

UNU-FLORES

Institute for Integrated Management of Material Fluxes and of Resources

ADVANCING A **NEXUS APPROACH** TO THE SUSTAINABLE MANAGEMENT OF **WATER, SOIL** AND **WASTE**

11-12 NOVEMBER 2013 DRESDEN, GERMANY

Integrated management of water resources demand and supply in irrigated agriculture challenges and potentials

Niels Schütze

Institute of Hydrology and Meteorology Technical University Dresden, Germany

KQ 1. Increased future pressure on water resources by irrigated agriculture?

Source: For 1960–95, Shiklomanov 2000; 1995–2050, modeling results scenarios done for the Comprehensive Assessment of Water Management in Agriculture.

Source: Water for Food, Water for Life (IWMI, 2007)

KQ 1. Increased future pressure on water resources by irrigated agriculture?

Source: UN World Water Development Report 2009

ADVANCING A **NEXUS APPROACH** TO THE SUSTAINABLE MANAGEMENT OF **WATER, SOIL** AND **WASTE** KQ 2. Is there integrated management of water supply and demand ?

Measures

Improvement of water availability

- first choice if no economic constraints
- technical solutions
 - Dams, pumps, pipes
 - Groundwater recharge
 - Rainwater harvesting
 - desalinization

Case of Oman

Improvement of water availability

 32 groundwater recharge dams and 67 surface storage dams have been built in the last

20 years

ADVANCING A **NEXUS APPROACH** TO THE SUSTAINABLE MANAGEMENT OF **WATER, SOIL** AND **WASTE** KQ 2. Is there integrated management of water supply and demand ?

Improved water demand management

- making the most of available water
- ightarrow minimizing water use
- → maximizing the outputs per unit of water (productivity)

Case of Oman

Water demand management

- balanced in the historical falaj system
- more than 100% groundwater withdrawals of actual renewable fresh water resources in the coastal area
- "Common pool problem" (Kinzelbach, 2003)

ADVANCING A **NEXUS APPROACH** TO THE SUSTAINABLE MANAGEMENT OF **WATER, SOIL** AND **WASTE** KQ 2. Is there integrated management of water supply and demand ?

Water demand reduction policies

- Volumetric charging
- Limited water allocation (quotas)
- cropping restrictions

Measures

Supporting policies

- Increasing irrigation efficiency by optimal irrigation scheduling and control, irrigation methods (drip)
- Increasing water productivity
- Farmer education and capacity develop.
- Water metering

ADVANCING A **NEXUS APPROACH** TO THE SUSTAINABLE MANAGEMENT OF **WATER, SOIL** AND **WASTE** KQ 2. Is there integrated management of water supply and demand ?

Water infrastructure

- Design of
 - Dams (Volume?)
 - Well field (Capacity?)
 - Pipes (Structure?)

Integrated planning

Options for water demand management

- Water prices?
- Water quotas?
- Irrigation efficiency?
- Water productivity?
- Irrigation equipment subsidies?
- Communication of BMP's?

ADVANCING A **NEXUS APPROACH** TO THE SUSTAINABLE MANAGEMENT OF **WATER, SOIL** AND **WASTE** KQ 2. Is there integrated management of water supply and demand ?

Water infrastructure

- Operation of
 - Dams (releases?)
 - Well field (abstraction?)
 - Surface water (abstraction?)

Integrated operation over time

Options for water demand management

- Cropping pattern?
- Irrigation scheduling?
- Service and support?

ADVANCING A **NEXUS APPROACH** TO THE SUSTAINABLE MANAGEMENT OF **WATER, SOIL** AND **WASTE** KQ 5. Do we have data for monitoring and assessment of actual water supply and demand ?

Water availability

• Quantity and quality is uncertain

Case of Oman

Agricultural water demand

- Problems to estimate actual abstraction (quantity, quality)
- Problems to estimate actual water application (no water metering)
- Problems to estimate water productivity

ADVANCING A **NEXUS APPROACH** TO THE SUSTAINABLE MANAGEMENT OF **WATER, SOIL** AND **WASTE** KQ 5. Do we have data for monitoring and assessment of actual water supply and demand ?

Case of Oman

MRMWR

- National Well Inventory Project
- Water metering campaign
- Estimations of safe yield

MAF

- Agriculture Census
- vegetation cover from satellite imagery
- estimations of crop water use (FAO 33)

ADVANCING A **NEXUS APPROACH** TO THE SUSTAINABLE MANAGEMENT OF **WATER, SOIL** AND **WASTE** KQ 5. Do we have data for monitoring and assessment of actual water supply and demand ?

Case of Oman

MRMWR

- National Well Inventory Project (1990's)
- Water metering campaign
- Estimations of safe yield

MAF

- Agriculture Census
- vegetation cover from satellite imagery
- estimations of crop water use (FAO 33)

No link (spatial reference, ...) of collected data or no link at all between MRMWR and MAF

Challenges:

- Integration of monitored data
- Integrated planning of monitoring programmes
- Remote sensing (actual evapotranspiration, soil moisture)

First steps:

- Implementation of IWRM office with staff from MRMWR and MAF
- Integrated assessment of water productivity

KQ 5. Do we have data for monitoring and assessment of actual water supply and demand ?

Agricultural water demand of different agricultural subzones

Estimates based on data of the "National Well Inventory" (1993-95)

KQ 4. Do we have the models for integrated assessment of measures of water supply and demand ?

Integrated (predictive) modeling

of water availability needs

- Hydrological modeling
- Reservoir system modeling
- Groundwater modeling
- Modeling of distribution systems
- Climate modeling ...

of water demand needs

- modeling of irrigation systems
- modeling of crop response (incl. stresses)
- modeling of the economic response
- modeling of the farmers response to measures (rational, irrational)

 at a large spatial scale and a large time scale

- at a small spatial scale and small time steps
- at regional scale and larger time scale

Feedback links between the integrated models and huge data for parametrization!

ADVANCING A **NEXUS APPROACH** TO THE SUSTAINABLE MANAGEMENT OF **WATER, SOIL** AND **WASTE** KQ 4. Do we have the models for integrated assessment of measures of water supply and demand ?

Integrated simulation based optimal management

What is best (productivity, sustainability, employment, welfare, economic effectiveness)

- on the short term?
- on the long term?

Challenges (KQ 7.)

- complexity
- uncertainty (climate, ...)
- non-linearity
- water quality

----NEXUS--

 integration of other resources/sectors

ADVANCING A **NEXUS APPROACH** TO THE SUSTAINABLE MANAGEMENT OF **WATER, SOIL** AND **WASTE** KQ 4. Do we have the models for integrated assessment of measures of water supply and demand ?

Validation and Implementation

of (simulated) best managing practise

Principles:

- Sustainable Water Supplies
- Shared Responsibilities
- Self Governance
- Link between water users and water managers
- Sound Science
- Adaptive Management
- Informed Public

