
UNU-IIST
International Institute for
Software Technology

UNU-IIST Report No. 350 R

A Model of Component-Based Programming
Xin Chen, He Jifeng, Zhiming Liu and Naijun Zhan

December 2006

UNU-IIST and UNU-IIST Reports

UNU-IIST (United Nations University International Institute for Software Technology) is a Research and Training
Centre of the United Nations University (UNU). It is based in Macao, and was founded in 1991. It started opera-
tions in July 1992.UNU-IIST is jointly funded by the government of Macao and the governments of the People’s
Republic of China and Portugal through a contribution to the UNU Endowment Fund. As well as providing two-
thirds of the endowment fund, the Macao authorities also supplyUNU-IIST with its office premises and furniture
and subsidise fellow accommodation.

The mission ofUNU-IIST is to assist developing countries in the application and development of software tech-
nology.

UNU-IIST contributes through its programmatic activities:

1. Advanced development projects, in which software techniques supported by tools are applied,

2. Research projects, in which new techniques for software development are investigated,

3. Curriculum development projects, in which courses of software technology for universities in developing
countries are developed,

4. University development projects, which complement the curriculum development projects by aiming to
strengthen all aspects of computer science teaching in universities in developing countries,

5. Schools and Courses, which typically teach advanced software development techniques,

6. Events, in which conferences and workshops are organised or supported byUNU-IIST, and

7. Dissemination, in which UNU-IIST regularly distributes to developing countries information on interna-
tional progress of software technology.

Fellows, who are young scientists and engineers from developing countries, are invited to actively participate in
all these projects. By doing the projects they are trained.

At present, the technical focus ofUNU-IIST is on formal methods for software development.UNU-IIST is an
internationally recognised center in the area of formal methods. However, no software technique is universally
applicable. We are prepared to choose complementary techniques for our projects, if necessary.

UNU-IIST produces a report series. Reports are either ResearchR , Technical T , CompendiaC or Adminis-

trative A . They are records ofUNU-IIST activities and research and development achievements. Many of the
reports are also published in conference proceedings and journals.

Please write toUNU-IIST at P.O. Box 3058, Macao or visitUNU-IIST’s home page:http://www.iist.unu.edu, if
you would like to know more aboutUNU-IIST and its report series.

G. M. Reed, Director

UNU-IIST
International Institute for
Software Technology

P.O. Box 3058

Macao

A Model of Component-Based Programming
Xin Chen, He Jifeng, Zhiming Liu and Naijun Zhan

Abstract

Component-based programming is about how to createapplication programsfrom prefabricated compo-
nentswith new softwarethat provides bothgluebetween the components, andnew functionality. Models
of components are required to supportblack-box compositionalityandsubstitutabilityby a third party
as well asinteroperability. However, the glue codes and programs designed by users of the components
for new applications in general do not require these features, and they can be even designed in program-
ming paradigms different from those of the components. In this paper, we extend the rCOS calculus
of components with a model for glue programs and application programs that is different from that of
components. We study the composition of a glue program with components and prove that components
glued by a glue program yield a new component.

Xin Chen is a PhD candidate in the Department of Computer Science and Technology, Nanjing Univer-
sity, Nanjing, China. He is a fellow of UNU/IIST from March 2005 to November 2006. His research
interests include Formal Methods of UML, object-oriented technique, component based systems and
CASE tools. e-mail:chenxin@iist.unu.edu.

Professor He Jifeng, an academician of Chinese Academy of Sciences, is the Dean of Software Engi-
neering Institute at East China Normal University and an associate senior research fellow of UNU/IIST.
He is also a professor of computer science at East China Normal University and Shanghai Jiao Tong
University. His research interests include the Mathematical theory of programming and refined methods,
design techniques for the mixed software and hardware systems. e-mail: jifeng@sei.ecnu.edu.cn.

Dr. Zhiming Liu is a research fellow at UNU/IIST. His research interests include theory of comput-
ing systems, including sound methods for specification, verification and refinement of fault-tolerant,
real-time and concurrent systems, and formal techniques for OO development. His teaching interests are
Communication and Concurrency, Concurrent and Distributed Programming, Internet Security, Software
Engineering, Formal specification and Design of Computer Systems. E-mail: Z.Liu@iis.unu.edu.

Dr. Naijun Zhan is a postdoc visiting fellow of UNU-IIST, and an associate professor at the Institute of
Software of the Chinese Academy of Sciences, Beijing. His research interest is in formal specification
and verification of concurrent and real-time systems. Email: njz@ios.ac.cn

Copyright c© 2007by UNU-IIST

Contents i

Contents

1 Introduction 1

2 Interface, Contracts and Components 2
2.1 Preliminaries . 2
2.2 Interface . 3
2.3 Contract . 3
2.4 Component . 6
2.5 Chaining components together . 7

3 Processes: A Model of Glue and Application Programs 8
3.1 Processes . 9
3.2 Composing a component with a process . 11
3.3 The state-based reactive contract of a glued component 14

4 Relative Work 16

5 Conclusions and Future Work 17

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Introduction 1

1 Introduction

Component-based development (CBD) is about how to create new software by combiningprefabricated
componentswith new programsthat provide both glue between the components, and new functionality
[Arb03]. Furthermore, there seems to be no disagreement on the following interrelated properties that
components enjoy.

1. Black-box composability, substitutability and reusability:there is no need to know the design and
the implementation when composing a component with other parts of the system, substituting a
component with another one or reusing it in another application.

2. Independent development:components can be designed, implemented, verified, validated and
deployed independently.

3. Interoperability: components can be implemented in different programming languages and paradigms,
but they can be composed, be glued together and cooperate with each another.

These features require that a component has a black-box specification of what itprovidesto and what
it requires from its environment. In rCOS [HLL05a, HLL05b, HLL06b], the provided services and
required service of a component are given by the contract of theprovided interfaceand the contract of
therequired interfaceof the component, respectively. Thus, the contracts together with the interfaces of
a component provide a black-box specification of the component. The model of contracts in rCOS also
defines the unified semantic model of implementations of interfaces in different programming languages,
and thus clearly supports interoperability of components and analysis of the correctness of a component
with respect to its interface contract. The theory of refinements of contracts and components in rCOS
characterizes component substitutivity, as well as supporting independent development of components.
Compositions are defined in rCOS for chaining the provided interface of one component to the required
interface of another, renaming and hiding interface operations of a component.

However, there is no precise characterization for the “new program” that provides both “glue” between
the components, and “new functionality”. In this paper, we introduce the notion ofprocessesinto rCOS.
Like a component, a process has an interface declaring its local variables and methods, and its behavior
is specified by a process contract. Unlike a component that passively waits for a client to call its provided
services, a process is active and has its own control on when to call out or to wait for a call to its provided
services. For such an active process, we cannot have separate contracts for its provided interface and
required interface, because we cannot have separate specifications of outgoing calls and incoming calls
[HLL05a]. For simplicity, but without losing expressiveness, we assume a process like a Java thread
does not provide services and only calls operations provided by components. Therefore, processes can
only communicate via shared components. The composition of two processes will be by interleaving,
and produce a new process.

Let C be the parallel composition of a number of disjoint componentsCi, i = 1, . . . , k. A glue program
for C is a processP that makes calls to the operations in setX provided byC. The synchronization
compositionP ‖

X
C of C andP is defined similarly to the alphabetized parallel in CSP [Hoa85, Ros97].

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Interface, Contracts and Components 2

The gluing composition is defined by hiding the synchronized methods between the componentC and the
processP . We show that(P ‖

X
C)\X is a component. We will study the algebraic laws of the composition

of processes and components as well.

We also model an application program as a set of parallel processes that make use of the services pro-
vided by components. As processes only interact with components via the provided interfaces of the
components, interoperability is thus supported as the contracts which define the semantics of the com-
mon interface description language (IDL), even though components, glue programs and components
are not implemented in the same language. Analysis and verification of an application program can be
performed in the classical formal frameworks, but at the level of contracts of components instead of im-
plementations of components. The analysis and verification can reuse any proved properties about the
components, such as divergence freedom and deadlock freedom of the implementation of the compo-
nents, without the need to reprove them.

The rest of this paper is organized as follows. Section 2 contains a brief summary ofrCOS. In section
3, we define the model of process and gluing composition. As well, we prove that gluing components
by a process indeed forms a new component and then present a method to calculate the contract of the
resulted component. Section 4 presents a comparison between our work to the relative work. Section 5
draws a short conclusion and discusses the future work.

2 Interface, Contracts and Components

The major concern of our model of components in rCOS [HLL05a, HLL05b] isreuseandinteroperablity
and thus captures the essence of informal definition of components given in Szyperski’s book [Szy97]:

A component is a unit of composition with contractually specified interfaces and fully ex-
plicit context dependencies that can be deployed independently and is subject to third party
composition.

Thus, a component has a provided interface, and optionally arequired interface, and each interface is
associated with a specification called itscontract. This section uses examples to introduce the main
modelling elements of the component model in rCOS.

2.1 Preliminaries

For convenience, we first introduce some notions of traces. Given an alphabetΣ, Σ∗ denotes all finite se-
quences generated fromΣ, whileΣ∞ denotes all infinite sequences generated fromΣ. Given a sequence
s, we will use|s|, tail(s), andhead(s) to denote the length, tail, and head ofs, respectively.s1 • s2

denotes the concatenation of the sequencess1 ands2, ands1 ¹ s2 denotes thats1 is a prefix ofs2. s ¹ Σ

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Interface, Contracts and Components 3

stands for the sequence obtained by removing all events not inΣ from s. If Σ is a singleton{a}, s ¹ A is
abbreviated ass ¹ a. s ↓ b counts the number of occurrences ofb in s.

2.2 Interface

An interfaceI = 〈FDec, MDec〉 declares a set offieldsand a set ofoperation signatureswithout provid-
ing any semantic information of their designs and implementations. Here, for the sake of encapsulation,
all fields declared in an interface are assumed to belocal to the underpinning contract and component and
therefore are not accessible to its environments. The environments can only access the declared fields via
the declared methods1. Each field inFDec has the formx : T of a variable with its type, and an operation
m(in inx,out outx) ∈ MDecdeclares a name for the operation and its input parameters and output param-
eters with their types. For simplicity, we do not deal with data types formally and assume that a method
has at most one input parameter and one output parameter and is written in the formm(inu,out v) in
what follows.

Example 1 Consider a buffer of integers. It has an interface that enables the user to put data in and get
data from the buffer:

B1=〈buff :seq(int), {put(in x :int), get(out y :int)}〉

whereseq(int) is the type of finite sequences of integers.

Interfaces can bemergedandextendedby adding new operations [HLL05a, HLL05b].

2.3 Contract

A contract of an interface of a component provides semantic information that specifies how the interface
can be used and allows us to define the dynamic behavior of the component on the interface. Here,
we are only concerned with components of concurrent and distributed software systems and thus only
interested in thefunctionalityandinteraction protocolsof components, leaving real-time and other non-
functional quality of services (QoS) out of the scope of this paper. Formally, acontract is a tuple
Ctr(I, Init ,MSpec,Prot), where

• I is an interface;

• Init is a predicate that defines the initial values of the fields inI .FDec;

1In fact, such an assumption can be relaxed. In many cases, the relaxation will improve the ease in developing complex
systems, typically, embedded systems.

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Interface, Contracts and Components 4

• MSPec assigns each operationm(x; y) a static functionality specificationas pair ofpre andpost-
conditionsof the form p(x, I .FDec) ` R(x, I .FDec, y′, I .FDec′), where non-primed and primed
variables represents the values of the variables in the pre and post state of the execution of the
operation, respectively. If the preconditionp(x, I .FDec) is true, the pair will be abbreviated as
` R(x, I .FDec, y′, I .FDec′) ;

• Prot is called theprotocolof the interface, which is a set of finite sequences of method call events.
Each sequence is of the formm1, . . . , mk.

Example 2 For the buffer interface in Example 1, the following contractCtrB defines a one-place buffer:

Init
def
= |buff |=0

MSpec(put(in x:int))
def
= (` buff ′=〈x〉 • buff)

MSpec(get(out y:int))
def
= (` buff ′ = tail(buff) ∧ y′ = head(buff))

Prot
def
= (put; get)∗+(put; (get; put)∗)

In many applications, the protocols can be specified as regular expressions and in such a case protocol
compatibility can be automatically checked.

A pair of pre and postconditions is called adesignin [HH98]. It is proven there that designs are closed
under all imperative programming constructors such as assignment, sequential composition, conditional
choice, recursion and so on. These constructors are all monotonic with respect to therefinementorder
among designs. In [HLL06a], we showed how to define an object-oriented program as a design too.
Therefore, the model of contracts of interfaces can be safely used as a common semantic model of
different programming languages and paradigms to support interoperability of components.

For theoretical treatment of contracts and their refinement, the designs of operations and the interaction
protocol can be combined by the notion ofguarded designs[HLL05a, HLL05b].

A guarded design is a pair of aguardg and a designD, denoted byg&D, and defined byD ¢ g ¤ Idle2,
meaning that the caller is forced to wait if the guard condition does not hold when invoking the method,
otherwise it behaves as the designD. We have proven in [HLL05a, HLL05b] that guarded designs are
closed under all programming constructors, and these constructors are all monotonic with respect to the
refinementorder.

A reactive contract is a tripleCtr = (I, Init ,MSpec), whereMSpec assigns each operationm(x; y) in the
interfaceI with a guarded design. In what follows, we usegm to denote the guard part ofMSpec(m),
for anym ∈ MDec.

2This is the shorthand ofif g then D elseIdle .

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Interface, Contracts and Components 5

Example 3 The contract in Example 2 can have an equivalent reactive version:

Init
def
= |buff |=0

MSpec(put(inx:int))
def
= (|buff | = 0)&(` buff ′ = 〈x〉)

MSpec(get(out y:int))
def
= (|buff | = 1)&(` buff ′ = 〈〉 ∧ y ′ = head(buff))

Given a reactive contractCtr = (I , Init ,MSpec), its dynamic behavior is defined by its sets of failures
and divergences(F(Ctr), D(Ctr)). Each method callm(u, v) includes two events?m(u) for receiving an
invocation andm(v)! for sending a return to the caller. Therefore, each trace in failures and divergences is
of the form?m1(u1),m1(v1)!, . . . , ?mn(un),mn(vn)! or ?m1(u1),m1(v1)!, . . . , ?mn(un). The failures and
divergences are defined as:

• D(Ctr) consists of the sequences of interactions betweenCtr and its environment which lead the
contract to a divergent state.

• F(Ctr) is the set of pairs(s, X), wheres is a sequence of interactions betweenCtr and its environ-
ment, andX denotes a set of methods to which the contract may refuse to respond after executing
s. A failure (s,X) should be one of the following cases:

1. s = 〈?m1(x1),m1(y1)!, . . . , ?mk(xk),mk(yk)!〉 and∀m ∈ X .¬gm, k ≥ 0. If k = 0 thens = 〈〉.
This corresponds to the case when the system reaches a state where none of the guards of the
events inX is true, after executing the sequence of calls.

2. s = 〈?m1(x1),m1(y1)!, . . . , ?mk(xk)〉 andmk! 6∈ X. This corresponds to the case when the
operationmk is waiting to output its result, performing any of other operations will result
in a failure, because it is assumed that the execution of a method is atomic in the sense that
the method is either executed completely, or not at all, no other methods can interrupt its
execution.

3. s = 〈?m1(x1),m1(y1)!, . . . , ?mk(xk)〉 andX could be any set of methods, where the execution
of mk enters a waiting state.

4. Finally, s ∈ D(Ctr) andX can be any set of methods. That is, a divergent trace with any set
of methods always forms a failure.

Example 4 To continue Example 3, the dynamic behaviour of the buffer can be described by the follow-
ing failure/divergencemodel:

D = ∅
F = {(s,X) | (∃k ∈ N.s = 〈S(k)〉 ∧X ⊆ {?put})

∨(∃k ∈ N.s = 〈S(k), ?put(xk+1)〉 ∧X ⊆ {put!})
∨(∃k ∈ N.s = 〈S(k), ?put(xk+1), !put()〉 ∧X ⊆ {?get})
∨(∃k ∈ N.s = 〈S(k), ?put(xk+1), put()!, ?get()〉 ∧X ⊆ {get!})}

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Interface, Contracts and Components 6

where

S(k)
def
= ?put(x1), put()!, ?get(), get(x1)!, ...?put(xk), put()!, ?get(), get(xk)!

Y
def
= {?put, put!, ?get, get!} − Y

The following notion ofrefinementallows us to compare and substitute components according to their
contracts.

Definition 1 Let Ctr1 and Ctr2 be two contracts. We say thatCtr1 is refinedby Ctr2, denoted by
Ctr1 v Ctr2, if

1. Ctr2 provides the same services as that ofCtr1, i.e. Ctr2.MDec = Ctr1.MDec,

2. Ctr2 is not easier to diverge thanCtr1, i.e.D(Ctr2) ⊆ D(Ctr1), and

3. Ctr2 is not easier to deadlock thanCtr1, i.e.F(Ctr2) ⊆ F(Ctr1).

Ctr1 andCtr2 areequivalent, denoted byCtr1 ≡ Ctr2, if they refine each other.

For the full refinement calculus of components, we refer the reader to [HLL06b].

2.4 Component

A component is an implementation of a contract of its provided interface. To implement such a contract,
the component mayuseservices provided by other components. These services are calledrequired
servicesand are specified as acontractof an interface that is called therequired interface.

Formally, acomponentC is a tuple(I , Init ,MCode,PriMDec,PriMCode, InMDec), where

1. I andInit are its interface and initial condition, respectively;

2. PriMDec is a set of method declarations that are internal to the component;

3. MCode (PriMCode) maps each methodm in I.MDec (resp. PriMDec) to a program of a under-
lining programming language. However, according to the results of [HH98], any program can be
abstracted as aguarded commandg&c, further to aguarded design. So, without loss of generality,
we always assume that the above two functions map each method to a guarded command from
now on.

4. InMDec denotes a required interface whose operations are called in the implementations of the
operations inPriMCode andI.MDec, but not declared there.

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Interface, Contracts and Components 7

We useC.I, C.Init , C.MCode, C.PriMDec, C.PriMCode andC.InMDec to denote the corresponding parts
of C.

According to [HH98], a guarded commandg&c can always be defined as a guarded designDsn(g&c).
The commandc may contain both invocations to methods inPriMDec andInMDec. Once the code of
the private commands are given, their semantics can be used for the calculation ofDsn(g&c). However,
Dsn(g&c) also depends on the given contract of the required interface. Therefore, the semantics of
componentC is defined to be the contract function[[C]](·) such that for any given contractInCtr of the
required interfaceInMDec, [[C]](InCtr) is the contract of the provided interfaceI.MDec in which the
guarded design of each operationm is calculated byDsn(MCode(m)) from the code ofPriMDec and the
given required contract. A componentC is calledclosedif it does not require external services.

Remark 1 As we discussed earlier, the model of contracts is used as the common semantics for different
programming languages used to implement components. This is why we say that our model of compo-
nents supports interoperability. The Object rCOS presented in [HLL06a] provides a unified calculus for
defining and reasoning both object-oriented and imperative programs, and thus can be used for formal
construction of components.

Remark 2 The model of components also supports encapsulation of both data and implementation of
components. A component can only be used according to its contract that is an abstract semantics of
the component. This strongly supports reuse, not only components but also proofs of properties of the
contracts. This is crucial for scaling up the method.

2.5 Chaining components together

It is a natural way to compose components by chaining the provided operations of one component to the
required operation of the other.

Definition 2 LetC1 andC2 be components such thatC1.I.FDec∩C2.I.FDec = ∅, C1.I.MDec∩C2.I.MDec =
∅ andC1.P riMDec∩C2.P riMDec = ∅. Then thechainingC1 toC2, denoted byC1〉〉C2, is the component
with

• (C1〉〉C2).FDec
def
= C1.FDec ∪ C2.FDec,

• (C1〉〉C2).InMDec
def
= (C2.InMDec ∪ C1.InMDec)− (C2.MDec ∪ C1.MDec),

• (C1〉〉C2).MDec
def
= C1.MDec ∪ C2.MDec,

• (C1〉〉C2).Init
def
= C1Init . ∧ C2.Init ,

• (C1〉〉C2).Code
def
= C1.Code ∪ C2.Code, and

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Processes: A Model of Glue and Application Programs 8

• (C1〉〉C2).PriCode
def
= C1.PriCode ∪ C2.PriCode.

It is easy to show that the chaining operator is monotonic with respect to the refinement order of compo-
nents [HLL05b]. In the special case when(C1.InMDec∪C2.InMDec)∩(C1.MDec∪C2.MDec) = ∅ , the
chainingC1 to C2 is calleddisjoint unionand denoted asC1||C2. Some other operators over components
have also been defined in [HLL05b] such asrenaming, feedbackandhiding.

Example 5 Define two buffer componentsC1 andC2 as follows

C1 .FDec = {buff1 :Seq(int)}/* Seq(int) means sequence of integer*/
C1 .MDec = {put(in x :int), get1 (out y :int)}
C1 .Code(put) = (buff1 :=〈x 〉) ¢ buff1=〈〉¤ (put1 (head(buff1)); buff1 :=〈x 〉)

/*WhenC1 is full, C1 forwards the input data toC2*/
C1 .Code(get1) = (buff1 6=〈〉) −→ (y :=head(buff1); buff1=〈〉)
C1 .InMDec = {put1 (in x :int)}
C2 .FDec = {buff2 :Seq(int)}
C2 .MDec = {put1 (in x :int), get(out y :int)}
C2 .Code(put1) = (buff2=〈〉) −→ buff2 :=〈x 〉
C2 .Code(get) = (y :=head(buff2); buff2 :=〈〉) ¢ buff2 6=〈〉¤ get1 (y)

/*WhenC2 is empty,C2 gets a data fromC1*/
C2 .InMDec = {get1 (in y :int)}

Then,C1〉〉C2 is shown in Fig.1 (a), hidingget1 in C1〉〉C2, i.e. (C1〉〉C2)\{get1} is shown in Fig.1 (b).

(a)

C1

put
 get1

C2

get

put1

put1

(b)

C1

put

C2

get

put1

put1

Figure 1: (a) Chaining Composition, (b) Hiding After Chaining

3 Processes: A Model of Glue and Application Programs

In addition to building new components by applying the component operators defined in the previous
section to existing components, we often need toglue existing components with a program to form a
new component. Because in the most cases, we have to restrict the behaviour of the existing components
and coordinate them in order to construct a new component from them. Thus, these component operators
will not be applicable any more. For example, it is impossible to simply apply the chaining operator to
two one-place buffers with the same contract defined in Example 3 to produce a two-place buffer as we
did in Example 5.

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Processes: A Model of Glue and Application Programs 9

Glue code in general has different characteristics from components and we model it asa process. Like a
component, a process has an interface declaring its own local variables and methods and its behavior is
specified by a process contract. Unlike a component which passively waits for a client to call its provided
services, a process is active and has its own flow of control on when to call out or to wait for a call to
its provided services. For such an active process, we cannot have separate contracts for the provided
interface and required interface, because we cannot have separate specifications of outgoing calls and
incoming calls [HLL05a].

Glue codes and application programs play different roles in component-based software development.
However, their behavior shares common characteristics. Application programs have their own control
flows, and carry out their own computation task by using services provided by components, interacting
with components in the same way as a glue program.

In this section, we define the model of processes and the glue composition of a process and a component.
For simplicity and predictability, we assume that processes do not provide methods to their environment
and do not communicate directly with each other. They are loosely coupled and can only communicate
via invoking methods of components. The composition of processes is defined by interleaving and yields
a new process.

3.1 Processes

The interface of a process is the access point through which the process invokes the operations of com-
ponents. The process also carries out local computation by changing its local variables.

Definition 3 A process interfaceI is a pair 〈FDec,MDec〉, whereFDec is a set of field declarations, and
MDec is a set of method invocation signatures. Each of them is of the form!m(inu : U,out v : V).

A process contractCtr is a triple 〈I, Init ,MSpec〉, whereI is a process interface,Init and MSpec are
defined same as in a reactive contract.

We use the notationI.MDec to denote the set{m |!m(inu : U,out v : V) ∈ I.MDec}.

Example 6 As shown in Fig.2 (a), a three-place buffer is built by gluing two one-place buffers defined
in Example 3. The contract of the glue process is

I.FDec = {tmp : seq(int)}
I.MDec = {!put(inu : int), !get(out v : int)}
Init = |tmp| = 0
MSpec(!put(u)) = {u, tmp} : |tmp| > 0& ` u′ = head(tmp) ∧ tmp′ = 〈〉
MSpec(!get(v)) = {v, tmp} : |tmp| = 0 & ` tmp′ = 〈v〉

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Processes: A Model of Glue and Application Programs 10

(a)

C
1

p
u
t
1

C
2

g
e
t
2

p
u
t
2
g
e
t
1

P

(b)

m
o
v
e

C
1

p
u
t
1

C
2

g
e
t
2

p
u
t
2
g
e
t
1

P

M

Figure 2: (a) Gluing Two One-place Buffers Forms a Three-place Buffer, (b) Gluing Two One-place
Buffers Forms a Two-place Buffer

As shown in the Fig.2 (b), to construct a two-place buffer, we need a new component that assures the
execution of sequenceget1(x), put2(x) is not interrupted. Here,M.Code(move) = {get1(u); put2(u)}

The dynamic behavior of a process contract is defined on the basis of the observable events of the forms
!m(u) for making an invocation andm(v)? for receiving a return from the invoked component. These are
thesynchronization complementary eventsof ?m(u) andm(v)! in the behavior of a component contract.

The failureF(Ctr) and divergenceD(Ctr) of a process contractCtr are defined as:

• D(Ctr) consists of the sequences of interactions betweenCtr and its environment which lead the
contract to a divergent state. Each of such sequences is of the form

〈!m1(x1), m1(y1)?, . . . , !mk(xk),mk(yk)?, !mk+1(xk+1)〉 · s

wheres is any sequence of method calls and the execution ofmk+1 diverges.

• F(Ctr) is the set of pairs(s, X) wheres is a sequence of interactions betweenCtr and its environ-
ment, andX denotes a set of methods that the contract may refuse to respond to after engaging all
events ins. Any (s,X) ∈ F should be one of the following cases:

1. s = 〈!m1(x1),m1(y1)?, . . . , !mk(xk),mk(yk)?〉 and∀m ∈ X .¬gm, k ≥ 0. If k = 0 thens =<>.
This case represents that each method inX cannot be engaged after executing the sequence
of calls, because their guards do not hold in the state.

2. s = 〈!m1(x1),m1(y1)?, . . . , !mk(xk)〉 andmk? 6∈ X. This corresponds to the case where the
contract is waiting for the return.

3. s = 〈!m1(x1),m1(y1)?, . . . , !mk(xk)〉 andX could be any set of methods. Here the execution
of mk enters a waiting state.

4. Finally, s ∈ D(Ctr) andX can be any set of methods. That is, a divergent trace with any set
of methods always forms a failure.

For a divergence free contract, case (4) will disappear. We can combine!m(x) andm(y)? into m(x, y)
and describe the failures in terms of sequences over eventsm(x, y) by removing!mk(xk) from the traces
in cases (2) and (3) and put the eventm(x, y) into the refusal set. Thus,F(Ctr) can be simply defined as:

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Processes: A Model of Glue and Application Programs 11

1. s = 〈m1(x1, y1), . . . , mk(xk, yk)〉 and∀m ∈ X .¬gm; or

2. s = 〈m1(x1, y1), . . . mk(xk, yk)〉 and∀m ∈ X if m is executed followings, thenm must reach a
waiting state.

It is worth noting that the difference of failures and divergences of processes and contracts lies in the
forms of sequences of method calls, the former’s is of the form!m1(x1),m1(y1)?, · · · , !mk(xk),m(yk)?, · · ·,
while the latter’s is of the form?m1(x1),m1(y1)!, · · · , ?mk(xk),m(yk)!, · · ·.

Example 7 The dynamic behaviour of the process given in the Example 6 can be described by the
following failure/divergencemodel:

D = ∅
F = {(s,X) | (∃k ∈ N.s = 〈S(k)〉 ∧X ⊆ {!get1})

∨ (∃k ∈ N.s = 〈S(k), !get1()〉 ∧X ⊆ {get1?})
∨ (∃k ∈ N.s = 〈S(k), !get1(), get1(xk+1)?〉 ∧X ⊆ {!put2})
∨ (∃k ∈ N.s = 〈S(k), !get1(), get1(xk+1)?, !put2(xk+1)〉 ∧X ⊆ {put2?})}

where

S(k)
def
= !get1(), get1(x1)?, !put2(x1), put2()?, ..., !get1(), get1(xk)?, !put2(xk), put2()?

Y
def
= {!get1(), get1()?, !put2(), put2()?} − Y

In fact, a process can be seen as a special component without provided services. Therefore, we can apply
the chaining operator of components to processes to produce new processes. However, all application
of the operator to any two processesP1 andP2 will be degenerated to thedisjoint unionof P1 andP2,
i.e. P1‖P2, asP1 andP2 both have no provided services. On the other hand, the other operators such as
renamingandhiding can not apply to processes, because from a logical point of view, the names of the
required services of a process are bound to the process.

3.2 Composing a component with a process

We consider the glue composition of a closed component and a process. If there are a number of closed
components to be glued by a process, the disjoint union of these components forms another closed
component.

Definition 4 Let C be a closed component andP be a process that only calls methods provided byC,
then the failures and divergences of thesynchronization compositionC ‖

X
P , denoted asF(C ‖

X
P) and

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Processes: A Model of Glue and Application Programs 12

D(C ‖
X

P) respectively, similarly to [Ros97], are defined as:

D(C ‖
X

P) = {a • b | ∃s ∈ T (C), t ∈ T (P).a ∈ (s ‖
X

t) ∩ Σ∗ ∧ (s ∈ D(C) ∨ t ∈ D(P))}
F(C ‖

X
P) = {(a, Y ∪ Z) | Y \X = Z \X∧

∃s ∈ T (C), t ∈ T (P).(s, Y) ∈ F(C) ∧ (t, Z) ∈ F(P) ∧ a ∈ (s ‖
X

t)}
∪{(a, Y) | a ∈ D(C ‖

X
P)}

whereT (Q) stands for the set of traces ofQ, whereQ is either a component or a process;X is the
set of synchronized methods;Σ = {?m(xi),m(yi)! | m ∈ C.MDec}, b ∈ Σ∗ ands ‖

X
t denotes the parallel

operation over traces, e.g.abc ‖
{b,c}

a′bcd = {aa′bcd, a′abcd}.

We can also apply the hiding operator of CSP to a componentC and make any action inX become
internal and invisible, denoted asC\X . Its dynamic behavior is defined as:

D(C \X) = {(s ¹ X) • t | s ∈ D(C) ∧ t ∈ T (C) ¹ X}
∪{(a ¹ X) • t | t ∈ T (C) ¹ X ∧ a ∈ Σ∞ ∧ |a ¹ X| < ∞∧ ∀s ¹ a.s ∈ T (C)}

F(C ¹ X) = {(s ¹ X,Y −X) | (s, Y) ∈ F(C)} ∪ {(s, Y) | s ∈ D(C \X)}

whereΣ = {?m(xi),m(yi)! | m ∈ C.MDec}.

Definition 5 Let C be a closed component,P a process s.t.P.MDec ⊆ C.MDec, thegluing composition

C¯ P is defined as:C ¯ P
def
= (C ‖

P.MDec

P) \ P.MDec.

In our framework, components and processes are treated differently. So we have to answer what is the
entity obtained by glue composition. Theorem 1 answer the question.

Theorem 1 Suppose a closed componentC and a processP satisfying the conditionP.MDec ⊆ C.MDec,
thenC ¯ P is a closed component.

Proof: According to the above definitions, we can getT (C ¯ P), F(C ¯ P) andD(C ¯ P). Therefore,
by Woodcock and Morgan’s results [WM90], we can construct a guarded command (guarded design) for
each methodm of (C ¯ P) and we will useS to denote the set of all these guarded commands (guarded
designs).

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Processes: A Model of Glue and Application Programs 13

For each methodm, the corresponding guarded design inS is defined over two variablestr andR. The
variabletr stands a trace thatm has engaged in, whileR is a set of refusals. Formally, the guarded design
of m can be represented as:

(m /∈ R ∧ (tr_〈m〉 ∈ T (C ¯ P)))&
({tr} : ` tr′ = tr_〈m〉); ({R} : tr /∈ D(C ¯ P) ` (tr,R′) ∈ F(C ¯ P)).

Let the initial condition be

({tr} : ` tr′ = 〈〉); ({R} : tr 6∈ D(C ¯ P) ` (tr,R′) ∈ F(C ¯ P)),

and for eachm, (C ¯ P).MSpec(m) be defined as its corresponding guarded design inS. Thus, we can
conclude thatC ¯ P is a closed component whose provided contract is given as above. 2

Similarly, we can prove that the glue composition applying to an open component and a process produces
an open component. That is,

Theorem 2 If C is an open component with a required interfaceInMDec and P is a process that only
calls the provided methods ofC, then(C¯ P) is an open component with the required interfaceInMDec.

The semantics of the open component(C¯ P) is defined as a function that given a contract of the required
interface, returns a contract of the provided interface, denoted asλ InCtr .(C ¯ P)(InCtr). It is easy to
see that

(C¯ P)(InCtr) = C(InCtr)¯ P

Example 8 Consider the component given in Fig.2 (a). Its dynamic behaviour is given by the following
failures since it is divergence free.

F = {(tr,X) | tr ∈ {put1, get2}∗ ∧X ∈ P{put1, get2} ∧ ∀tr1 ¹ tr.(
tr1 ↓ put1 − tr1 ↓ get2 ≤ 3

∧ vals(tr1 ¹ get2) ¹ vals(tr1 ¹ put1)

)
∧




(tr ↓ put1 = tr ↓ get2 ∧X ⊆ {get2})
∨ (tr ↓ put1 − tr ↓ get2 ≤ 2 ∧X = ∅)
∨ (tr ↓ put1 = tr ↓ get2 + 2 ∧X ⊆ {put1})


}

wherevals(s) returns the parameters occuring in the sequences, and(tr ↓ put1 − tr ↓ get2) is used to
compute the number of items stored in the buffer.

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Processes: A Model of Glue and Application Programs 14

3.3 The state-based reactive contract of a glued component

When proving Theorem 1, we usetr andR as field variables. In this section, we study how to calculate
the “state-based” reactive contract of a glued component in terms of the field variables of its subcompo-
nent and process.

The approach is based on the observation that if there is a sequence of methodss = 〈m,m1, . . . ,mk, n〉
occurring in a trace ofC ‖

P.MDec

P, wherem,n /∈ P.MDec and m1, . . . , mk ∈ P.MDec, the behaviour

[|m|]; [|m1|]; . . . ; [|mn|] can be considered as a possible behaviour ofm in the glued component, where “;”
means the sequential composition of guarded designs [HH98]. The reason is becausem1, . . . , mk are hid-
den and therefore become invisible in the glued component. Thus, for an observable methodm /∈ P.MDec,
its guarded design is thenon-deterministicchoice [HH98] of all those possible behaviour. However, it is
easy to see that this approach only works when the glued component does not diverge. The divergence
freedom can be proved by the theory of CSP and the FDR model checking tool.

Whenever a divergence free trace ofC ‖
P.MDec

P has a prefix of the form〈m1, . . . , mn,m〉, wherem /∈ P.MDec

andm1, . . . , mn ∈ P.MDec, we put the behaviour of the invisible sequence〈m1, . . . , mn〉 to be part of the
initial condition.

Formally, we present our approach as follows: LetC be a closed component andP a process with
P.MDec ⊆ C.MDec. Then the contract for(C¯ P) can be calculated as follows:

(C ¯ P).FDec
def
= C.FDec ∪ P.FDec

(C ¯ P).MDec
def
= C.MDec − {P.MDec}

(C ¯ P).Init
def
= (C.Init ∧ P.Init) ∧ utr∈G(C.Init ∧ P.Init); [|tr|]

(C ¯ P).MSpec(m)
def
= C.MSpec(m) utr∈Q(m) [|tr|],

for anym ∈ (C ¯ P).MDec

where

• G def
= {hτ | ∃s ∈ Σ∗, ∃n ∈ (C ¯ P).MDec. (hτ ∈ P.MDec

+ ∧ hτ_〈n〉_s ∈ LT)}, which is the set of
maximal invisible prefixes of legal traces.

• Q(m)
def
= {〈m〉_hτ | ∃r, s ∈ Σ∗,∃n ∈ (C ¯ P).MDec.(hτ ∈ P.MDec

+ ∧ r_〈m〉_hτ_〈n〉_s ∈ LT)}
. Q(m) contains all the sequences of the form〈m, m1, . . . , mn〉 in each of the divergence free traces
of C ¯ P , wherem1, . . . , mn ∈ P.MDec.

• LT def
= {t ∈ T (C) | ∃X ∈ P(C.MDec). (t,X) ∈ F(C ‖

X
P) ∧ t /∈ D(C ‖

X
P)∧

(t ¹ X) /∈ D((C ‖
X

P) \X)}. That is, the legal traces ofC ¯ P are those that themselves and their

projections onΣ−X are not divergent .

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Processes: A Model of Glue and Application Programs 15

• [|tr|] maps each sequencetr to a guarded design which is calculated by sequentially composing the
guarded design of each method oftr in turn. The guarded design of each method is defined by the
following rules:

1. [|mg|] is C.MSpec(m) if m /∈ P.MDec, otherwiseC.MSpec(m) ∧ P.MSpec(m). It is easy to see
that [|mg|] is a guarded design, for anym ∈ C.MDec;

2. if tr = 〈m1,m2, . . . , mn〉, then[|tr|] = [|mg
1|]; [|mg

2|]; . . . ; [|mg
n|]. Here, “;” means the sequential com-

position of (guarded) designs (see [HH98]).

Here, we have to point out that there may be different way to construct the possible behaviour of an
observable method and the initial condition, it can therefore result in different contracts. For example,

for the sequence〈m〉_τ_
1 τ_

2 〈n〉, instead of defining their guarded design asMSpec(m)
def
= [|m; τ1; τ2|] and

MSpec(n)
def
= [|n|], we can define them asMSpec(m)

def
= [|m; τ1|] andMSpec(n)

def
= [|τ2; n|]. However, it is

easy to prove that all these contracts should refine each other since they share the same failures and
divergences as that of(C ‖

P.MDec

P)\P.MDec.

Example 9 Calculate the contract of the component given in Fig.2 (a) from its dynamic behaviour in
Example 8, and the contract of the process and one place buffer given in Example 6 and Example 3
respectively.

I .FDec = {tmp, buff 1, buff 2 : seq(int)}
I .MDec = {put1(inu : int;), get2(out v : int)}

Init = tmp′ = 〈〉 ∧ buff ′
1 = 〈〉 ∧ buff ′

2 = 〈〉
MSpec(put1) = C1.MSpec(put1) u [|put1; get1|] u [|put1; get1; put2|] u [|put1; put2|]

u[|put1; put2; get1|] u [|put1; get1|]
= {buff 1} : |buff 1| = 0& ` buff ′

1 = 〈u〉
u{tmp} : |buff 1| = 0 ∧ |tmp| = 0 ∧ |buff 2| = 0& ` tmp′ = 〈u〉
u{buff 2} : |buff 1| = 0 ∧ |tmp| = 0 ∧ |buff 2| = 0& ` buff ′

2 = 〈u〉
u{buff 1, tmp, buff 2} : |buff 1| = 0 ∧ |tmp| 6= 0 ∧ |buff 2| = 0&

` buff ′
1 = 〈u〉 ∧ tmp′ = 〈〉 ∧ buff ′

2 = tmp
u{tmp, buff 2} : |buff 1| = 0 ∧ |tmp| 6= 0 ∧ |buff 2| = 0&

` tmp′ = 〈u〉 ∧ buff ′
2 = tmp

u{tmp, buff 2} : |buff 1| = 0 ∧ |tmp| = 0 ∧ |buff 2| 6= 0&
` tmp′ = 〈u〉 ∧ buff ′

2 = tmp

Similarly, we can calculateMSpec(get2). Due to space, we omit it.

This example shows that the calculation of the failures and divergences is quite tedious. However it could
be aided by the CSP tool FDR [Ros97].

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Relative Work 16

4 Relative Work

In CBD, how to construct composite components from existing ones is a challenging problem. In the
object-oriented programming community, there has been extensive research on attacking this issue. For
example, SuperGlue [MH06], Jiazzi [MFH01], the calculus of assemblages [LS04] and so on. Super-
Glue is a connection-based asynchronous programming model. In SuperGlue, a component is either
SuperGlue code or Java code with a set of signals (possibly infinite many), and composing existing com-
ponents is via connection rules over the signals of the subcomponents defined by SuperGlue Code. While
Jiazzi [MFH01] can be used to construct large-scale binary components in Java. Jiazzi components can
be thought of as generalizations of Java packages with added support for external linking and separate
compilation. Existing Java classes and Jiazzi components can be composed by Jiazzi linker to a new Ji-
azzi component. The linking is similar to the chaining operator in rCOS. Comparing with SuperGlue and
Jiazzi, in our approach, each component is equipped with a provided interface and its contract, option-
ally as well as a required interface and its contract. Thus, components can be more easily reused across
different applications, as the provided interfaces and contracts together with the required interfaces and
contracts encapsulate their designs and implementations, as well as their data structures. Furthermore,
the interoperability of components is well established in our model, since rCOS acts as the underlying
theory of component designs which unifies semantic models of different programming languages and
paradigms into the notion of interface contracts. What’s more, our approach provides more means to
compose new components from existing ones, either by the component operators or by the gluing code.

SuperGlue, Jiazzi and rCOS all cope with composing (gluing) components statically in the sense that
all method names used for composing must be resolved in the moment these components are composed
(glued). Whereas the calculus of assemblages [LS04] can handle the composing (gluing) dynamically.
However, there is no the notion of contracts in within it as well.

[XB03] investigated the notions of components, composition of components and verification of com-
posed components in an asynchronous interleaving event-based model, called Asynchronous Interleaving
Message-passing computation model (AIM), with which the composition of components is interpreted as
asynchronous parallel, analogous remark is applied to the composition of properties of components. In
fact, we believe what was handled in [XB03] exactly corresponds to what the chaining operator can do in
rCOS. However, rCOS is a combination of event-based model and state-based model, whose event-based
model is a synchronous concurrent model in contrast to that of [XB03], an asynchronous concurrent
model. So, rCOS allows different notations and methods for modelling and analysing different aspects
of components and processes, such as pre and post conditions for functionality, traces of events for in-
teraction protocols, failures and divergences for the denotational view of dynamic behavior and guarded
designs for operational views of dynamic behavior. This supports the separation of concerns and gives
the hope of integrating different verification techniques and tools via this common model. In fact, the
assume-guarantee proof style used in [XB03] can also be easily applied to our framework. However,
our work is not only about assume-guarantee verification in the original setting. When chaining compo-
nents together, the verification and calculation of the composed components are different from the case
when components are glued together. Using verified properties in our framework is more about substitu-
tion of proof obligations by theorems proved about services that are used in components or application
programs.

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

Conclusions and Future Work 17

There are also various approaches to handle the composition of components in the formal methods com-
munity. In [BS01], a component is defined as a stream process function which maps the input streams of
actions to the output streams of actions. The refinement relation between components is defined over a
pair of input streams and output streams. rCOS clearly divides the provided contract(input actions) and
the required contract(output actions) and can treat them separately, which greatly ease the composition
of components. Like rCOS, Reo[Arb03] treats components and glue codes(connectors) as distinct types.
The two types build on a common formal foundation, the Abstract Behaviour Types. The Abstract Be-
haviour Types is very expressive for specification, but it is hard to be linked to implementation language.
The notion of guarded design in rCOS can link specifications and OO languages very smoothly.

5 Conclusions and Future Work

We have proposed a model supporting component-based programming. The model unifies the com-
ponent model developed earlier in [HLL05b, HLL05a] and the process model defined here. Processes
are introduced to model application programs and glue programs which help developers to build new
components from existing ones.

In the proposed model, a typical component-based application consists of a family of components and
a number of parallel application processes. Some of the components are reused from a component
repository while others are newly built using gluing processes as well as component operators (chaining,
service renaming, and service hiding).

As for future work, we need to investigate the following issues:

• In this paper, the method to calculate the resulted contract of the gluing of a component and a
process is very complicated and difficult to track. Therefore, as a future work, on one hand, we
need to simplify the procedure; on the other hand, we will look into automating the calculation.

• It will be interesting research topic to investigate how different verification techniques and tools
can be applied to rCOS.

• We are also interested in investigating on howrCOScan be applied to web service systems, and
to deal with quality of services (QoS) of components, such as time and resource constraints.

• Case studies of realistic component systems such as CORBA.

Acknowledgements

We are grateful to Prof. Anders P. Ravn for pointing out many features in the design of our model.
We also thank Dr. Volker Stolz and Lu yang for their comments. Special thanks are also due to the

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

References 18

anonymous referees for their valuable suggestions and comments which help us to improve this paper
including its contents as well.

References

[Arb03] F. Arbab. Abstract behavior types: A foundation model for components and their composition. In
Proc. of the FMCO 2002, volume 2852 ofLNCS, pages 33–70. Springer, 2003.

[BS01] M. Broy and K. Stølen.Specification and Development of Interactive Systems: FOCUS on Streams,
Interfaces, and Refinement. Springer, 2001.

[HH98] C.A.R. Hoare and J. He.Unifying Theories of Programming. Prentice-Hall International, 1998.

[HLL05a] J. He, Z. Liu, and X. Li. Component software engineering. InProc of ICTAC’05, volume 3722 of
LNCS, pages 269–276. Springer, 2005.

[HLL05b] J. He, Z. Liu, and X. Li. A theory of contracts.Technical Report UNU-IIST Report No 327, July 2005.

[HLL06a] J. He, X. Li, and Z. Liu. rcos: A refinement calculus of object systems.Theoretical Computer Science,
365(1-2):109–142, 2006.

[HLL06b] J. He, X. Li, and Z. Liu. A theory of reactive components. InProc. of FACS’05, volume 160 ofENTCS,
pages 173–195. Elsevier, 2006.

[Hoa85] C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

[LS04] Y. Liu and S. Smith. Modules with interfaces for dynamic linking and communication. InECOOP,
volume 3086 ofLNCS, pages 414–439. Springer, 2004.

[MFH01] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New-age components for old-fashioned java. InProc. of
OOPSLA 2001, pages 211–222. ACM, 2001.

[MH06] S. McDirmid and W. Hsieh. Superglue: Component programming with object-oriented signals. In
ECOOP, volume 4067 ofLNCS, pages 206–229. Springer, 2006.

[Ros97] A.W. Roscoe.The Theory and Practice of Concurrency. Prentice-Hall, 1997.

[Szy97] C. Szyperski.Component Software: Beyond Object-Oriented Programming. Addison-Wesley, 1997.

[WM90] J. Woodcock and C. Morgan. Refinement of state-based concurrent systems. InProc. of VDM Eu-
rope’90, volume 428 ofLNCS, pages 340–351. Springer, 1990.

[XB03] F. Xie and J. Browne. Verified systems by composition from verified components. InProc. of
ESEC/SIGSOFT FSE 2003, pages 277–286. ACM, 2003.

Report No. 350, December 2006 UNU-IIST, P.O. Box 3058, Macao

