
boundD2 for the memory to execute an operation to completion is not greater thanD1:

L2(RW p
2) = U2(RW p

2) = ρ
L2(Rm

2) = L2(W
p
2) = 0

U2(Rm
2) = U2(Wm

2) = D2 ≤ D1

To prove thatP T
2 vF2 P T

1 under the assumptionBF2 , we have to consider only the case whenD2 = D1

since simply lowering the upper bound (or raising the lower bound) of an action is obviously a refinement.
Define a refinement mapping from the states over the variables ofP T

2 ’s to the states over the internal
variables ofP T

1 , including the volatile timers as follows:

d̃
∆= vote(d1, d2, d3) c̃

∆= c

t̃RW p
1

∆= tRW p
2

T̃RW p
1

∆= TRW p
2

T̃Rm
1

∆= tRm
2

T̃W m
1

∆= TW m
2

The implicationΠ(P T
2 , F2) ∧ BF2 ⇒ Π̃(P T

1) can be proved in the same way as for the untimed fault-
tolerance in Section 6.

The assumptionBF2 can be relaxed to the timing assumption:

TF2

∆=
3∧

i=1

2(fi = 1 ⇒ 2ρ+D2(fi⊕1 = 0 ∧ fi⊕2 = 0))

which asserts that only one of the most recently written memories may be corrupted before the read
operation is completely executed. ThenP T

2 = 〈P2, L2, U2〉 is also anF2-tolerant refinement ofP T
1

under the fault-assumptionTF2 .

The specifications ofP T
1 andP T

2 demonstrate a practical fact: to achieve fault-tolerance with timing
constraints, a more powerful (or faster) machine is often needed. The execution of the multiple assign-
mentWm

2 on such a machine should not be slower than the execution of the single assignmentWm
1

on a machine for an non-fault-tolerant implementation ofP T
1 ; and the execution of the multiple read

operationRm
2 with a voting function should not be slower than the execution of the single read operation

Rm
1 . Otherwise, with a machine of the same speed, the original time bounds must have enough slack to

accommodate the redundant actions for fault-tolerance.

We can refineP T
2 further toP T

3 , where the actions of the three memories are executed by different
processes, and the voting action is done by another process. The specification of the variables, the initial

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Combining Fault-Tolerance and Timing Properties 38

condition and the actions ofP3 are given below, fori := 1, 2, 3:

v3 = {op, val, opi, vali, di, fi, ci, vi | i = 1, 2, 3}
Θ3 = (op ∈ {r, w}) ∧ ¬c1 ∧ ¬c2 ∧ ¬c3∧

(op1 = op2 = op3 = op) ∧ ¬v1 ∧ ¬v2 ∧ ¬v3

RW p
3 = ¬c′1 ∧ ¬c′2 ∧ ¬c′3 ∧ ((op, op1, op2, op3)′ = (r, r, r, r)∨

((op, op1, op2, op3)′ = (w, w,w, w)) ∧ (val′ ∈ Z))
Rmi

3 = (opi = r) ∧ ¬ci ∧ (val′i = di) ∧ c′i ∧ vi

Wmi
3 = (opi = w) ∧ ¬ci ∧ (d′i = val) ∧ (f ′i = 0) ∧ c′i

V ote = v1 ∧ v2 ∧ v3 ∧ (val′ = vote(val1, val2, val3)∧
¬v′1 ∧ ¬v′2 ∧ ¬v′3

A3 = {RW p
3 , V ote,Rmi

3 ,Wmi
3 | i = 1, 2, 3}

P3 = (v3,Θ3, A3)

The newly introduced internal variables,opi, contain the operations issued to the processi; ci denote
whether the operations issued to the processi are completed;vi are used to synchronise the read actions
and the vote action such thatvote is done only after all thereads are completed.

The timing properties ofP T
2 require (a) that the time bounds of the actions in the implementationP T

3
guarantee that the period for the processor to issue an operation is stillρ, (b) that the upper boundDwi

for the ith memory to execute an issued write is not greater thanD2, and (c) that the sum of the upper
boundDri of theith memory to execute an issued read operation and the upper boundDvote of theV ote
action is not greater thanD2: for i = 1, 2, 3.

L3(RW p
3) = U3(RW p

3) = ρ
L3(Rmi

3) = L3(Wmi
3) = L3(V ote) = 0 U3(Wmi

3) = Dwi

U3(Rmi
2) = Dri U3(V ote) = Dvote

Dwi ≤ D2 Dri + Dvote ≤ D2

The refinement and fault-tolerance can be proved by showing the validity of the implication:

Φ(F(PT
3 , F2)) ∧ BF2 ⇒ Φ(F(PT

2 , F2)) ∧ BF2

from the following refinement mapping whenDwi = D2 andDri + Dvote = D2:

c̃
∆= c1 ∧ c2 ∧ c3

d̃i
∆=

{
di if c1 ∧ c2 ∧ c3 ∨ ¬c1 ∧ ¬c2 ∧ ¬c3

val otherwise

T̃Rm
2

∆=

min{TR
mi
3

: i = 1, 2, 3}+ Dvote if ∨3
i=1(opi = r ∧ ¬vi)

TV ote if v1 ∧ v2 ∧ v3

∞ otherwise

T̃W m
2

∆= min{TW
mi
3

: i = 1, 2, 3}

However, it is important to notice that it is easier to understand and prove theF2-refinement ofP T
2 by

P T
3 if this refinement is done step-wise:

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 39

1. first refineP T
2 into a programP T

31 by replacingWm
2 in P2 with the three write operationsWmi

3

and settingU(Wmi) = D2, i = 1, 2, 3;

2. then refineP T
31 into another programP T

32 by replacingRm
2 in P31 (which is also inP2) with the

three read operationsRmi
3 plusV ote and settingU(Rmi) + U(V ote) = D2, i := 1, 2, 3;

3. finally, scale down the upper bounds of the new operations to getP T
3 .

♣

9 Feasible Real-Time Scheduling as Refinement

To model the parallel execution of a programP T , we partition the actionsA of P into n sets (processes)
p1, . . . , pn. A shared state variableis one which is used by actions in different processes, while aprivate
state variableis used only by the actions in one process. Two actions ofP can be executed in paralleliff
they are not in the same process and do not share variables (shared variables are accessed under mutual
exclusion). In such a concurrent system, processes communicate by executing actions which use shared
variables. We assume that each process in a concurrent program issequential, i.e. at most one atomic
action in a process is enabled at a time, though an action of the process may be non-deterministic as it
may carry out transitions from the same state to different states in different executions.

Let the real-time programP T be implemented on a system by assigning itsn processes to a set{1, . . . , m}
of processors and executing them under ascheduler. Such an implementation iscorrect iff it meets both
the functional requirements defined by the actions ofP and the timing constraints defined by the time
bound functionsL andU of P T . Rather than adding scheduling primitives to the programming (spec-
ification) language (e.g. as in [34]), the program and the scheduler will be modelled and specified in
a single semantic model but their correctness will be proved separately. The application of a scheduler
to a program on a given set of processors can be described as a transformation of the program, and
the schedulability of the program can be determined by reasoning about the transformed orscheduled
program.

Using transformations and separating the program from the scheduler helps to preserve the independence
of the program from scheduling decisions. The programmer does not need to take account of the system
and the scheduler until the program is ready to be implemented. This allows the feasibility of a program
under different schedulers and the effect of a scheduler on different programs to be investigated. Also,
the feasibility of the implementation of a program can be proved by considering a scheduling policy,
rather than low-level implementation details.

We shall first describe the functional and timing aspects of a scheduler, and then determine how they
affect the execution of the program.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 40

9.1 Untimed scheduling

Assume that a scheduler allocates a process ofP for execution by a processor using asubmit action, and
removes a process from a processor by aretrieve action. We shall say that a process is on a processor if
the process has been allocated to that processor.

An atomic action of a process can be executed only when the process is on a processor and the action is
enabled. Let the Boolean variableruni, 1 ≤ i ≤ n, betrue if processpi is on a processor. The effect of
scheduling is represented by a transformationG(P) in which each atomic actionτ of P in the process
pi, 1 ≤ i ≤ n, is transformed by strengthening its enabling condition by the Boolean variableruni. Let
r(τ) denote the transformed action ofτ in G(P). Then:

r(τ) ∆= runi ∧ τ

Therefore,en(r(τ)) ⇔ runi ∧ en(τ), and a processpi is being executedonly when it is on a processor
and one of its actions is enabled.

A scheduler can be functionally described as an untimed programS whose initial conditionidle
∆=

∀i.¬runi guarantees that there is no process on any processor and whose submit and retrieve actions
modify the variablesruni. We use agenericdescription so that the scheduler can be applied to any
programP on a system with any number of processors. ProgramP and the set of processors will be left
as parameters, to be replaced respectively by a concrete program and the definition of a specific system.

GivenS, the scheduling ofP by S on a set of processors can be described as a transformationI(P).
The initial condition of the scheduled programI(P) is the conjunction of the initial conditions ofS and
P , i.e. idle ∧ Θ. The actions ofI(P) are formed by the union of the actions ofS andG(P) and their
execution is interleaved.

An execution ofI(P) is a state sequenceσ over the union of the state variablesz of the scheduler and
the variablesv of the programP for which:

1. the initial stateσ0 satisfies the initial conditionsΘ of P andidle of S,

2. for each step(σj , σj+1), one of the following conditions holds:

(a) σj+1 = σj , or

(b) σj+1 is produced fromσj by an action inS, or

(c) σj+1 is produced by the execution of an actionτ in a processpi whose enabling condition
and the predicateruni are both true inσj .

The set of executions ofI(P) is then specified by:

Π(I(P)) = idle∧Θ ∧2[NG(P) ∨NS](v,z)

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 41

We assume thatS does not change the state ofP , i.e.NS ⇒ (v′ = v). This gives us the compositional
specification:

Π(I(P)) = Π(S) ∧Π(G(P))

It can be seen thatr(τ) ⇒ τ holds for each actionτ of P . So doesΠ(G(P)) ⇒ Π(P). Hence,Π(I(P))
implies Π(P). This shows thatI(P) refinesP and the transformationI (and thus the schedulerS)
preserves the functional properties ofP .

9.2 Timed scheduling

The timing properties of the executions ofI(P) depend on the number of processors and their execution
speed. Assume that thehard execution timeneeded for each atomic operationτ on a processor lies in
a real interval[l(τ), u(τ)]: i.e. if the execution ofτ on a processor starts at timet and finishes at time
t + d, then thetotal execution timefor τ in the interval[t, t + d] lies in the interval[l(τ), u(τ)]. The
functionsl andu define the (persistent) time bounds of the actions inG(P). The real-time program

G(P)T ∆= 〈G(P), l, u〉, where for eachr(τ) of G(P), l(r(τ)) = l(τ) andu(r(τ)) = u(τ).

To guarantee that the implementation ofP T satisfies its real-time deadlines, the computational overhead
of thesubmitandretrieveactions must be bounded. Let the schedulerS have time boundsLS(τ) and
US(τ) for each actionτ of S and let the real-time scheduler beST .

Definition 13 Thereal-time scheduled programI(P T) ∆= 〈I(P), LI(P), UI(P)〉, where the functions
LI(P) andUI(P) are respectively the union4 of the functionsLS andl, and the union ofUS andu.

This means that the execution speed of the processors and the timing properties of the scheduler deter-
mine the timing properties of the scheduled program.

As the actions of the scheduler are not interrupted, the time boundsLS andUS of actions ofS are
volatile. However, an execution of a process action may be pre-empted, e.g. under a priority-based pre-
emptive scheduler. Thus, the time boundsl andu for the actions inG(P) should be persistent in general.
Moreover, in a concurrent program, a pre-empted action may be disabled by the execution of the actions
of other processes. When the pre-empted process is resumed, this pre-empted (and disabled) action will
not be executed and another enabled action in this process will be selected for execution. For this reason,
we need the notion of a persistent timer.

4For functionsp from Set1 to Set andq from Set2 to Set, whereSet1 andSet2 are disjoint, theunionof p andq is the
function fromSet1 ∪ Set2 to Set that equalsp for elements inSet1 andq for elements inSet2.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 42

Definition 14 A persistentδ-timer t for an actionτ in processpi is defined as follows:

Persistent(t, τ, δ, v) ∆= t = δ ∧
2[(r(τ) ∧ t′ = now+ δ taken
∨ en(r(τ)) ∧ ¬r(τ) ∧ t′ = t running
∨ ¬en(τ)′ ∧ t′ = now′ + δ disabled
∨ en(τ) ∧ ¬runi ∧ t′ = t + (now′ − now)) pre-empted

∧((v, now)′ 6= (v, now))](t,v,now)

Informally,

1. the persistentδ-timer t is initially (i.e. whennow= 0) set toδ;

2. it staysδ time units ahead ofnowas long asτ is not enabled (i.e.¬en(τ) holds);

3. it remains unchanged during any time whenτ is both enabled and run (i.e.en(r(τ)) holds) to
record the execution time;

4. it is reset either just after aτ -step is taken orτ is disabled; and

5. it changes at the same rate asnowwhenτ is enabled but not run (i.e.en(τ)∧¬runi holds), i.e. the
time when a process is waiting for the processor or the execution ofτ is pre-empted should not be
counted as execution time.

Conditions (4) & (5) guarantee that timert is persistent only whenτ is pre-empted, and ifτ is pre-empted
the intermediate state at the point of pre-emption is not observable to other actions.

The conjunction of the defining formula of a persistentu(τ)-timerTτ for actionτ andMaxTime(u(τ)):

Persistent(Tτ , τ, u(τ), v) ∧MaxTime(Tτ)

is the specification of the upper persistent time bound condition for actionr(τ), and this asserts that the
τ -step of state transition must take place if the accumulated time whenτ has been both enabled and run
reachesu(τ). Similarly, the lower persistent time bound condition for actionτ is specified by:

Persistent(tτ , τ, l(τ), v) ∧MinTime(tτ , r(τ), v)

Notice that when there is no pre-emption in the execution of the program, i.e.:

2(en(r(τ)) ∧ ¬run′i ⇒ (¬en(τ) ∨ r(τ)))

is ensured by the scheduler; the use of a persistent timer ofτ in these two formulas is equivalent to the
use of a volatile timer ofr(τ):

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 43

1. Persisten(t, τ, δ, v) initially setst to δ, and keeps resettingt with now+ δ as long as¬en(r(τ)).
This is the same as inVolatile(t, r(τ), δ, v) which setst to∞ and keeps it unchanged untilen(r(τ))
becomestrue and sets it tonow′ + δ.

2. Assumeen(τ)∧¬runi has beentrue since, saynow= now0, andt was set byPersisten(t, τ, δ, v)
to now0 + δ. Fromnow0, Persisten(t, τ, δ, v) increasest at the same rate by whichnow increases
as there cannot be a pre-emption. This is the same as inVolatile(t, r(τ), δ, v) wheret was set to
∞ and kept unchanged unlessruni becomestrue whent is set tonow′ + δ.

Thus, persistent timers allow the treatment of both pre-emptive and non-pre-emptive scheduling.

The specification of the timing condition forG(P)T is defined as

B(G(P)T) ∆=
∧

τ∈A

(Persistent(tτ , τ, l(τ), v) ∧MinTime(tτ , r(τ), v))∧
∧

τ∈A

(Persistent(Tτ , τ, u(τ), v) ∧MaxTime(Tτ))

The exact specification of the timed scheduled programI(P T) is

Π(I(PT)) = Π(S) ∧Π(G(P)) ∧RT ∧B(ST) ∧B(G(P)T)
= Π(ST) ∧Π(G(P)T)

The correctness of the timed scheduled programI(P T) is determined with respect to the specification
of P T , which does not refer to the variablesz which are modified by the schedulerS. These variables
(and those which are internal toS) are therefore hidden in the canonical specification

Φ(I(PT)) ∆= ∃z.Φ(ST) ∧ Φ(G(P)T)

We shall use this specification in the following section where we consider two ways of applying the
transformational approach to real-time scheduling.

9.3 Reasoning about scheduled programs

Consider the implementation of a real-time programP T using a real-time schedulerST which satisfies a
propertyϕ. Proof that this implementation satisfies a high-level timing propertyψ, whose only free state
variables arenowand the external variables ofS, can be used as the initial basis from which proofs of
more detailed low level properties can later be established.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 44

Because of the assumption that the program and the scheduler do not change the same variables, ifST

satisfies a propertyϕ andϕ ∧ Φ(G(P)T) impliesψ, thenI(P T) satisfiesψ. This is represented as the
proof rule:

R1.

1 Φ(ST) ⇒ ϕ
2 ∃z.ϕ ∧ Φ(G(P)T) ⇒ ψ

Φ(I(PT)) ⇒ ψ

Treating the effect of scheduling as a transformation of a program specification allows an abstract spec-
ification of a scheduler’spolicy to be used to prove the timing properties of the implementation of a
real-time program.

9.4 Feasibility: definition and verification

Definition 15 The timed scheduled programI(P T) is feasibleif Φ(I(P T)) ⇒ Φ(P T), i.e. if there is a
refinement mapping by which the following implication can be proved:

Π(I(PT)) ⇒ Π̃(PT)

Notice that the correctness of a scheduler is defined with respect to its specification (or its scheduling
policy) while feasibility relates the specification of the programP T to be scheduled to the specification
of the scheduled program and requires the time bounds of all actions of the former to be met by the later.
Assuming thatΦ(ST) ⇒ ϕ, the feasibility ofI(P T) can be proved from Rule R1 as the implication:

∃z.ϕ ∧ Φ(G(P)T) ⇒ Φ(PT)(1)

This formula can be manipulated in steps, using a refinement mapping.

Step 1 Introduce auxiliary (dummy) timers intoG(P)T corresponding to the timers ofP T .

This can be understood as allowing the scheduler to have a copy of the timers ofP T = 〈P, L, U〉. Define
a set of auxiliary variables:

dummies
∆= {hτ ,Hτ | τ ∈ A}

wherehτ andHτ are respectively defined by the formulasVolatile(hτ , τ, L(τ), v) andVolatile(Hτ , τ, U(τ), v).
Let:

D(dummies) ∆=
∧

τ∈A

Volatile(hτ , τ, L(τ), v) ∧ Volatile(Hτ , τ, U(τ), v)

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 45

Then (1) is equivalent to:

∃dummies, z.ϕ ∧ Φ(G(P)T) ∧D(dummies) ⇒ Φ(PT)(2)

Step 2 Define the refinement mapping.

Recall that the internal variables ofP are assumed to bex. A refinement mappingfrom the states over
x ∪ z ∪ timer(G(P)T) ∪ dummiesto the states overx ∪ timer(P T) is defined as follows:

ỹ =

hτ if y is a timertτ ∈ timer(PT)
Hτ if y is a timerTτ ∈ timer(PT)
y if y ∈ x

Let TimedSched
∆= ϕ ∧Π(G(P)T) ∧D(dummies). Then (2) can be proved by proving:

TimedSched⇒ Π̃(PT)(3)

Step 3 Discard identical substitutions.

Recall thatΠ̃(P T) = Π̃(P)∧R̃T ∧B̃(P T). Obviously,R̃T = RT andΠ̃(P) = Π(P). AlsoΠ(G(P)T)
impliesΠ(G(P)), which in turn impliesΠ(P). Therefore,̃RT andΠ̃(P) can be discarded from the right
hand side of the implication in (3).

TimedSched⇒ B̃(PT)(4)

Step 4 Discard the actions on timers.

B̃(PT) =
∧

τ∈A

Volatile(hτ , τ, L(τ), v) ∧MinTime(hτ , τ, v) ∧

Volatile(Hτ , τ, U(τ), v) ∧MaxTime(Hτ)
= D(dummies) ∧

∧

τ∈A

(MaxTime(Hτ) ∧ (MinTime(hτ , τ, v))

SinceD(dummies) appears on the left hand side of (4), what remains to be proved is that the following
implication holds for each actionτ of P .

TimedSched⇒ MaxTime(Hτ) ∧MinTime(hτ , τ, v)(5)

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 46

9.5 Proof rules for feasibility

Implication 5 suggests that the feasibility of an implementation of a real-time programP T can be proved
using the following rule:

R2.

1 Φ(ST) ⇒ ϕ
2 TimedSched⇒ MaxTime(Hτ) for τ ∈ A
3 TimedSched⇒ MinTime(hτ , τ, v) for τ ∈ A

Φ(I(PT)) ⇒ Φ(PT)

Notice that bothMaxTime(Hτ) andMinTime(hτ , τ, v) contain primed state variables. Therefore, rules
for proving invariant properties cannot be used directly to establish the premises (2) and (3) in Rule R2.
We provide two rules for introducing invariants.

To prove premise (2) in Rule R2, we have the following rule:

R3.

1 Φ(ST) ⇒ ϕ
2 TimedSched⇒ 2(en(τ) ⇒ Tτ ≤ Hτ) for τ ∈ A

TimedSched⇒ MaxTime(Hτ) for τ ∈ A

By symmetry, for premise (3) in Rule R2:

R4.

1 Φ(ST) ⇒ ϕ
2 TimedSched⇒ 2(runi ⇒ tτ ≥ hτ) for τ in pi

TimedSched⇒ MinTime(hτ , τ, v) for τ ∈ A

TimedSchedcan be converted into a normal form as the conjunction of a safety property and a liveness
property:

∃x.Θ ∧2[N]y ∧ L

wherex andy are sets of variables,Θ is a state predicate,N is an action andL is the time divergence
property,∀t.3(now> t).

Let this formula be denoted byΩ. An invariantQ of Ω can be proved using the rule:

R5.

1 Θ ⇒ Q Initially Q holds
2 Q ∧N ⇒ Q′ Each step of the transition preservesQ

Ω ⇒ 2Q

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 47

9.6 Feasibility of fault-tolerant real-time programs

The occurrence of a fault-action does not depend on the scheduler and theF -affected scheduled program
of P T by a schedulerS is modelled asF(I(P T), F) whose exact specification is:

Π(F(I(PT), F)) = Π(S) ∧Π(F(G(P), F)) ∧RT ∧B(ST) ∧B(G(PT))

Let TimedSched(from the previous subsection) be redefined as:

TimedSched
∆= ϕ ∧Π(F(G(PT), F)) ∧D(dummies)

Definition 16 Taking the same set of dummy variables dummies and the refinement mapping from the
previous subsection, the implementationI(P T) is F -tolerantly feasible if the following implication
holds:

TimedSched⇒ ˜Π(F(PT , F))

Then all the equations and rules in the previous section remain valid for fault-tolerant feasibility.

Assume that a real-time programP T = 〈P, L, U〉 is aF -tolerant refinement of a programP T
h for a given

setF of fault-actions. Then anyF -tolerant feasible implementation ofP T is aF -tolerant refinement of
P T

h .

This assumes that the execution of the scheduler is not faulty, andF -tolerance is provided by the program
to be scheduled. It is also possible for a non-fault-tolerant or a fault-tolerant program to be executed un-
der a specially designed scheduler so that the implementation of the faulty program is fault-tolerant [55].
For example, a scheduler can be designed to tolerate processor failures. Assume each process ofP T

keeps taking checkpoints of its local states by a transformationC(P T). We add recovery process(es) to
C(P T) by a transformationR(C(P T)). Faults and their effects on processes are modelled as before. The
implementation transformationI is applied toF(R(C(P T)), F). When a processor fails, the scheduler
must submit the recovery process to a non-failed processor. If the processors arefail-stop, no check-
pointing or recovery may be needed. The scheduler only needs to re-schedule a process executing on a
failed processor to a non-failed processor, where that is possible.

9.7 Scheduling open systems

In the model of programs given so far, we have assumed that a real-time program implements the spec-
ification of aclosed system: values are supplied to the program through the initial values of variables or
by executing a nondeterministicinputoperation.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 48

In many cases, a program is linked to an external environment from which it receives data and to which
it must send responses. The appearance of the inputs often follows a timing pattern, for example with
periodicor aperiodicrepetition.

Definition 17 Anopen systemis a pairO = (E,P) consisting of a programP which interacts with an
environmentE. The setvo of variables ofO is the union of the setsx andy of local variablesof P and
E and the setv of interface variablesthrough whichP andE interact.

Let programP consist of an initial predicateΘx over its local variablesx and a set of atomic actions
on the program variablesvp = x ∪ v. Let the environmentE consist of an initial predicateΘ over the
environment variablesve = y ∪ v and a set of atomic actions on the variablesve.

Letν be an action formula that defines the state transitions by whichP changes the values of the interface
variables. It is then required [3] that:

NP ⇒ ν ∨ (v′ = v) and NE ⇒ ¬ν ∨ (v′ = v)

As before, we define:

Π(P) ∆= Θx ∧2[¬ν ∧ (x′ = x) ∨NP]vp and Φ(P) ∆= ∃x.Π(P)

Π(E) ∆= Θ ∧2[ν ∧ (y′ = y) ∨NE]ve and Φ(E) ∆= ∃y.Π(E)

The specificationΦ(O) of an open systemO = (E, P) then defines the condition under which the
system guarantees the propertyΦ(P) if the environment satisfies the assumptionΦ(E).

Φ(O) ∆= Φ(E) ⇒ Φ(P)

The conjunctionΦ(E) ∧ Φ(P) describes the closed system consisting ofP and its environmentE and
is:

∃x, y.Θ ∧Θx ∧2[NP ∨NE]vo

ProgramPl refines (or implements) a programPh in environmentE iff:

(Φ(E) ⇒ Φ(Pl)) ⇒ (Φ(E) ⇒ Φ(Ph))

and this reduces to:

Φ(E) ∧ Φ(Pl) ⇒ Φ(Ph)

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 49

The program and its environment can be treated as the real-time programsP T = 〈P, L, U〉 andET =
〈E,Le, Ue〉 respectively. Since time is global, it need not be advanced by both of them. We choose to let
the program advance time and define:

Φ(ET) ∆= ∃y, timer(ET).Π(E) ∧B(ET)

Thereal-time open systemOT = (ET , P T) is specified by5:

Φ(OT) ∆= Φ(ET) ⇒ Φ(PT)

A real-time propertyϕ of an open systemOT = (ET , P T) states that programP T guarantees the
propertyϕ under the environment assumptionET . This requires proving the implication:

Φ(OT) ⇒ (Φ(ET) ⇒ ϕ)

or, equivalently,

Φ(ET) ∧ Φ(PT) ⇒ ϕ

In a real-time environmentET , implementation of a real-time programP T by a schedulerST on a set

of processors can be described by transformationI(OT) ∆= (ET , I(P T)), in whichI(P T) is as defined
in Section 4.2 for a closed system, andz denotes the variables that may be changed by the scheduler.

The feasibility of the implementation relies on proving the refinement relation:I(OT) v OT i.e. the
implication

Φ(I(OT)) ⇒ Φ(OT)

or equivalently on proving:

Φ(ET) ∧ Φ(I(PT)) ⇒ Φ(PT)(6)

It is easy to see that Rules R1–R5 apply also to open systems.

5The canonical form of an open real-time specification given here is simpler than that in [3] but is sufficient for our purposes
as we shall not be considering the problem of composing open systems.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 50

9.8 Running example continued

In the timed fault-tolerance processor-memory interface programP T
3 , letRW p

3 be an environment action
with its lower and upper bounds (i.e. period) set toρ. Partition the remaining actions into four processes:

p4 = {V ote} pi = {Rmi
3 ,Wmi

3 } for i = 1, 2, 3
L3(V ote) = 0 L3(Rmi

3) = L3(Wmi
3) = 0 for i = 1, 2, 3

U3(Rmi
3) = Dri

U3(Wmi
3) = Dwi

≤ D2 for i = 1, 2, 3
U3(V ote) = Dvote Dri + Dvote ≤ D2 for i = 1, 2, 3

whereD2 is the deadline of the memory actions in the real-time interface programP T
2 implemented by

P T
3 .

Let the memory processes be implemented on a single processor using a non-deterministic scheduler.
Ignore the details of the scheduler program: e.g. assume that it randomly chooses an enabled process.
If there is no overhead in the scheduling, the scheduler can be specified as a real-time programST =
〈S, L, U〉:

z
∆= {runi : i = 1, 2, 3, 4}

Θ ∆= idle

gi
∆= true if an action ofpi is enabledelsefalse, i = 1, 2, 3, 4

sch
∆=

4∨

i=1

(gi ∧ (idle∨ ¬gi⊕1 ∧ ¬g⊕2) ∧ run′i) ∨ (
4∧

i=1

¬gi) ∧ idle′

U(sch) = 0

Now assume that the computation times for the actions of the processes satisfy the following condition:

l(V ote) = l(Rmi
3) = l(Wmi

3) = 0 for i = 1, 2, 3
u(Wm1

3) + u(Wm2
3) + u(Wm3

3) ≤ min{Dwi} for i = 1, 2, 3
u(Rm1

3) + u(Rm2
3) + u(Rm3

3) ≤ min{Dri} for i = 1, 2, 3
u(V ote) ≤ Dvote

Then it can be proved using the rules in Section 9.4 that the implementation ofP T
3 by the schedulerST

on the given processor isF2-fault-tolerantly feasible.

Intuitively, the processor actions ensure thatread andwrite tasks do not arrive at the same time. Once a
write or aread operation is issued, all the threewrite or read tasks are enabled in the three processes.
The scheduler selects one process at a time to execute until all of them are executed; in total, this takes at
most the sum of the computation times of the three tasks. TheV ote processp4 can be ready only when
the other processes are not ready.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 51

Proof: [sketch ofF2-tolerant feasibility] Rule 3 in Section 9.5 requires that we prove that the following
predicates are invariants of theF2-implementation:

Ii
R

∆= opi = r ⇒ TR
mi
3
≤ HR

mi
3

for i = 1, 2, 3

Ii
W

∆= opi = w ⇒ TW
mi
3

≤ HW
mi
3

for i = 1, 2, 3

IV
∆= v1 ∧ v2 ∧ v3 ⇒ TV ote ≤ HV ote

The proofs of these invariants are very similar. We present only a sketch of the proof forI1
R. Let ui be

used foru(Rmi
3), Hi for HR

mi
3

, andTi for TR
mi
3

, i = 1, 2, 3.

In general, it may not always possible to prove an invariantQ directly from RuleR5 in Section 9.5.
Instead, we have to use this rule to prove a stronger invariant which impliesQ. To prove thatI1

R is an
invariant, prove the following invariantsI1 – I7, the conjunction of which is an invariant and impliesI1

R:

I1
∆= (

3∧

i=1

(opi = r ∧ ¬runi)) ⇒ (
3∧

i=1

(Hi = now+ Dri) ∧ (Tj = now+ uj))

Notice that:

I1 ⇒ ((
3∧

i=1

(opi = r ∧ ¬runi)) ⇒ (
∧

k 6=i 6=j 6=k

(Hi − Ti ≥ uj + uk)))(7)

Informally, I1 is an invariant because (a) the timersHi andTi are respectively set withnow+ Dri and
now+ ui whenopi = r is changed fromfalse to true and (b) there is no overhead in the scheduling
and thusnowcannot advance before one of the three ready processes is scheduled for execution.

If after a read operation is issued, the scheduler chooses processp2 first for execution, we have the
following invariant.

I2
∆= (

3∧

i=1

(opi = r) ∧ run2) ⇒ H1 − T1 ≥ u3 + T2 − now

The proof of this invariant uses invariantI1 and its implication 7 together with the following two facts:

1. A transition from a non-
3∧

i=1

(opi = r) ∧ run2-state to a
3∧

i=1

(opi = r) ∧ run2-state can only be

a transition from a
3∧

i=1

(opi = r ∧ ¬runi)-state and carried out by an scheduling action. This

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 52

scheduling action does not changenowand the timers. Formally, letN1 be this action:

N1
∆= (

3∧

i=1

(opi = r ∧ ¬runi)) ∧ run′2

By I1 and implication (7), we have:

N1 ⇒ (T2 = now+ u2) ∧ (now,H1 − T1 ≥ u3 + u2) ∧ unchanged(H1, T1, T2)

Hence,

N1 ⇒ (H ′
1 − T ′1 ≥ u3 + T ′2 − now)

2. The amount of time for which
3∧

i=1

(opi = r) ∧ run2 has remainedtrue up to now is the time

u2− (T2−now) spent on the execution ofRm2
3 that has been added toT1 as it has been persistent.

The only action which may falsifyI2 is:

N2
∆= (op1 = r) ∧ (op2 = r) ∧ (op3 = r) ∧ run2

∧ (now′ > now) ∧ (T ′1 = T1 + (now′ − now))
∧ (T ′2 = T2) ∧ (H ′

1 = H1)

where we ignore the changes in other variables which are irrelevant toI2. ClearlyI2 ∧ N2 ⇒ I ′2
as:

H ′
1 − T ′1 = H1 − T1 − now′ + now

≥ u3 + T2 − now− now′ + now
= u3 + T ′2 − now′

Similar toI2, we have the following invariant if the scheduler choosesp3 first for execution:

I3
∆= (

3∧

i=1

(opi = r) ∧ run3) ⇒ H1 − T1 ≥ u2 + T3 − now

If the scheduler choosesp1 for execution first, then:

I4
∆= (

3∧

i=1

(opi = r) ∧ run1) ⇒ H1 − T1 ≥ u1 + u3

These four invariants consider the cases when none of the three processes has completed the issued read
operation. We have the following three invariants about the cases when one of or both ofp2 andp3 have
completed the operation.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 53

If p2 has completed the operation, we have the invariant:

I5
∆= (op1 = r) ∧ (op2 6= r) ∧ (op3 = r) ∧ ¬run1 ⇒ H1 − T1 ≥ T3 − now

This characterises the fact that the time spent on the whole execution ofRm2
3 and on the partial execution

of Rm3
3 has been added toT1. The proof of this invariant usesI2. Similarly, if p2 has completed the

operation we have the invariant:

I6
∆= (op1 = r) ∧ (op2 = r) ∧ (op3 6= r) ∧ ¬run1 ⇒ H1 − T1 ≥ T2 − now

Finally, we have the invariant:

I7
∆= (op1 = r) ∧ ((op2 6= r) ∨ (op3 6= r)) ⇒ H1 − T1 ≥ 0

This characterises the fact that the time spent on the execution of one or both ofRm2
3 andRm3

3 has been
added toT1. ♥

The nondeterministic scheduler can be refined to a deterministic one by assigning priorities to the pro-
cesses. For example, let processpi have a higher priority thanpj if i < j. Modify the actionsch of the
scheduler intosch1 such that the process with the highest priority among the ready processes is scheduled
for execution but no pre-emption is allowed:

sch1
∆= idle∧ g1 ∧ run′1

∨ idle∧ ¬g1 ∧ g2 ∧ run′2
∨ idle∧ ¬g1 ∧ ¬g2 ∧ g3 ∧ run′3
∨ idle∧ ¬g1 ∧ ¬g2 ∧ ¬g3 ∧ g4 ∧ run′4

∨
4∨

i=1

(runi ∧ ¬gi ∧ idle′)

Then the modified scheduler also gives a feasibleF2-tolerant implementation ofP T
3 on the given pro-

cessor, as the new actionsch1 action implies the oldsch.

♣

9.9 Fixed priority scheduling with pre-emption

The techniques presented in the previous subsections can be used to produce results similar to those
obtained using scheduling theory. We demonstrate this by proving the feasibility condition given in [14]
for implementing a set of independent tasks using fixed priority scheduling with pre-emption.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 54

Consider an open systemO = (E, P) where programP consists ofn independent processes (or tasks)
which are represented by the atomic actionsτ1, . . . , τn. The environmentE is used to represent the
actions of releasing (or invoking, or activating) the tasks periodically. In general, these actions may be
clock events or external events to which the processes need to respond. Letρi be the period ofτi, for
i = 1, . . . , n.

9.10 Specification of the program

To specify the system in TLA, letinvi andcomi be integer variables representing the number of invoca-
tions and completions of each taski. Then the specification of the real-time systemOT = (ET , P T) can
be given as: fori = 1, . . . , n

Θ ∆= (0 ≤ invi ≤ 1) ∧ (comi = 0)
α

∆= inv′i = invi + 1 action ofE for task invocation

τi
∆= invi > comi ∧ com′i = comi + 1 action ofP for task completion

ν
∆= ∨n

i=1(com′i = comi + 1)
L(αi) = U(αi) = ρi period of invocation
L(τi) = 0 andU(τi) = Di deadline of task

A basic (functional) requirement for the system is that each invocation of a task is completed before its
next invocation, i.e.

Φ(ET) ∧ Φ(PT) ⇒
i=n∧

i=1

2(invi ≥ comi ≥ invi − 1)

From the rules for proving an invariant in TLA, this implication holds ifDi < ρi. It must now be shown
that an implementation of the programP T on a uniprocessor system is feasible.

9.11 Specification of the scheduling policy

Let the system be implemented on a single processor using a pre-emptive, fixed-priority scheduler6;
assume that there is no scheduling overhead. Letτi have a higher priority thanτj if i < j. Let gi denote
the enabling condition of taskτi, andhri assert thatτi has the highest priority among the current enabled
(or ready) tasks:

gi
∆= invi > comi hri

∆= gi ∧ ∀j < i.¬gj

6Specifications of various scheduling policies can be found in [60].

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 55

Then the scheduler, denoted byST = 〈S, L, U〉, can be specified as follows:

schi
∆= idle∧ hri ∧ run′i higher task runs first

∨ ∃j 6= i.(runj ∧ hri ∧ run′i ∧ ¬run′j) higher task pre-empts lower task

NS =
n∨

i=1

schi

U(schi) = L(schi) = 0 no overhead

According toST , at any time at most one process is running on the processor:

Valid
∆= 2(i 6= j ⇒ ¬(runi ∧ runj))

9.12 Feasibility

Let the computation time for each taskτi be in the interval[0, Ci], i.e.l(τi) = 0 andu(τi) = Ci. Assume
ρi, Di andCi are non-negative integers fori = 1, . . . , n. The worst-case response time (or completion
time)Ri for each taskτi can be defined as a recursive equation [38]. We shall instead use the equivalent
recurrence relation defined in [14]. The(n + 1)th response timeR(n+1)

i for processi is:

R
(n+1)
i = Ci +

i−1∑

j=1

dR
(n)
i

ρj
e × Cj(8)

If R
(0)
i is initially setCi, and:

Ri = lim
n→∞

R
(n)
i

scheduling theory shows that:

the implementation of the program by the scheduler on the given processor isfeasibleiff
Ri ≤ Di, for i = 1, . . . , n.

This condition can be shown to be necessary by finding an execution in which a task misses its deadline
if the condition does not hold. However, to prove formally that the condition is sufficient, we need to
prove the following refinement.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 56

Theorem 1 For the given program,OT = (ET , P T), the scheduler,ST , and the processor

I(OT) v OT

providedRi ≤ Di for i := 1, . . . , n.

By Implication (6) in Section 9.7, this is equivalent to showing that the following holds:

Π(ET) ∧Π(ST) ∧Π(G(PT)) ∧D(dummies) ⇒ Π̃(PT)(9)

whereD(dummies) and refinement mapping are as defined in Section 5.1.

Before proving (9), let us discuss how the persistent timerTτi is used to predict the completion time of
an invocation of taskτi by considering its first invocation.

As a special case, consider any timenow before the completion of thefirst invocation of taskτi (i.e.
whencomi = 0 andinvi > 0). Assume all tasksτj , j = 1, . . . , i− 1, with higher priorities thanτi have
met their deadlines so far. Then, in the worst case, when all tasksτj useCj units of computation time,
the time spent up tonowon executing higher priority processes is:

Comp(i, now) ∆=
i−1∑

j=1

comj × Cj +
i−1∑

j=1

(invj − comj)× (Cj − (Tτj − now))(10)

whereCj − (Tτj − now) is the time spent so far on the last invocation ofτj . Thus (10) becomes:

Comp(i, now) =
i−1∑

j=1

invj × Cj −
i−1∑

j=1

(invj − comj)× (Tτj − now)(11)

Assumeδ is the time already spent onτi up tonow. Then:

now= Comp(i, now) + δ

As Tτi has been persistent during the time when tasks of higher priorities are being executed, we have

Tτi = Comp(i, now) + Ci

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 57

Thus,Tτi = now+ (Ci − δ) predictsthat the cumulative time needed to completeτi afternowwill not
exceedCi − δ; this time may be divided into smaller units whose sum isTτi . For the first invocation of
τi to be completed before its deadline,Tτi should never exceedHτi (which is always equal toDi before
the completion ofτi).

Thus, we need to prove that the left hand side (or LHS) of Implication (9) has the following predicate as
an invariant:

(comi = 0 ∧ invi > comi) ⇒ Tτi ≤ Ci + Comp(i, now)

In general, at any time before an invocation ofτi is completed,Hτi − Di records the timet0 (i.e. the
value ofnowat that time) of the current invocation ofτi: at that timeHτi wast0 +Di and it has remained
unchanged asτ has not been completed. The definition of the longest possible time,Comp(i, now), spent
on executing tasks with priorities higher than that ofτi’s defined by Equation (11) can be generalised as:

Comp(i, now) ∆=
i−1∑

j=1

d invj × ρj − (Hτi −Di)
ρj

e × Cj

−
i−1∑

j=1

(invj − comj)× (Tτj − now)

This leads to the following lemma which implies Theorem 1.

Lemma 1 LHS(9) has the following invariants: fori = 1, . . . , n

I1i
∆= (comi < invi) ⇒ Tτi ≤ Ci + Comp(i, now) + (Hτi −Di)

I2i
∆= (comi < invi) ⇒ Comp(i, now) ≤

i−1∑

j=1

d(now− (Hτi −Di))/ρje × Cj

I3i
∆= (comi < invi) ⇒ Ci + Comp(i, now) ≤ Ri

I4i
∆= invi − 1 ≤ comi ≤ invi

Proof: [of Lemma 1] The proof follows the general routine of proving invariants by showing that each
of theI ’s holds initially and is preserved by each allowed state transition in the program.

It is easy to check that these invariants hold fori = 1. Assume that they hold for somei − 1, where
i ≥ 1. We prove they hold fori.

Take the case whenHτi = Di for the first invocation ofτi, i.e. the execution of the first invocation ofτi.
(The proof of the general case is very similar.)

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 58

For the special case, the lemma is rewritten as follows:

I1i
∆= (comi = 0) ∧ (invi > 0) ⇒ Tτi ≤ Ci + Comp(i, now)

I2i
∆= (comi = 0) ∧ (invi > 0) ⇒ Comp(i, now) ≤

i−1∑

j=1

dnow/ρje × Cj

I3i
∆= (comi = 0) ∧ (invi > 0) ⇒ Ci + Comp(i, now) ≤ Ri

I4i
∆= invi − 1 ≤ comi ≤ invi

where:

Comp(i, now) =
i−1∑

j=1

invj × Cj −
i−1∑

j=1

(invj − comj)× (Tτj
− now)

Initially, I1i holds asTτi = Ci. We analyze all the possible state transitions allowed byLHS(9) which
may change the states of variables occurring inComp(i, now).

Case 1: For j = 1, . . . , i− 1, let

A1j
∆= comi = 0 ∧ inv′j = invj + 1

In this case,I ′1i is

com′i = 0 ⇒ Tτi ≤ Ci + Comp(i, now) + Cj − (Tτj − now)

It is easy to prove thatLHS(9) ⇒ 2(Cj − (Tτj − now> 0)). Thus,

I1i ∧A1j ⇒ I ′1i

Case 2: For j = 1, . . . , i− 1, consider

A2j
∆= comi = 0 ∧ com′j = comj + 1 ∧ (T ′τj

= now+ Cj)

By the induction assumption that2(invj − 1 ≤ comj ≤ invj), we know thatI ′1i is equal to

com′i = 0 ⇒ Tτi ≤ Ci +
i−1∑

j=1

invj × Cj

−
∑

i>k 6=j

(invk − comk)× (Tτk
− now)

Thus,I1i ∧A2j ⇒ I ′1i holds.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 59

Case 3: For j = 1, . . . , i− 1, define

A3j
∆= comi = 0 ∧ (comj < invj) ∧ runj

∧ (now′ > now) ∧ T ′τi
= Tτi

+ (now′ − now) ∧ ϕ

where

ϕ
∆=

∧

i>k 6=j

(comk < invk ⇔ (T ′τk
= Tτk

+ (now′ − now)))

Note that(invk − comk) = 0 iff ¬(comk < invk) by the induction assumption fork < i. Thus,
I ′1i becomes

comi = 0 ⇒ Tτi
+ (now′ − now)

≤ Ci +
i−1∑

k=1

invk × Ck−
∑

i>k 6=j

(invk − comk)× (Tτk
− now)− (Tτj − now′)

This is the same as

comi = 0 ⇒ Tτi ≤ Ci +
i−1∑

k=1

invk × Ck−
i−1∑

k=1

(invk − comk)× (Tτk
− now)

Thus,I1i ∧A3j ⇒ I ′1i holds.

Case 4: Finally consider:

A4
∆= (comi = 0) ∧ runi ∧ ϕ ∧ (now′ > now)

whereϕ is defined as inCase 3, except forj being taken into account. Then, the same argument
as inCase 3leads toI ′1i becoming:

comi = 0 ⇒ Tτi ≤ Ci +
i−1∑

j=1

invj × Cj−
i−1∑

j=1

(invj − comj)× (Tτj − now)

And I1i ∧A4 ⇒ I ′1i holds.

These four cases prove InvariantI1i. The proof forI2i follows from the facts:

now= m× ρj iff invj ≤ (m + 1) andinvj − comj = 1 andTτj = now+ Cj

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Feasible Real-Time Scheduling as Refinement 60

and

dnow/ρje ≥ invj if now= m× ρj + t0, where0 < t0 < ρj

To prove thatI3i is an invariant, note thatMaxTime(Tτi) requires:

now′ ≤ Tτi ≤ Ci + Comp(i, now)(12)

For any allowed transitionA, assume thatCi + Comp(i, now) ≤ Ri ∧ A. Then byI2i and the inequa-
tion (12):

Comp(i, now′) + Ci ≤
i−1∑

j=1

dnow′/ρje × Cj + Ci I2i of the lemma

≤
i−1∑

j=1

d(Ci + Comp(i, now))/ρje+ Ci inequation (12)

≤
i−1∑

j=1

dRi/ρje × Cj + CiRi Definition ofRi

The general cases forI1i, I2i andI3i can be proved in the same way. From the assumption thatRi ≤ Di,
these three cases together guarantee that2(Tτi ≤ Hτi) and thus the deadline for the task is always met.
This ensuresI4i holds. Notice thatI4i is not used in the proof, thoughI4j , for j = 1, . . . , i− 1, are used
as the induction assumption. Therefore, we have proved the Lemma.♥
The proof of Theorem 1 follows Rule R3 in Section 9.4 in a straightforward way from this Lemma.

9.13 Discussion

The example in Section 9.9 deals with independent periodic tasks with fixed priorities. The method in
scheduling theory used for these tasks has been extended to deal with communicating tasks. For example,
tasks may communicate with each other asynchronously through aprotected shared object(PSO) [14].
These tasks may be periodic orsporadic. For a scheduler withceiling priorities, the worst response time
Ri for a taskτi can be calculated by the recurrence relation:

R
(k+1)
i = Bi + Ci +

i−1∑

j=1

dR
(k)
i

ρj
e × Cj

whereBi is the worst blocking time forτi by a task of lower priority, andρj is minimum inter-arrival
time of taskτj (which is the period ofτj if τj is periodic).

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Related Work 61

In the feasibility analysis of fault-tolerant real-time tasks [12], the recurrence relation for the worst
response timeRi for a taskτi has been extended to deal with fault-tolerant tasks: by re-execution of
the affected task, by forward recovery, by recovery blocks, by checkpointing and backward recovery. In
the case of fault-tolerance by re-execution, the response timeRi for a taskτi can be calculated by the
recurrence relation:

R
(k+1)
i = Bi + Ci +

i−1∑

j=1

dR
(k)
i

ρj
e × Cj + dR

(k)
i

Fj
e ×max{Cj : 1 ≤ j ≤ i}

whereFj is the minimum time between two occurrences of faults.

The formal method for scheduling analysis presented here can be applied to communicating, fault-
tolerant tasks. This allows us to combine this work with our previous work on fault-tolerance and
real-time [50, 53, 54, 55, 56], which formally treat re-execution, forward recovery, recovery blocks, and
checkpointing and backward recovery, and provide a means of formally dealing with real-time program
refinement, fault-tolerance and schedulability in a single and consistent framework.

10 Related Work

There have been a number of other approaches to formalising real-time scheduling. Using the Duration
Calculus [86], Zhou Chaochen et al [85, 84] have also separately specified a scheduler and a scheduled
program. However, the Duration Calculus does not at present have powerful verification tools for proving
program refinement. It would be useful to unify the theories of Linear Temporal Logics and Duration
Calculus for the specification and analysis of real-time systems. Work in this direction is making slow
progress [61, 18, 19].

[63] describes a case study using a ‘scheduling-oriented model for real-time systems’ called TAM. The
work of [26] extends Back’s action systems [9] with timing and priorities and uses theZ notation for
specification and refinement. The models used there appear to be more complicated than is necessary.
For example, priorities and scheduling can be defined using only simple state variables and standard
actions, as we have shown here, and complex models and structures are not needed.

Using timed CCS, [35, 36] deals with dynamic scheduling in the presence of faults by modelling re-
sources and schedulers as processes. This serves well as a model but event-based process algebras tend
to have a very different syntax to most traditional programming languages; it is possible to consider
extensions to this work which make use of persistent timers and this would enable pre-emption to be
modelled. The similar approach should also be applicable to the framework of CSP presented in Chap-
ter 2 of this volume. For example, [72] deals with physical faults and verification of fault-tolerance by
using the notation of CSP. As in our earlier work [60], these approaches use volatile time bounds (ei-
ther explicitly or implicitly) for both program verification and scheduling analysis. When dealing with
pre-emption (interruption) in real-time scheduling, the use of volatile time bounds requires a scheduled
action to beexplicitly divided into smaller actions (or steps) between whose execution pre-emption can

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Related Work 62

occur. The atomicity of the original action has to be preserved and this requires the introduction of
auxiliary internal variables. The feasibility of the implementation is established by reasoning about this
‘step-level’ program. The use of these devices makes it difficult to reason about and make formal use of
the methods and results from scheduling theory, especially as this does in fact make (informal) use of the
accumulated execution time of tasks.

Another approach to the verification of schedulability uses algorithms for computingquantitativeinfor-
mation of an implementation, such as the lower bound and upper bound on the delay between two (or
two sets of) states [16, 15]. The quantitative information is then used to determine the feasibility of the
implementation and to verify other timing properties usingsymbolic model checkingtechniques [66].
There are some significant differences between that work and what we have described:

1. The algorithms and the model-checking procedures described in [16] work effectively with a dis-
crete time domain and a finite-state system; in contrast, in our analysis time is modelled by the
reals and systems may have a finite or an infinite set of states.

2. Our framework allows program development through refinement to be integrated with scheduling
theory so that the methods and results from the latter can be formal interpreted, verified and used
correctly. [16] uses a scheduling algorithm to obtain an implementation and then tests for schedu-
lability. There is no verification of whether a theorem in scheduling theory is valid for the program
model used (compare this with Section 9.9). In fact, application of Theorem 1 and the recurrence
relation 8 to the Aircraft Control System example of [16, 15] leads directly to the same feasibility
conclusion obtained there.

3. Compared with the work in [16, 15] which concentrates on timing aspects, this treatment deals with
the much wider range of inter-related issues of concurrency, timing, fault-tolerance and schedula-
bility, as well as refinement techniques for fault-tolerant and real-time programs.

In general, model checking techniques are especially effective and necessary in many safety-critical
applications (please see Chapter 7 David Deharbe on Model Checking). However, their general appli-
cability has been restricted by questions of undecidability [6] and by complexity issues [5], especially
for systems using a continuous time domain. These problems are very much more serious when both
fault-tolerance and real-time have to be considered. Model-checking and the more general verification
methods used here are complementary and neither can be totally replaced by the other. We recognize a
role for model-checking as a decision procedure in a proof-checker, to be applied when possible.

It is usually impossible to give an exact prediction for the occurrence of faults in a program execution,
or to achieve one hundred per cent fault-tolerance. Therefore, fault-tolerance is often addressed with
the concepts of dependability and reliability. The occurrence of faults is associated with a probability
distribution and verification of fault-tolerance is thus related to the calculation of reliability based on the
probability distribution. There is no much work on formal models to support effective reasoning about
reliability. We believe interesting work can be done by combining the model in this chapter with that of
Chapter 3 by Morgan on Probability. The idea of Unifying Theories of Programm in [33] will be very
useful for this combination.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Conclusions 63

11 Conclusions

Formal development and verification of a real-time program requires a logical structure in which func-
tional and timing properties of the program can be specified and reasoned about. In many practical cases,
such programs are executed under a scheduler whose actions control the program’s execution and thus
its timing properties. A program is also often executed on a failure-prone system and thus fault-tolerance
is needed. However, fault-tolerance and schedulability affect each other and they both affect the func-
tionality and timing of the program. This chapter presents a framework which we believe is suitable for
a coherent understanding of the relationship between theories of concurrency, real-time, fault-tolerance
and schedulablity analysis; and for formal and systematic development of safety and/or timing critical
computer systems.

Scheduling theory provides powerful techniques for determining the timing properties of a restricted
class of real-time programs; however, it does not provide any means of verifying functional properties.
Such methods must be augmented by more traditional program verification techniques, but these use a
different analytical framework, making it hard to relate the results in a rigorous way. This is particularly
important when mechanised verification is to be performed and the program’s properties certified, as is
necessary in many safety-critical applications.

In a separate paper [60], we showed how the schedulability of a real-time program could be established
using techniques very similar to those used here. An important observation that can be made about
that work is that to simplify verification it is useful to reduce the number of actions by specifying them
at as higha level as possible. However, for accurate verification of timing properties it is necessary
to have a fine level of granularity in the time bounds for each action and each deadline: this requires
specifying actions atas lowa level as possible, so that pre-emption can be precisely modelled and the
timing properties related to those obtained from scheduling theory.

We address this issue in this chapter by providing two kinds of timers: volatile timers that record times
for which actions are continuously enabled, and persistent timers that sum the duration for which actions
are executed. The use of persistent timers allows the timing effects of lower-level actions, like pre-
emption, to be considered abstractly and at a higher-level. It no longer matters exactly when an action
is pre-empted: what is important is the time for which it executed before pre-emption and the time for
which it is pre-empted. Thus an action may be pre-empted a number of times and still make use of a
single timer to record its timing properties.

The use of two kinds of timers solves a problem that has been the cause of a major restriction in the
application of formal verification methods in the validation of real-time programs. It makes it feasible
to use automated verification for such programs at the specification level, allowing timing properties
to be considered well before the details of the implementation have been finalised. Naturally, once the
implementation is complete, scheduling analysis will still be required to validate and provide independent
certification of the timing properties.

The method presented in this chapter is independent of a programming language. Also, both the program
and the scheduler specifications can be refined, with feasibility and correctness being preserved at each

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Exercises 64

step. This has the great advantage that proving feasibility does not first require the code of the program
to be developed.

There are many advantages to using a single, consistent treatment of fault-tolerance, timing and schedu-
lability. Not only does it allow a unified view to be taken of the functional and non-functional properties
of programs and a simple transformational method to be used to combine these properties, it also makes
it possible to use a uniform method of verification. Verification of schedulability within a proof frame-
work will inevitably be more cumbersome than using a simple schedulability test from scheduling theory.
However, the use of a common framework means that during formal verification, the test for schedula-
bility can be defined as a theorem whose verification is not actually done within the proof theory but
instead by invoking an oracle or decision procedure which uses scheduling theory for rapid analysis.

The plan of our future work includes the combination of the techniques presented in this chapter with
those developed in our recent work on object-oriented and component based systems [29, 51]. We hope
such a combination will lead to a multi-view and multi-notational framework for modelling, design,
analysis and verification of real-time and fault-tolerant systems at different levels of abstraction. It will
also support transformational, incremental and iterative development [52, 83] aided with transformation
and verification tools [48, 62, 82, 1].

12 Exercises

1. Relating the notation of this chapter with other formalisms.

(a) Specify sequential composition as TLA action?

τ1; τ2

where each action is treated as an atomic action.

What about when the whole composed< τ1; τ2 > is treated as an atomic action?

(b) Model the conditional choice as a TLA action

if b1 then τ1 else τ2

(c) Define Hoare triple{p}τ{q} as a TLA action.

(d) Define the Morgan’s specification statementw : [p; q] as a TLA action.

(e) Define the non-deterministic choiceτ1 u τ2 in TLA.

(f) Understand how does the TLA notation unify the semantics of deterministic choice and non-
deterministic choice.

2. Consider the problem of Dinning Philosophers. Assume there are five philosophers,pi, i =
1, . . . , 5, and five chopsticks,ci, i = 1, . . . , 5, that are placed in five positions a dinning table
. The life of each philosopher is repeatedlythinkingandeating. Assume that initially, all philoso-
phers are thinking. After thinking, a philosopherpi becomes hungry and want to eat. To eat, he has
to come to the position (i.e. chair) at the dinning table reserved form him and gets the chopstick
ci on his left and then the one,ci+1, on his right. A philosopher cannot start to eat before he gets
both sticks. After eating, a philosopher puts down both chopsticks and goes back to think.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

Exercises 65

(a) Write a TLA specification of the problem of the dinning philosophers.

(b) Specify in TLA that the fairness condition that an eating philosopher will eventually put
down the chopsticks.

(c) Specify the liveness property that no philosopher can be starved.

(d) Does your specification for part (a) satisfies the liveness property under the fairness condition
(deadlock freedom)?

(e) Suggest solutions to fix deadlock problem in the specification of part (a), and write the TLA
specifications for these solutions.

3. Consider the Gas Burner example in [79, 42]. This case study formulates the safety requirement
of a gas burner in terms of a variableLeakdenoting an undesirable but unavoidable state which
represents the presence of unlit gas.

For safety, ‘gas must never leak for more than 4 seconds in any period of at most 30 seconds’.
This is specified by the bounded critical duration property:

To meet the requirementReq, two design decisions are made:

Des-1 any occurrence of leak must be stopped within 4 seconds, and

Des-2 two occurrences of leaks must be separated by a period of 26 seconds in which the burner
does not leak; in other words, aLeakis stopped it may not reoccur within 26 seconds.

(a) Write TLA specifications for the above design decisions.

(b) Reason within TLA that the above two design decisions are met by the timed transition
system defined below:

GB1 = 〈 Θ1 : true
τ1 : Leak ∧ ¬Leak′ [0, 4]
τ2 : ¬Leak ∧ Leak′ [26,∞)

〉
(c) After the initial design,GB1 can be refined. For example, the transition systemGB2 in

Figure 3 is a refinement ofGB1.

GB2 has the followingphases:

Idle: Await heat request with no gas and no ignition. It entersPurge within e time units
on heat request. The parametere in this example is the system wide upper bound
for reactions.

Purge: Pauses for 30 seconds and then entersIgnite1 within e time units.

Ignite1: Turns on ignition and gas and after one second exits withine to Ignite2.

Ignite2: Monitors the flame, if it is sensed within one secondBurn is entered, otherwise it
returns toIdle within e while turning the gas off.

Burn : Ignition is switched off, but gas is still on. TheBurn phase is stable until heat
request goes off. Gas is then turned off andIdle is entered withine.

This refinement uses a simple error recovery: return toIdle from Ignite2. We assume no
flame failure in theBurn phase. Therefore, in this implementation,Leakcan only occur in
theIgnite1 andIgnite2 phases.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

References 66

GoIdle,
Idle

HeatOn,

Purge

Out30,

Out1a,

Out1b,

Burn

FlOn

Ignite2 Ignite1

[0, e]

[30, 30 + e]

[1, 1 + e]

[1, 1 + e]

[0, e]

[0, e]

Figure 3: A refinement ofGB1

(d) Formalize in TLA the full and canonical specification ofGB2, and decide the constante such
thatGB2 also meets the two design decisions forGB1.

4. A Project for Self Study: Apply the notation and techniques to the development of the realtime
mine pump system described in Section 1 (please see [13]). Then extend the solution to deal with
fault-tolerance (please see Chapter 8 in [13]).

References

[1] Mastercraft. Tata Consultancy Services. http://www. tata-mastercraft.com.

[2] M. Abadi and L. Lamport. The existence of refinement mapping.Theoretical Computer Science,
83(2):253–284, 1991.

[3] M. Abadi and L. Lamport. An old-fashioned recipe for real-time. In J.W. de Bakker, C. Huiz-
ing, W.P. de Rover, and G. Rozenberg, editors,Real-Time: Theory in Practice, Lecture Notes in
Computer Science 600. Springer-Verlag, The Netherlands, 1992.

[4] A. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. InProceedings of
the 5th IEEE Symposium on Logic in Computer Science, pages 414–425, Philadelphia, USA, 1990.
IEEE Computer Society Press.

[5] A. Alur and T.A. Henzinger. Real-time logics: complexity and expressiveness. InProceedings
of the 5th Annual Symposium on Logic in Computer Science, pages 390–401, Philadelphia, USA,
1990. IEEE Computer Society.

[6] R. Alur and D.L. Dill. Automata for modelling real-time systems. In M.S. Paterson, editor,ICALP
90: Automata, Languages and Programming, Lecture Notes in Computer Science 443, pages 322–
335. Springer-Verlag, Warwick, U.K., 1990.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

References 67

[7] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Applying new scheduling
theory to static priority pre-emptive scheduling. Technical Report RTRG/92/120, Department of
Computer Science, University of York, 1992.

[8] A. Avi žienis. Fault-tolerant systems.IEEE Transactions on Software Engineering, C-25(12):1304–
1312, December 1976.

[9] R.J.R. Back. A calculus of refinements for program derivations.Acta Informatica, 25:593–624,
1988.

[10] N.S. Bjørner, Z. Manna, H.B. Sipma, and T.E. Uribe. Deductive verification of real-time systems
using STeP. In M. Bertran and T. Rus, editors,Proceedings of Transformation-Based Reactive
Systems Development, ARTS’97, Lecture Notes in Computer Science 1231, pages 21–43. Springer,
Palma, Mallorca, Spain, 1997.

[11] J. Burch, E. Clarke, D. Dill, L. Hwang, and K. McMillan. Symbolic model checking:1020 states
and beyond. InProceedings of the 5th IEEE Symposium on Logic in Computer Science, pages
428–439, Philadelphia, USA, 1990. IEEE Computer Society Press.

[12] A. Burns, R. Davis, and S. Punnekkat. Feasibility analysis of fault-tolerant real-time tasks. Tech-
nical report, Department of Computer Science, University of York, 1995.

[13] A. Burns, J. Hooman, M. Jospeh, Z. Liu, K. Ramamritham, H. Schepers, S. Schneider, and A.J.
Wellings. Real-time systems: Specification, Verification and analysis. Prentice Hall International,
1996.

[14] A. Burns and A. Wellings. Advanced fixed priority scheduling. In M. Joseph, editor,Real-Time
Systems: Specification, Verification and Analysis, pages 32–65. Prentice Hall, London, 1996.

[15] S. Campos and E. Clarke. The Verus language: representing time efficiently with BDDs. In
M. Bertran and T. Rus, editors,Proceedings of Transformation-Based Reactive Systems Develop-
ment, ARTS’97, Lecture Notes in Computer Science 1231, pages 64–78. Springer, Palma, Mallorca,
Spain, 1997.

[16] S. Campos, E.M. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Computing quantitative charac-
teristics of finite-state real-time systems. InProceedings of IEEE Real-time Systems Symposium,
San Juan, Puerto Rico, USA, 1994. IEEE Computer Society Press.

[17] K.M. Chandy and J. Misra.Parallel Program Design: A Foundation. Addison-Wesley Publishing
Company, New York, 1988.

[18] Y. Chen and Z. Liu. From durational specifications to tla designs of timed automata. InProceedings
of ICFEM04, Lecture Notes in Computer Science, Seatle, USA, November 2004. Springer.

[19] Y. Chen and Z. Liu. Integrating temporal logics. In Eerke A. Boiten, John Derrick, and Graeme
Smith, editors,Proceedings of IFM 2004, Lecture Notes in Computer Science 2999, pages 402–420,
Canterbury, Kent, UK, 2004. Springer.

[20] E. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent systems
using temporal logic specifications.ACM Transactions on Programming Languages and Systems,
8(2):244–263, 1986.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

References 68

[21] E.M. Clarke, I.A. Draghicescu, and R.P. Kurshan. A unified approach for showing language con-
tainment and equivalence between various types ofω-automata. In A. Arnold and N.D. Jones,
editors,Proceedings of the 15th Colloquium on Trees in Algebra and Programming, Lecture Notes
in Computer Science 431. Springer-Verlag, Copenhagen, Denmark, 1990.

[22] J. Coenen and J. Hooman. Parameterized semantics for fault-tolerant real-time systems. In J. Vy-
topil, editor,Formal Techniques in Real-Time and Fault Tolerant Systems, pages 51–78. Kluwer
Academic Publishers, Boston, 1993.

[23] F. Cristian. A rigorous approach to fault-tolerant programming.IEEE Transactions on Software
Engineering, SE-11(1):23–31, 1985.

[24] E.W. Dijkstra.A Discipline of Programming. Prentice Hall, Englewood Cliff, 1976.

[25] U. Engberg, P. Grønning, and L. Lamport. Mechanical verification of concurrent systems with
TLA. In G. Bochmann, editor,Proceedings of the 4th International Conference on Computer Aided
Verification, Lecture Notes in Computer Science 663, pages 44–55. Springer-Verlag, Montreal,
Canada, 1992.

[26] C.J. Fidge and A.J. Wellings. An action-based formal model for concurrent, real-time systems.
Formal Aspects of Computing, 9(2):175–207, 1997.

[27] L. Fix and F.B. Schneider. Reason about programs by exploiting the environment. Technical Report
TR94-1409, Department of Computer Science, Cornell University, Ithaca, New York 14853, 1994.

[28] An Axiomatic Basis for Computer Programming, 1969.

[29] J. He, Z. Liu, X. Li, and S. Qin. A relational model of object oriented programs. InProceedings of
the Second ASIAN Symposium on Programming Languages and Systems (APLAS04), Lecture Notes
in Computer Science, Taiwan, March 2004. Springer.

[30] T. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for timed transition sys-
tems.Information and Computation, 112(2):273–337, 1994.

[31] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time
systems. InProceedings of the 7th Annual Symposium on Logic in Computer Science, Santa Cruz,
CA, USA, 1992. IEEE Computer Society.

[32] C.A.R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

[33] C.A.R. Hoare and J. He.Unifying Theories of Programming. Prentice-Hall, 1998.

[34] J. Hooman.Specification and Compositional Verification of Real-Time Systems, Lecture Notes in
Computer Science 558. Springer-Verlag, Berlin, 1991.

[35] T. Janowski and M. Joseph. Dynamic scheduling in the presence of faults: specification and ver-
ification. In B. Jonsson and J. Parrow, editors,Proceedings of 4th International Symposium on
Formal Techniques in Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer Science
1135, pages 279–298. Springer, Uppsala, Sweden, 1996.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

References 69

[36] T. Janowski and M. Joseph. Dynamic scheduling and fault-tolerance: Specification and verification.
Real-Time Systems, 20(1):51 81, 2001.

[37] M. Joseph and A. Goswami. What’s ‘real’ about real-time systems? InProceedings of IEEE Real-
time Systems Symposium, pages 78–85, Huntsville, Alabama, December 1988. IEEE Computer
Society Press.

[38] M. Joseph and P. Pandya. Finding response times in a real-time system.Computer Journal,
29(5):390–395, 1986.

[39] R. Keller. Formal verification of parallel programs.Communication of the ACM, 19(7):371–384,
1976.

[40] R. Koymans. Specifying message passing and Time-critical systems with temporal logic. PhD
thesis, Eindhoven University of Technology, 1989.

[41] L. Lamport. What good is temporal logic. In R.W. Mason, editor,Proceedings of IFIP 9th World
Congress, pages 657–668, Amsterdam, the Netherlands, 1983. North-Holland.

[42] L. Lamport. Hybrid systems in TLA+. In R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel,
editors,Hybrid Systems, Lecture Notes in Computer Science 736, pages 77–102. Springer-Verlag,
1993.

[43] L. Lamport. The temporal logic of actions.ACM Transactions on Programming Languages and
Systems, 16(3):872–923, 1994.

[44] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Pearson Education, Inc., 2002.

[45] L. Lamport and S. Merz. Specifying and verifying fault-tolerant systems. In H. Langmaak, W.-
P. de Roever, and J. Vytopil, editors,Proceedings of the 3rd International Symposium on Formal
Techniques in Real-Time and Fault Tolerant Systems, Lecture Notes in Computer Science 863, pages
41–76. Springer-Verlag, L̈ubeck, Germany, 1994.

[46] L. Lamport, R. Shostak, and Marshall Pease. The Byzantine generals problems.ACM Transactions
on Programming Languages and Systems, 4(3):382–401, 1982.

[47] J. Lehoczky, L. Sha, and Y. Ding. The rate-monotonic scheduling algorithms: exact characterisa-
tion and average case behaviour. InProceedings of the 10th IEEE Real-time Systems Symposium,
pages 261–270, Santa Monica, CA, USA, 1989. IEEE Computer Society Press.

[48] X. Li, Z. Liu, J. He, and Q. Long. Generating prototypes from a UML model of requirements. In
International Conference on Distributed Computing and Internet Technology(ICDIT2004), Lecture
Notes in Computer Science, Bhubaneswar, India, 2004. Springer.

[49] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard real-time envi-
ronment.Journal of ACM, 20(1):40–61, 1973.

[50] Z. Liu. Fault-Tolerant Programming by Transformations. PhD thesis, Department of Computer
Science, University of Warwick, 1991.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

References 70

[51] Z. Liu, J. He, and X. Li.rCOS: Refinement of object-oriented and component systems. InFMCO
2004: International Symposuim on Formal Methods of Component and Object Systems. Lecture
Notes in Computer SCience, page to appear, Leiden, the Netherlands, 2004. Springer.

[52] Z. Liu, J. He, X. Li, and Y. Chen. A relational model for object-oriented requirement analysis
in UML. In Proc. of International Conference on Formal Engineering Methods, Lecture Notes in
Computer Science, Singapore, November 2003. Springer.

[53] Z. Liu and M. Joseph. Transformation of programs for fault-tolerance.Formal Aspects of Comput-
ing, 4(5):442–469, 1992.

[54] Z. Liu and M. Joseph. Specifying and verifying recovery in asynchronous communicating systems.
In J. Vytopil, editor,Formal Techniques in Real-Time and Fault Tolerant Systems, pages 137–166.
Kluwer Academic Publishers, Boston, 1993.

[55] Z. Liu and M. Joseph. Stepwise development of fault-tolerant reactive systems. In H. Langmaack,
W.-P. de Roever, and J. Vytopil, editors,Proceedings of the 3rd International Symposium on Formal
Techniques in Real-Time and Fault Tolerant Systems, Lecture Notes in Computer Science 863, pages
529–546. Springer-Verlag, Lübeck, Germany, September 1994.

[56] Z. Liu and M. Joseph. Verification of fault-tolerance and real-time. InProceedings of the 26th
Annual International Symposium on Fault-Tolerant Computing, pages 220–229, Sendai, Japan,
1996. IEEE Computer Society.

[57] Z. Liu and M. Joseph. Formalizing real-time scheduling as program refinement. In M. Bertran and
T. Rus, editors,Proceedings of Transformation-Based Reactive Systems Development, ARTS’97,
Lecture Notes in Computer Science 1231, pages 294–309. Springer, Palma, Mallorca, Spain, 1997.

[58] Z. Liu and M. Joseph. Specification and verification of fault-tolerance, timing and scheduling.
ACM Transactions on Languages and Systems, 21(1):46–89, 1999.

[59] Z. Liu and M. Joseph. Verification, refinement and scheduling of real-time programs.Theoretical
Computer Science, (253), 2001.

[60] Z. Liu, M. Joseph, and T. Janowski. Verification of schedulability of real-time programs.Formal
Aspects of Computing, 7(5):510–532, 1995.

[61] Z. Liu, A.P. Ravn, and X. Li. Unifying proof methodologies of Duration Calculus and Linear
Temporal Logic.Formal Aspects of Computing, 16(2), 2004.

[62] Q. Long, Z. Liu, J. He, and X. Li. Consistent code generation from uml models. InAustralia
Conference on Software Engineering (ASWEC). IEEE Computer Scienty Press, 2005.

[63] G. Lowe and H. Zedan. Refinement of complex systems: A case study. Technical Report PRG-
TR-2-95, Oxford University Computing Laboratory, 1995.

[64] Z. Manna and A. Pnueli. The temporal framework for concurrent programs. In R.S. Boyer and J.S.
Moore, editors,The Correctness Problem in Computer Science, pages 215–274. Academic Press,
Boston, 1981.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

References 71

[65] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer-Verlag, New York, 1991.

[66] K.L. McMillan. Symbolic model checking – an approach to the state explosion problem. PhD
thesis, SCS, Carnegie Mellon University, 1992.

[67] R. Milner. Communication and Concurrency. Prentice-Hall, 1986.

[68] R. Milner. Communication and concurrency. Prentice Hall, 1989.

[69] A. Moitra and M. Joseph. Cooperative recovery from faults in distributed programs. In R.W. Ma-
son, editor,Proceedings of IFIP 9th World Congress, pages 481–486, Amsterdam, the Netherlands,
1983. North-Holland.

[70] C. Morgan.programming from specifications. Prentice Hall, 1994.

[71] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable com-
ponents. In C. E. Shannon and J. Macarthy, editors,In Automata Studies, pages 43–98, Princeton,
1956. Princeton University Press.

[72] J. Nordahl.Specification and Design of Dependable Communicating Systems. PhD thesis, Depart-
ment of Computer Science, Technical University of Denmark, 1992.

[73] M. Pilling, A. Burns, and K. Raymond. Formal specification and proofs of inheritance protocols
for real-time scheduling.Software Engineering Journal, 5(5), 1990.

[74] A. Pnueli. The temporal logic of programs. InProceedings of the 18th Annual Symposium on
Foundations of Computer Science, pages 46–57, U.S.A, 1977. IEEE Computer Society Press.

[75] A. Pnueli. Applications of temporal logic to the specification and verification of reactive systems:
A survey of current trends. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors,Current
Trends in Concurrency, Lecture Notes in Computer Science 224, pages 510–584. Springer-Verlag,
Berlin, Heidelberg, New York, 1986.

[76] A. Pnueli and E. Harel. Applications of temporal logic to the specification of real-time systems. In
M. Joseph, editor,Proceedings of the 1st International Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems, Lecture Notes in Computer Science 331, pages 84–98. Springer-
Verlag, Warwick, U.K., 1988.

[77] B. Randell. System structure for software fault tolerance.IEEE Transactions on Software Engi-
neering, SE-1(2):220–232, June 1975.

[78] B. Randell, P.A. Lee, and P.C. Treleaven. Reliability issues in computing systems design.Comput-
ing Survey, 10(2):123–165, 1978.

[79] A.P. Ravn, H. Rischel, and K.M. Hansen. Specifying and verifying requirements of real-time
systems.IEEE Transactions on Software Engineering, 19(1):41–55, 1993.

[80] H. Schepers and R. Gerth. A compositional proof theory for fault-tolerant real-time systems. In
Proceedings of the 12th Symposium on Reliable Distributed Systems, pages 34–43, Princeton, NJ,
1993. IEEE Computer Society Press.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

References 72

[81] R.D. Schlichting and F.B. Schneider. Fail-stop processors: an approach to designing fault tolerant
computing systems.ACM Transactions on Computer Systems, 1(3):222–238, 1983.

[82] U. Shrotri, P. Bhaduri, and R. Venkatesh. Model checking visual specification of requirements.
In International Conference on Software Engineering and Formal Methods (SEFM 2003), page
202209, Brisbane, Australia. IEEE Computer Society Press.

[83] J. Yang, Q. Long, Z. Liu, and X. Li. A predicative semantic model for integrating UML models.
In Proc. Theoretical Aspects of Computing - ICTAC 2004, First International Colloquium, 21-24
September 2004, Guiyang, China, Revised Selected Papers. Lecture Notes in Computer Science
3407. Springer, 2005.

[84] Y. Zhang and C.C. Zhou. A formal proof of the deadline driven scheduler. In H. Langmaak, W.-
P. de Roever, and J. Vytopil, editors,Proceedings of the 3rd International Symposium on Formal
Techniques in Real-Time and Fault Tolerant Systems, Lecture Notes in Computer Science 863, pages
756–775. Springer-Verlag, Lübeck, Germany, 1994.

[85] C.C. Zhou, M.R. Hansen, A.P. Ravn, and H. Rischel. Duration specifications for shared processors.
In J. Vytopil, editor,Proceedings of the 2nd International Symposium on Formal Techniques in
Real-Time and Fault Tolerant Systems, Lecture Notes in Computer Science 571. Springer-Verlag,
Nijmegen, the Netherlands, January 1992.

[86] C.C. Zhou, C.A.R. Hoare, and A.P. Ravn. A calculus of durations.Information Processing Letters,
40(5):269–276, December 1991.

Report No. 323, May 2005 UNU/IIST, P.O. Box 3058, Macau

