Uncertain future of Mekong’s hydrology and sediments

Matti Kummu & al
Aalto University, Finland
www.wdrg.fi
Background

• 2002 – started to work in the Mekong under WUP-Fin and Greater Angkor projects
• 2002-2006 – lived in the region
• 2008 – finished my PhD on ‘Spatiotemporal scales in hydrological impact assessment in the Mekong’
• 2009 – started as a postdoc at Aalto University
• 06/2013 – Assistant professor at Aalto University

• Work with multiple scales, from local to global. Trying to understand the interconnections between human population and water resources.
population water resources sediment

70 million 700 mm/yr 100-150 Mt/yr

HYDROLOGY
Monsoon driven hydrology: flood pulse

- Mekong hydrology is dominated by monomodal flood pulse with water level variation over 10 m
- Wetland ecosystems are extremely productive

‘Flood pulse’
Ecosystems that experience fluctuations between terrestrial and aquatic conditions are called pulsing ecosystems, and fall within the domain of the flood pulse concept (Junk, 1997).

Junk (1997)
Observed data coverage

A. Precipitation stations
B. Temperature stations
C. DEM & discharge stations

Data source:
- GSOD
- MRCS
- NCEP

Chiang Saen
Vientiane
Nakhon Phanom
Mukdahan
Pakse
Stung Treng
Kratie

Lauri et al (2012)
Precipitation – gridded datasets

A. Baseline B. CFSR C. ERA

D. Aphrodite E. TRMMv6 F. TRMMv7

Lauri et al (under review)
Temperature – gridded datasets

A. Baseline
B. CFSR diff. from Baseline
C. ERA diff. from Baseline
Hydrological regime – baseline

A. Chiang Saen
- Computed
- Measured

B. Stung Treng
- Computed
- Measured

C. Chiang Saen
- Computed
- Measured

D. Stung Treng
- Computed
- Measured

Lauri et al (2012)
With open data rather good results

A. Chiang Saen monthly discharge

B. Monthly discharge difference: Chiang Saen - Nong Khai

Lauri et al (under review)
Variability in hydrometeorology is in its highest since 1300

Particularly occurrence of dry years have increased significantly

Supports findings by e.g. Delgado et al
Mekong is not alone with high VAR

The variance in the last 50 years (1956-2005) is higher than the variance of the whole study period (1556-2005) in 58/77 of the basins.

Levene’s test results that the variance in the last 50 years is higher (p<0.05) than in any other 50 year period in 40/77 of the basins.

Kummu & al (under review)
Occurrence of extreme events increased

- Extreme dry (wet) year = lower (upper) 5th percentile of PDSI\textsubscript{MADA}
- The occurrence of extreme
 - dry year occurrence double to average in majority of the basins (61/77) within the last 50 years
 - wet year occurrence double to average in almost half of the basins (28/77) within the last 50 years

Kummu & al (under review)
ENSO – one driver for climate variability

Räsänen & Kummu (2013)
What about future?

Climate change

A: Projected changes in annual precipitation [%] under A1b scenario

B: Projected daily maximum temperature changes [°C] under A1b scenario
Simulated discharge data available by request:
- For time period of 1930 - 2080
- Various Mekong mainstem stations
- 5 GCMs
- Reservoir operation scenario (2030-2080)
Floodplain model – EIA 3D

- Full 3D model
- Applied in Mekong floodplains and elsewhere
- Input: DEM, vegetation, inflow boundaries, sea level, WQ boundaries
- Output: WL, flood extent + other flood parameters, sediment, other WQ
- Includes: productivity module

Västilä et al (2012)
EIA 3D VALIDATION

A: Water level at Tonle Sap Lake; measured vs. computed

B: Water level at Phnom Penh; measured vs. computed

Keskinen et al (2013)
B: Climate change (A1b) and reservoir operation (rv)
Uncertainties in future hydrology

• Would interannual variability continue to increase?
• How possible future extreme weather events will impact on floodpulse?
• Direction and magnitude of climate change impacts on monsoon still unclear
• How many reservoirs will be built? And how those are managed?
• Large irrigation schemes planned in Laos and Cambodia, water transfers btw Laos and Thailand, increased domestic water use
SEDIMENTS
importance of sediment

• sustain the geomorphology of the floodplains, particularly Tonle Sap estuary and river, and Mekong Delta

• nutrient input
 → ecosystem productivity
 (Lamberts 2008)

• sustain the conditions for larvae and fish
 → e.g. buoyancy of fish larvae depends on the SSC
 (Agostinho & al 2007)
Sediment data

- Rather good understanding down to Mukdahan
- No reliable data between Mukdahan and Mekong Delta; although Tonle Sap Lake dynamics rather well understood

Liu & al (2013)
Sediment at Kratie

- short data series
- rather poor surface TSS data quality
 → high error: ± 30%
 (Walling 2008)

- estimated flux in Kratie (97-04): 66-122 Mt
- over 50-70% of sediment originates from China

Kummu (unpublished)
floodplain sediment dynamics

- ~ 15-25% of the sediments settle down into the floodplain
- varies depending on the flood level
- preliminary estimation → detail modelling would be needed

75-85% to Vietnam Delta → how much of that to South China Sea?

Kummu (unpublished)
Active storage capacity:
 present: ~15 km3
 future: > 70 km3

Ongoing and planned developments, particularly hydropower
→ flow alteration in the Mekong
→ change the flood pulse of the floodplain ecosystem

Impact on floodplains is often referred to as a major constraint to development of the water resources of the Mekong River

Kummu & al (2010)
Observed impact

- Large reduction in sediment in Gaiju (downstream from Manwan dam), elsewhere no significant changes
Predicted impact of dams on sediment

Kummu & al (2010)
• One of the key driving forces for the ecosystem productivity
• not filling up with the sediment, sedimentation rate: 0.1 mm/year in lake proper

Uncertainties in future sediments

- Floodplain dynamics still rather poorly understood
- How extreme weather events will impact on sediments in the future?
- How many reservoirs will be built? And how those are managed?
- Land cover change impacts on sediments still unclear
- Bank erosion in future flow regime and lower SSC?
- Extensive sand mining in Mekong mainstream in Cambodia and Vietnam
More information?
matti.kummu@aalto.fi
www.wdrg.fi
floodplain hydrology

Wet season: **May-Oct**

Water from the Mekong into floodplains
floodplain hydrology

Dry season: **Nov-Apr**

Water from floodplains into the Mekong