The emerging threat of multi-drug resistant microorganisms

Infection Control: Old Problems and New Challenges Asian Medical Student's Conference (AMSC) 2018 Kuala Lumpur, July 2018

UNITED NATIONS

Iosé Siri, PhD, MPH

Research Fellow in Urban Health

UNU International Institute for Global Health (UNU-IIGH)

World population since 10,000 BCE (OurWorld	rldInData series)	Our World in Data
7 billion	: مانا م	
6 billion	Aniidi	otic Era
5 billion		
4 billion		
3 billion		
2 billion		
1 billion		
0 10000 BCE 8000 BCE 6000 BCE 4000 BCE	2000 BCE 0	2015

Source: History Database of the Global Environment (HYDE) (before 1900), UN Publication "The World at Six Billion" (1900-1940), UN World Population Prospects: 2015 Revision (1950-2015)

OurWorldInData.org/world-population-growth/ • CC BY-SA

Emerging crisis

"Without urgent, coordinated action by many stakeholders, the world is headed for a postantibiotic era, in which common infections and minor injuries which have been treatable for decades can once again kill..."

- Dr. Keiji Fukuda, WHO Assistant Director-General for Health Security, 2014

UNITED NATIONS UNIVERSITY

The WHO priority list

PRIORITY: CRITICAL	PRIORITY 2: HIGH	PRIORITY 3: MEDIUM	
 Acinetobacter baumannii carbapenem-resistant 	 Enterococcus faecium vancomycin-resistant 	 Streptococcus pneumoniae 	
 Pseudomonas aeruginosa 	n-resistant methicillin-resistant teriaceae and resistant n-resistant, and resistant	penicillin-non-susceptible	
carbapenem-resistant		🔶 Haemophilus influenzae	
 Enterobacteriaceae 		 ampicillin-resistant Shigella spp. fluoroquinolone-resistant 	
carbapenem-resistant,			
ESBL-producing			
	 Campylobacter spp. fluoroquinolone-resistant 		
	 Salmonellae fluoroquinolone-resistant 		
Source: WHO	 Neisseria gonorrhoeae cephalosporin-resistant fluoroquinolone-resistant 		

But also, e.g., Malaria (protozoan), HIV & influenza (viral), TB (mycobacterial), Candida (fungal)

Levels of drug resistance

Categories

- Multidrug-resistant (MDR): acquired non-susceptibility to at least one agent in three or more antimicrobial categories
- Extensively drug-resistant (XDR): non-susceptibility to at least one agent in all but two or fewer antimicrobial categories
- Pandrug-resistant (PDR): nonsusceptibility to all agents in all antimicrobial categories

Source: Magoriakos et al, 2012. Multidrug-resistant, extensively drugresistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

A post-antibiotic era

UNITED NATIONS UNIVERSITY

Source: 'Review on Antimicrobial Resistance. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. 2014.

But see, e.g., de Kraker et al. (2016). Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050?

Source: SynCardia Systems, https://commons.wikim edia.org/wiki/File:Grap hic_of_the_SynCardia_t emporary_Total_Artifici al_Heart_beside_a_hu man_heart.jpg

UNITED NATIONS UNIVERSITY

- Impacts on medical practice
 - Organ transplants
 - C-sections
 - Joint replacement
 - Chemotherapy
 - Childbirth

Source: Blausen Medical Communications, https://commons.wikimedi a.org/wiki/File:Hip_Replace ment.png

Plague in Florence, 1348. L. Sabatelli.

UNITED NATIONS UNIVERSITY

First antibiotics

- 1907: Salvarsan (arsphenamine), antisyphilis
- From ~1932: sulfonamides (sulfa)
- 1942: Penicillin (first natural antibiotic)

UNITED NATIONS

UNIVERSITY

Emergence of AMR

Source: McClure and Day (2014). A theoretical examination of the relative importance of evolution management and drug development for managing resistance

UNITED NATIONS

What is driving MDR emergence and risk?

- Use of antibiotics in medicine
- Use of antibiotics in food systems
- Human population growth/demographics
- Urbanization
- Antibiotic discovery void

Improve Antibiotic Use to Combat Antibiotic Resistance

CDC is working to reduce unnecessary antibiotic use

White House National Action Plan to Combat Antibiotic-Resistant Bacteria (CARB) Goal: By 2020, reduce inappropriate outpatient antibiotic use by 50%

Find out when antibiotics are necessary. Visit: http://www.cdc.gov/getsmart

Centers for Disease Control and Prevention (2012). Fleming-Dutra, K et al. Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010–2011, Journal of the American Medical Association. May 2016. coamula

Centers for Disease Control and Prevention National Center for Emerging and Zoonotic infectious Diseases

Drivers: medical use

- Overprescription (duration)
- Inappropriate prescription (e.g., for viral infection or prophylaxis)
- Non-compliance or selfmedication
- Nosocomial infection

Drivers: food systems

- Up to 80% of antibiotics go to animals
- Little evidence of efficacy: up to 90% excreted
- Spread to humans through contact or ingestion
- Environmental contamination

Drivers: population/demographics

- Greater population = more opportunities for evolution of resistance and humanhuman transmission
- More elderly population = more opportunities for nosocomial spread

Drivers: urbanization

UNITED NATIONS

- Patterns of human-human (and sometimes human-animal) contact
- Density of people
- Health system structure and function
- Food system structure and function

Discovery void

UNITED NATIONS

- 40s-60s: "glory years of antibiotic discovery" (Hancock and Knowles 1998); numerous new classes of antibiotics
- Very little since; easy wins identified

Systems problems

UNITED NATIONS UNIVERSITY

- Characteristics
 - Detail and dynamic complexity
 - Multiple stakeholders
 - Multiple scales
 - Crosssectoral/related to other problems
 - Resistance to change
 - Unanticipated outcomes

Complexity drives outcomes

Any use of antimicrobials, however appropriate and conservative, contributes to the development of resistance"

- Review on Antimicrobial Resistance, 2014

UNITED NATIONS

UNIVERSITY

Source: Newell and Siri, 2016. A role for low-order system dynamics models in urban health policy-making

Complexity and engagement

- Real systems have many parts
- Understanding parts ≠ understanding system
- Silos lead to restricted focus

Systems approaches

Systems methods to:

- Characterize and measure feedback
- Identify leverage points for action
- Forecast likely outcomes and compare policy scenarios
- Collaborative work (co-production of knowledge/ inter- and transdisciplinarity / stakeholder involvement) to:
 - Improve communication
 - Provide more complete understanding of systems
 - Assess feasibility of actions
 - Promote stakeholder ownership

Solutions

- New antibiotic development
- Stewardship of existing antibiotics
 - Reduce use in animal husbandry
 - Reduce human-animal contact
 - Reduce inappropriate prescriptions
 - Improve diagnosis and treatment choice
 - Improve compliance
 - Prevent nosocomial infections
- Promote systemic change
 - Grow cross-sectoral communication
 - Highlight feedback narratives
 - Change incentives for all actors
 - Make correct action convenient

Thank you!

It was on a short-cut through the hospital kitchens that Albert was first approached by a member of the Antibiotic Resistance.

Source: Nick Kim, http://scienceandink.com/screen_res/nz083.jpg

AMSC 2018 ASIAN MEDICAL STUDENTS' CONFERENCE MALAYSIA

Source: Ventura County Star, Steve Greenberg, http://blogs.venturacountystar.com/greenberg/archives/2007/11/drugresist ant_s.html