The emerging threat of multi-drug resistant microorganisms
Emerging crisis

“Without urgent, coordinated action by many stakeholders, the world is headed for a post-antibiotic era, in which common infections and minor injuries which have been treatable for decades can once again kill…”

- Dr. Keiji Fukuda, WHO Assistant Director-General for Health Security, 2014
The WHO priority list

<table>
<thead>
<tr>
<th>PRIORITY: CRITICAL</th>
<th>PRIORITY 2: HIGH</th>
<th>PRIORITY 3: MEDIUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter baumannii carbapenem-resistant</td>
<td>Enterococcus faecium vancomycin-resistant</td>
<td>Streptococcus pneumoniae penicillin-non-susceptible</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa carbapenem-resistant</td>
<td>Staphylococcus aureus methicillin-resistant vancomycin-intermediate and resistant</td>
<td>Haemophilus influenzae ampicillin-resistant</td>
</tr>
<tr>
<td>Enterobacteriaceae carbapenem-resistant, ESBL-producing</td>
<td>Helicobacter pylori clarithromycin-resistant</td>
<td>Shigella spp. fluoroquinolone-resistant</td>
</tr>
<tr>
<td></td>
<td>Campylobacter spp. fluoroquinolone-resistant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salmonellae fluoroquinolone-resistant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neisseria gonorrhoeae cephalosporin-resistant fluoroquinolone-resistant</td>
<td></td>
</tr>
</tbody>
</table>

Source: WHO

But also, e.g., Malaria (protozoan), HIV & influenza (viral), TB (mycobacterial), Candida (fungal)
Levels of drug resistance

Categories

- **Multidrug-resistant (MDR):** acquired non-susceptibility to at least one agent in three or more antimicrobial categories

- **Extensively drug-resistant (XDR):** non-susceptibility to at least one agent in all but two or fewer antimicrobial categories

- **Pandrug-resistant (PDR):** non-susceptibility to all agents in all antimicrobial categories

FIG. 1. Diagram showing the relationship of MDR, XDR and PDR to each other.

But see, e.g., de Kraker et al. (2016). Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050?
Impacts on medical practice

- Organ transplants
- C-sections
- Joint replacement
- Chemotherapy
- Childbirth

Total Artificial Heart

Human Heart

Source: SynCardia Systems, https://commons.wikimedia.org/wiki/File:Graphic_of_the_SynCardia_temporary_Total_Artificial_Heart_beside_a_human_heart.jpg

Source: Blausen Medical Communications, https://commons.wikimedia.org/wiki/File:Hip_Replacement.png

Total Hip Replacement
Plague in Florence, 1348. L. Sabatelli.
First antibiotics

- 1907: Salvarsan (arsphenamine), anti-syphilis
- From ~1932: sulfonamides (sulfa)
- 1942: Penicillin (first natural antibiotic)
Emergence of AMR

What is driving MDR emergence and risk?

- Use of antibiotics in medicine
- Use of antibiotics in food systems
- Human population growth/demographics
- Urbanization
- Antibiotic discovery void
Drivers: medical use

- Overprescription (duration)
- Inappropriate prescription (e.g., for viral infection or prophylaxis)
- Non-compliance or self-medication
- Nosocomial infection

CDC is working to reduce unnecessary antibiotic use

White House National Action Plan to Combat Antibiotic-Resistant Bacteria (CARB)

Goal: By 2020, reduce inappropriate outpatient antibiotic use by 50%

Find out when antibiotics are necessary.
Visit: http://www.cdc.gov/getsmart

Centers for Disease Control and Prevention
National Center for Emerging and Zoonotic Infectious Diseases
Drivers: food systems

- Up to 80% of antibiotics go to animals
- Little evidence of efficacy: up to 90% excreted
- Spread to humans through contact or ingestion
- Environmental contamination

RESISTANCE
- Animals can carry harmful bacteria in their intestines
 - When antibiotics are given to animals...
 - Antibiotics kill most bacteria
 - But resistant bacteria can survive and multiply

SPREAD
- Resistant bacteria can spread to...
 - Animal products
 - Produce through contaminated water or soil
 - Prepared food through contaminated surfaces
 - The environment when animals poop

EXPOSURE
- People can get sick with resistant infections from...
 - Contaminated food
 - Contaminated environment

IMPACT
- Some resistant infections cause...
 - About 1 in 5 resistant infections are caused by germs from food and animals
 - Source: Antibiotic Resistance Threats in the United States, 2013

Learn 4 steps to prevent food poisoning at www.foodsafety.gov

Learn more about antibiotic resistance and food safety at www.cdc.gov/foodsafety/antibiotic-resistance.html
Learn more about protecting you and your family from resistant infections at www.cdc.gov/drugresistance/protecting_yourself_family.html
Drivers: population/demographics

- Greater population = more opportunities for evolution of resistance and human-human transmission
- More elderly population = more opportunities for nosocomial spread
Drivers: urbanization

- Patterns of human-human (and sometimes human-animal) contact
- Density of people
- Health system structure and function
- Food system structure and function
Discovery void

- 40s-60s: “glory years of antibiotic discovery” (Hancock and Knowles 1998); numerous new classes of antibiotics
- Very little since; easy wins identified

Systems problems

- Characteristics
 - Detail and dynamic complexity
 - Multiple stakeholders
 - Multiple scales
 - Cross-sectoral/related to other problems
 - Resistance to change
 - Unanticipated outcomes

Source: http://www.innovationmanagement.se/2010/06/14/complexity-science-and-innovation/
Complexity drives outcomes

Any use of antimicrobials, however appropriate and conservative, contributes to the development of resistance”

- Review on Antimicrobial Resistance, 2014

Source: Newell and Siri, 2016. A role for low-order system dynamics models in urban health policy-making
Complexity and engagement

- Real systems have many parts
- Understanding parts ≠ understanding system
- Silos lead to restricted focus

Source: Cherau et al. (2017). Risk assessment for antibiotic resistance in South East Asia
Systems approaches

- Systems methods to:
 - Characterize and measure feedback
 - Identify leverage points for action
 - Forecast likely outcomes and compare policy scenarios

- Collaborative work (co-production of knowledge/ inter- and trans-disciplinarity / stakeholder involvement) to:
 - Improve communication
 - Provide more complete understanding of systems
 - Assess feasibility of actions
 - Promote stakeholder ownership
Solutions

- New antibiotic development
- Stewardship of existing antibiotics
 - Reduce use in animal husbandry
 - Reduce human-animal contact
 - Reduce inappropriate prescriptions
 - Improve diagnosis and treatment choice
 - Improve compliance
 - Prevent nosocomial infections
- Promote systemic change
 - Grow cross-sectoral communication
 - Highlight feedback narratives
 - Change incentives for all actors
 - Make correct action convenient
Thank you!

It was on a short-cut through the hospital kitchens that Albert was first approached by a member of the Antibiotic Resistance.
