
.

UNU-IIST
International Institute for
Software Technology

UNU-IIST Report No. 330 R

Component-Based Software Engineering
– the Need to Link Methods and their Theories

He Jifeng, Xiaoshan Li and Zhiming Liu

August 2005

UNU-IIST and UNU-IIST Reports

UNU-IIST (United Nations University International Institute for Software Technology) is a Research and Training
Centre of the United Nations University (UNU). It is based in Macao, and was founded in 1991. It started opera-
tions in July 1992. UNU-IIST is jointly funded by the government of Macao and the governments of the People’s
Republic of China and Portugal through a contribution to the UNU Endowment Fund. As well as providing two-
thirds of the endowment fund, the Macao authorities also supply UNU-IIST with its office premises and furniture
and subsidise fellow accommodation.

The mission of UNU-IIST is to assist developing countries in the application and development of software tech-
nology.

UNU-IIST contributes through its programmatic activities:

1. Advanced development projects, in which software techniques supported by tools are applied,

2. Research projects, in which new techniques for software development are investigated,

3. Curriculum development projects, in which courses of software technology for universities in developing
countries are developed,

4. University development projects, which complement the curriculum development projects by aiming to
strengthen all aspects of computer science teaching in universities in developing countries,

5. Schools and Courses, which typically teach advanced software development techniques,

6. Events, in which conferences and workshops are organised or supported by UNU-IIST, and

7. Dissemination, in which UNU-IIST regularly distributes to developing countries information on interna-
tional progress of software technology.

Fellows, who are young scientists and engineers from developing countries, are invited to actively participate in
all these projects. By doing the projects they are trained.

At present, the technical focus of UNU-IIST is on formal methods for software development. UNU-IIST is an
internationally recognised center in the area of formal methods. However, no software technique is universally
applicable. We are prepared to choose complementary techniques for our projects, if necessary.

UNU-IIST produces a report series. Reports are either Research R , Technical T , Compendia C or Adminis-

trative A . They are records of UNU-IIST activities and research and development achievements. Many of the
reports are also published in conference proceedings and journals.

Please write to UNU-IIST at P.O. Box 3058, Macao or visit UNU-IIST’s home page: http://www.iist.unu.edu, if
you would like to know more about UNU-IIST and its report series.

G. M. Reed, Director

UNU-IIST
International Institute for
Software Technology

P.O. Box 3058
Macao

Component-Based Software Engineering
– the Need to Link Methods and their Theories

He Jifeng, Xiaoshan Li and Zhiming Liu

Abstract

We define some important concepts of component software development including, interfaces, contracts,
interaction protocols, components, component compositions, component publication and refinement. We
discuss the relations among these notions, difficulties and significant issues that we need to consider when
developing a formal method for component-based software engineering. We argue that to deal with the
challenges, there is a need in research to link existing theories and methods of programming for effective
support to component-based software engineering. We then present our initiative on a unified multi-
view approach to modelling, design and analysis of component systems, emphasising the integration of
models for different views.

An initial and short version of the report has occurred as an invited paper in Proceedings International
Colloquium on Theoretical Aspects of Computing (ICTAC 2005), LNCS 3722, Springer, 2005. This
work is partially supported by by the NSF project 60573085.

Keywords: Components, Interfaces, Contracts, Protocols, Functionality, Consistency, Composition,
Refinement, Simulation

He Jifeng is a senior research fellow of UNU/IIST. He is also a professor of computer science at East
China Normal University and Shanghai Jiao Tong University. His research interests include the Math-
ematical theory of programming and refined methods, design techniques for the mixed software and
hardware systems. E-mail: hjif@iist.unu.edu.

Xiaoshan Li is an Associate Professor at the University of Macau. His research areas are interval tem-
poral logic, formal specification and simulation of computer systems, formal methods in system design
and implementation. E-mail: xsl@umac.mo.

Zhiming Liu is a research fellow at UNU/IIST. His research interests include theory of computing sys-
tems, including sound methods for specification, verification and refinement of fault-tolerant, real-time
and concurrent systems, and formal techniques for OO development. His teaching interests are Commu-
nication and Concurrency, Concurrent and Distributed Programming, Internet Security, Software Engi-
neering, Formal specification and Design of Computer Systems. E-mail: Z.Liu@iis.unu.edu.

Copyright c© 2008 by UNU-IIST

Contents i

Contents

1 Introduction 1

2 Components, Interfaces and Architectures 2
2.1 Components . 2
2.2 Interfaces . 4
2.3 Architecture . 5

3 State of the Art of Formal Theories 6
3.1 Models of architectures . 6
3.2 The need to link methods and theories . 6

4 rCOS 8
4.1 UTP: The semantic basis . 9

4.1.1 Programs as designs . 9
4.1.2 Refinement of designs . 10
4.1.3 Linking designs with predicate transformers . 11

4.2 Interfaces . 12
4.2.1 Interface inheritance and hiding operations . 12

4.3 Contract . 13
4.4 Reactive contracts . 14

4.4.1 Contract operations . 20
4.5 Components and their compositions . 21

4.5.1 Composition of components . 23
4.5.2 Publishing components and putting components together 24

4.6 Active components and connectors . 27
4.7 Component-based and object-oriented methods . 28

5 Conclusion and Future Work 29

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

Introduction 1

1 Introduction

The idea to exploit and reuse components to build and to maintain software systems goes back to “struc-
tured programming” in the 70s. It was a strong argument for development of object oriented methods
and languages in the 80s. However, it is today’s growing complexity of systems that forces us to turn this
idea into practice [5].

While component-based software development is understood to require reusable components that inter-
act with each other and fit into system architectures, there is so far no agreement on standard technolo-
gies for designing and creating components, nor on methods of composing them. Finding appropriate
formal approaches for describing components, the architectures for composing them, and the methods
for component-based software construction, is correspondingly challenging. It seems component-based
programming is now in the similar situation of object-oriented programming in the 80s:

My guess is that object-oriented programming will be in the 1980s what structured program-
ming was in the 1970s. Everyone will be in favor of it. Every manufacture will promote his
products as supporting it. Every manager will pay lip service to it. Everyone programmer
will practice it (differently). And no one will know just what it is [33]. – T. Rentsch,
September 1982

In this paper, we first informally define some important concepts of component software developing in-
cluding, interfaces, contracts, interaction protocols, components, component compositions, component
publication and refinement, and discuss some of the concepts and issues that are important for a for-
mal method to support component-based software engineering (CBSE). We argue that there is a need to
integrate existing theories and methods of programming. We then present our initial results in the devel-
opment of a model of Refinement of Component and Object System (rCOS) that is based on a unified
multi-view modelling approach that is intended to formalise the notions and support separation of con-
cerns to deal with the difficulties. Different concerns are described in different viewpoints of a system
at different levels of abstraction, including those of the syntactic dependency among components, static
behavior, dynamic behavior and interactions of components. We show how in the model to integrate a
state-based model of functional behavior and an event-based model of inter-component interactions. The
state-based model is for white-box specification to support component design and the event-based model
is for black-box specification used when composing components. Linking the theories will also shed
light on the integration of tools, such as model checkers, theorem provers and testing tools, for system
verification.

An integrated approach allows knowledge sharing among different people in a component system devel-
opment, such as requirement engineers and analysts, system assemblers, component designers, compo-
nent certifiers and system verifiers. Different people play different roles and are only concerned with and
use the models of aspects relevant to their jobs.

After this introduction, we will discuss in Section 2 the concepts of components, interfaces and architec-
tures. These are the three most primary concepts, on which people have not yet reached an agreement. In

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

Components, Interfaces and Architectures 2

Section 3, we will give an overview about the recent frameworks for component systems modelling, and
argue about the need to link methods. We will in Section 4 give an outline of the framework that is being
developed at UNU-IIST, and point out its difficulties and limitations. We will conclude in Section 5 with
a discussion about future work.

2 Components, Interfaces and Architectures

The notions of components, interfaces and architectures are the most important, but not yet commonly
defined three concepts in CBSE. This section discusses how different views on these concepts can be
reconciled.

2.1 Components

Looking into Oxford Advanced Learners Dictionary, we can find:

A component is any part of which something is made.

In software engineering, this would allow a software system to have as “components” assembly language
instructions, sub-routines, procedures, tasks, modules, objects, classes, software packages, processes,
sub-systems, etc1. This definition obviously is too general for CBSE to provide anything new. To decide
what is to be ruled in and what is to be ruled out, we first clarify the purposes of using “components” in
software development, and then study their implications or necessary properties.

As we said earlier, the widely accepted goal of component-based development is to build and maintain
software systems by using existing software components, e.g. [39, 35, 29, 21, 34, 13, 8]. It is understood
that the components are required to be reusable components. They must interact with each other in a
system architecture [37, 4, 29, 12, 41, 34]. This goal of CBSE implies four orthogonal properties for a
truly reusable component [39]:

P1 contractually specified interfaces,

P2 fully explicit context dependencies,

P3 independent deployment,

P4 third party composition.
1Notice these entities have very different natures.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

Components, Interfaces and Architectures 3

Based on these conditions, it is argued in [20] that an assembly language instruction and software pack-
ages should not be treated as components, but classes in a class library are components. However, classes
can hardly be components if we require P3 when composing components without access to the source
code. On the other hand, we can lift a class to make it usable as a component, by providing a description
of its required classes and methods.

The usage of a component in a software system includes using it to replace an out of date component
to upgrade the system or a failed component to repair the system, adding it to the system to extend
the system services, or composing it into the system while the system itself is still being built. Some
researchers insist on a component being reusable during dynamic reconfiguration. The implications of
properties P1-P4 are different when a component is used in different applications, for different purposes
or in different kinds of systems. This is the main reason why some people give more stringent definitions
than others (e.g. [8, 35]). In [8], a component is defined by the following three axioms :

A1 A component is capable of performing a task in isolation; i.e. without being composed with other
components.

A2 Components may be developed independently from each other.

A3 The purpose of composition is to enable cooperation between the constituent components.

These properties are in fact those required for a “sub-system” in [38].

The paper [8] argues that the three axioms further imply a number of more properties, called corollaries
of components:

C1 A component is capable of acquiring input from its environment and/or of presenting output to its
environment.

C2 A component should be independent from its environment.

C3 The addition or removal of a component should not require modification of other components in the
composition.

C4 Timeliness of output of a component should be independent from timeliness of input.

C5 The functioning of a component should be independent of its location in a composition.

C6 The change of location of a component should not require modifications to other components in the
composition.

C7 A component should be a unit of fault-containment.

The implication of the corollaries from the axioms is only argued informally. Property C2 implies that a
component has no state and this is also insisted on in [39]. This is now generally understood to be only

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

Components, Interfaces and Architectures 4

required in some limited circumstances, such as for dynamic reconfiguration. Property C4 only applies
to real-time systems and properties C5&C6 are only relevant to distributed mobile systems. We do not
see why C7 is needed at all unless a component is to be used to replace another during the runtime of
the system. In fact, in many applications coordinators or managers can be used to coordinate fault-prone
components to achieve fault-tolerance [25].

On the other hand, it is argued in [35] that a software component itself is a static abstraction with plugs
which are not only used to provide services, but also to require them. This implies that components are
not usually used in isolation, but according to a software architecture that determines how components
are plugged together. This in fact is the kind of component called a module in [38].

2.2 Interfaces

Although there is no consensus on what components are, all definitions agree on the importance of
interfaces of components, and interfaces are for composition without the access to source code of com-
ponents. This indicates that the differences are mainly reflected in decisions on what information should
be included in the interface of a component.

We further argue that interfaces for different usages and different applications in different environments
may contain different information, and have different properties:

• An interface for a component in a sequential system is obviously different from one in a com-
municating concurrent system. The later requires the interface to include a description of the
communicating protocol while the former does not.

• An interface for a component in a real-time application will need to provide the real-time con-
straints of services, but an untimed application does not.

• Components in distributed, mobile or internet-based systems require their interfaces to include
information about their locations or addresses.

• An interface (component) should be stateless when the component is required to be used dynami-
cally and independently from other components.

• A service component has features different from a middleware component.

Therefore, it is the interface that determines the external behavior and features of the component and
allows the component to be used as a black box.

Based on the above description, our framework defines the notion of an interface for a component as
a description of what is needed for the component be used in building and maintaining software
systems. The description of an interface must contain information about all the viewpoints among,
for example functionality, behavior, protocols, safety, reliability, real-time, power, bandwidth, memory

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

Components, Interfaces and Architectures 5

consumption and communication mechanisms, that are needed for composing the component in the given
architecture for the application of the system. However, this description can be incremental in the sense
that newly required properties or view points can be added when needed according to the application.

2.3 Architecture

The main concerns about programming in the small are the flow of control and the data structure. The
specifications, design and verification all focus on the algorithm and the data structure of the program.

For programming in the large, the major concerns are components and their consistent integration in an
architectural context. The architectural design becomes a critical issue because of the important roles it
plays in communication among different stakeholders, system analysis and large-scale reuse [4].

There are numerous definitions of software architecture, such as [2, 4, 29, 38]. The common basis of
all of them is that an architecture describes a system as structural decomposition of the system into
subsystems and their connections. Architecture Description Languages (ADLs), such as [2, 4, 29], are
proposed for architecture description. The basic elements of ADLs are components and connectors. An
ADL also provides rules for putting (composing) components together with connectors. They suffer from
the disadvantage that they can only be understood by language experts – they are inaccessible to domain
and application specialists. Informal and graphical notations, such as UML, are now also widely used by
practical software developers for architecture specification [10, 34]. However, the semantic foundation
for these UML-based models has not yet been firmly established.

A mere structural description of a system is not enough in supporting further system analysis, design,
implementation, verification, and reconfiguration. More expressive power is needed for an ADL [5]. In
particular, an ADL should also support the following kinds of views:

Interaction: the interaction protocol and mechanisms,

Functionality and Behavior: functional services, key properties of its components (e.g. safety and
reliability),

Resources and Quality of Service: hardware units required, real-time, power, bandwidth, etc. These
details allow analysis and critical appraisal, such as the quality of service.

It is a great advantage if an architectural description supports the separation of these concerns and allows
them to be consistently integrated for system analysis.

One of the biggest challenges in formal CBSE is to develop a model that effectively supports the separa-
tion of the views for analysis of different concerns, while they can be consistently linked or combined in
a whole system development process.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

State of the Art of Formal Theories 6

3 State of the Art of Formal Theories

This section gives an overview of existing component-based models, and summarises the common re-
quirements on component-based models.

3.1 Models of architectures

Most of the early theories, such as [27, 26, 40, 1, 29], focus on modelling system architectures. All these
models of architectures deal with coordinations among components, in an event-based approach. They
can also be used for specification of connectors and coordinators. However, they do not go to the level
of component design, implementation and deployment. This might be the reason why ADLs still do not
play any major role in practical software engineering.

Recently, more delicate models are proposed for describing behavior of components and their coordina-
tions, such as [3, 13]. Reo [3] is a channel-based model with synchronous communication. The com-
position of components (and connectors) are defined in terms of a few operators. The model is defined
operationally and thus algebraic reasoning and simulation are supported for analysis. The disadvantage
of this approach is that it is not clear how it can be extended to deal with other viewpoints, such as timing
and resources. Also, being event-based, the model in [13] considers a layered architecture for compo-
sition, provided by connectors (glueing operations). It considers real-time constraints and scheduling
analysis. The behavior of a component is defined in a form of a timed automaton. This provides a good
low level model of execution of a component. However, the use of local clocks for modelling delays can
hardly be said to be component-based. We need talk about a component at a higher level of granularity.

The Stream Calculus [6, 7, 42] is a denotational framework, but otherwise similar to those of [3, 13] for
being a channel-based model. In general a denotational model supports the notion of stepwise devel-
opment by refinement and links specifications at different levels of abstraction better. With the stream
calculus, Broy also proposes a multi-view modelling to include interface model, state machine model,
process model, distributed system model, and data model [6, 7].

The main disadvantage of message/event based approaches is that changes of the data states of a com-
ponent are not specified directly. While they are good at modelling behavior of electronic devices and
communicating protocols, they are not inclined to the software engineering terminology and techniques.
The relation of these models to program implementations is not clear and practical software design tech-
niques, such as design patterns, is not well supported. These lead to difficulties in understanding the
consistency between the interaction protocol and the functionality.

3.2 The need to link methods and theories

The grand aim of CBSE is to support independently development of components and compositional
design, analysis and verification of overall systems.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

State of the Art of Formal Theories 7

To achieve this aim, it is essential that the approach provides a notation for multi-view modelling, that
allows separation of concerns and supports modelling and reasoning about properties at different levels
of abstraction. The nature of multi-view and separation of concerns allows us to independently identify,
describe and compose different correctness conditions/aspects [19] of different views of components,
including syntactic interfaces, static and functional behavior, dynamic and synchronization behavior,
interaction protocols, timing and resource constraints, etc. Separation is the key principle to ensure the
simplicity of the model [21].

It is crucial that the model supports abstraction with information hiding so that we can develop refinement
and transformation based design techniques [21, 6, 11]. This will provide a theoretical foundation for the
integration of formal design techniques with practical engineering development methods. Design in this
way can preserve correctness to a certain level of abstraction and support code generation that ensures
certain correctness properties (i.e. being correct by construction [31]).

Refinement in this framework characterises the substitutability of one component for another. It in-
volves the substitutability of all the aspects, but we should be able to define and carry out refinement
for different features separately, without violating the correctness of the other aspects. The integration
of event-based simulation and state-based refinement facilitates assurance of global refinement by local
refinement. Global refinement is specified as set containment of system behavior (such as the failure-
divergence semantics of CSP). Global refinement is verified in a deductive approach supported possibly
with support of a theorem prover. Local refinement is specified in terms of pre and post conditions of
operations and verified by simulation often supported by a model checker. Also, refinement in CBSE
must be compositional in order to global reasoning about the system can be done by local reasoning
about the components [7].

We would also like the refinement calculus to support incremental and iterative design, analysis and
verification. This is obviously important for scaling up the application of the method to large scale
software development, and for the development of efficient tool support. We believe being incremental
and iterative is closely related and complementary to being compositional, and important for lowering
the amount of specification and verification and reducing the degree of automation [31].

To benefit the advantages of different methods for dealing with different aspects of component systems,
an integration of these methods is needed so that their theories and tools are linked to ensure the con-
sistency of the different views of a system. For example, the static functionality described by pre- and
post conditions, dynamic behavior by state machines (or transition systems) and interaction protocols by
traces have to be consistent.

Summary A number of formal notations and theories have been well-established and proved them-
selves effective as tools for the treatment of different aspects of computer systems. Operational simu-
lation techniques and model checking tools are believed to be effective for checking correctness, con-
sistency and refinement of interaction protocols, while deductive verification and theorem provers are
found better suited for reasoning about denotational functionality specification. For CBSE, analysis and
verification of different aspects of correctness and substitutability can thus be carried out with differ-
ent techniques and tools. However, integration of components requires the integration of the methods

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 8

for ensuring different aspects of correctness and substitutability. The integration requires an underlying
execution model of component software systems.

A component may not have to be designed and implemented in an object-oriented framework. However,
the current component technologies such as COM, CORBA, and Enterprise JavaBeans are all built upon
object-oriented programming. Object programs are now widely used in applications and many of them
are safety critical. This leads to the need to investigate the techniques of modelling, design and verifica-
tion of object systems and the construction of component systems on underlying object systems. Also,
the unification of the theories of imperative programming and object-oriented programming is naturally
achievable [16, 24, 14].

4 rCOS

At UNU-IIST, we are developing a model and calculus, called rCOS, for component and object systems.
In this section, we focus on the main theme and features of this model, instead of technical details.

Based on discussion the previous sections, we intend to formalize the characteristics of a component in
a model with the following elements and notions which serve different purposes for different people at
different stages of a system development:

• interfaces: describe the structural nature of a system and are only used for checking syntactic
dependencies and compositionality. They are represented in terms of signatures of service opera-
tions.

• contracts: are semantic specifications of interfaces. A contract relates an interface to an applica-
tion by specifying the (abstract) data model, functionality of the service operations, synchroniza-
tion protocols, and other required qualities of service (QoS) depending on the application.

The model also provides a definition of consistency among these views and method for checking
this consistency. A contract can be extended horizontally by adding more services, more properties
(e.g. QoS). In this paper, we are only concerned with functionalities and protocols.

• components: are implementations of contracts. The execution model of a component is defined.
The relation of a component to a contract is defined to be that the correctness specification of the
component.

• operations: are defined for interfaces, contracts and components so that they can be composed in
different ways.

• substitutability: is defined in terms of refinement which covers and relates state-based refinement
and even-based simulation.

• coordination: is defined as predicates on protocols to glue and manage a group of components.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 9

• class model: is used to define the data model that is more general than pure data types and makes
it easier to link a contract to a component with an object-oriented implementation.

Interfaces and contracts are used by assemblers to check compatibility of components when assembling
or maintaining a system. If components do not match with each other, assemblers can consider to write
connectors with glue code to put them together. Connectors can sometimes be built as components. The
protocols in the contracts is used to avoid deadlock when putting components together. The functional
specification of the operations are used to ensure that the user (the other components) provides correct
inputs and the component returns with correct outputs.

The designer of a component has to ensure that the component satisfies its contract, in particular to avoid
livelock and design errors. The verifier (certifier) must have access to the code of the component to verify
the satisfaction of the contract by the component.

4.1 UTP: The semantic basis

rCOS is based on Hoare and He’s Unifying Theories of Programming (UTP) [18]. UTP takes an ap-
proach to modelling the execution of a program in terms of a relation between the states of the program.
Here, a state of a program P is defined over a set of variables called the alphabet of the program, denoted
by α(P) (simply α when there is no confusion). Given an alphabet α, a state of α is a (well-typed)
mapping from α to the value space of the alphabet.

4.1.1 Programs as designs

For an imperative sequential program, we are interested in observing the values of the input variables inα
and output variables outα. We use a Boolean variable ok to denote whether a program is started properly
and its primed version ok′ to represent whether the execution has terminated. The alphabet α is defined
as the union inα ∪ outα ∪ {ok, ok′}, and a design is of the form

(p(x) ` R(x, y′))
def
= ok ∧ p(x)⇒ ok′ ∧R(x, y′)

where

• p is the precondition, defining the initial states

• R is the postcondition, relating the initial states to the final states in terms the of input value x and
the output value y′. Note that some variable x is modified by a program and in this case we say
x ∈ inα and the primed version x′ ∈ outα.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 10

• ok and ok′: describe start and termination, they do not appear in expressions or assignments in
program texts

The design represents a contract between the “user” and the program such that if the program is started
properly in a state satisfying the precondition it will terminate in a state satisfying the postcondition.

A design is often framed in the form

β : (p ` R)
def
= p ` (R ∧ w′ = w)

where w contains all the variables in inα− β, which are the variables in in but not in β.

We can use the conventional operations on program statements for designs too.

• Given two designs such that the output alphabet of P is the same as the primed version of the input
alphabet of Q, the sequential composition

P(inα1, outα1);Q(inα2, outα2)
def
= ∃m · P(inα1,m) ∧ Q(m, outα2)

• Conditional choice: (D1 ¢ b¤ D2)
def
= (b ∧ D1) ∨ (¬b ∧ D2)

• Demonic and angelic choice operators:

D1 u D2

def
= D1 ∨ D2 D1 t D2

def
= D1 ∧ D2

• while b do D is defined as the weakest fixed point of

X = ((D;X) ¢ b¤ skip)

We can now define the meaning of primitive program commands as framed designs in Table 1. Composite
statements are then defined by operations on designs.

4.1.2 Refinement of designs

The refinement relation between designs is then defined to be logical implication. A design D2 = (α,P2)
is a refinement of design D1 = (α,P1), denoted by D1 v D2, if P2 entails P1

∀x, x′, . . . , z, z′ · (P2 ⇒ P1)

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 11

command: c design: [[c]] description
skip {} : true ` true does not change anything, but ter-

minates
chaos {} : false ` true

anything, including non-
termination, can happen

x := e {x} : true ` x′ = val(e) side-effect free assignment; updates
x with the value of e

m(e; v)
[[var in, out]];

[[in:=e]]; [[body(m)]]; [[v:=out]];
[[end in, out]]

m(in; out) is the signature with in-
put parameters in and output param-
eters out; body(m) is the body com-
mand of the procedure/method

Table 1: Basic commands as designs.

where x, x′, . . . , z, z′ are variables contained in α. We write D1 = D2 if they refine each other.

If they do not have the same alphabet, we can use data refinement. Let ρ be a mapping from α2 to
α1. Design D2 = (α2,P2) is a refinement of design D1 = (α1,P1) under ρ, denoted by D1 vρ D2, if
(ρ;P1) v (P2; ρ). It is easy to prove that chaos is the worst program, i.e. chaos v P for any program P.
For more algebraic laws of imperative programs, please see [18].

The following theorem is the basis for the fact that the notion of designs can be used for defining the
semantics of programs.

Theorem 1 The notion of designs is closed under programming constructors:

((p1 ` R1); (p2 ` R2)) = ((p1 ∧ ¬(R1;¬p2)) ` (R1;R2))
((p1 ` R1) u (p2 ` R2)) = ((p1 ∧ p2) ` (R1 ∨R2))
((p2 ` R1) t (p2 ` R2)) = ((p1 ∨ p2) ` ((p1 ⇒ R1) ∧ (p2 ⇒ R2)))
((p1 ` R1)¢ b¤ (p2 ` R2)) = ((p1 ¢ b¤ p2) ` (R1 ¢ b¤R2))

4.1.3 Linking designs with predicate transformers

A widely used method for program analysis and design is the calculus of predicate transformers [9]. The
link from the design calculus to the theory of predicate transformers is given by the following definition

wp(p ` R, q)
def
= p ∧ ¬(R;¬q)

It gives the weakest precondition for the design p ` R to ensure the post condition q. Design p ` R is
feasible iff wp(p ` R, false) = false, or equivalently

∀v • (p(v)⇒ ∃v′ •R(v, v′)

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 12

meaning p ` R can deliver a result whenever its execution terminates.

In [15], we show this definition of wp ensures validity of all the algebraic rules of the wp transformer.
For example

wp(true ` x′ = f(x), q(x)) = q[f(x)/x] assignment
wp(D1 ∨D2, q) = wp(D1, q) ∧wp(D2, q) disjunction /non-determinism

4.2 Interfaces

In our framework, the notion of interface is different from that in Section 2.2. There, an “interface” is
actually an interface specification and the same as the notion of contracts that we are to define in the next
subsection.

A primitive interface is a collection of features where a feature can be either a field or a method. We thus
define a primitive interface as a pair of feature declaration sections:

I = 〈FDec, MDec〉

where FDec is a set of field declarations, denoted by I.FDec, and MDec a set of method declarations,
denoted by I.MDec, respectively.

A member of FDec has the form x : T where x and T represent respectively the name and type of this
declared field. It is forbidden to declare two fields with the same name.

A method op(in inx, out outx) in MDec declares the name op, the list of input parameters inx and the list of
output parameters of the method. Each input or output parameter declaration is of the form u : U giving
the name and type of the parameter.

The method name together with the numbers and types of its input and output parameters forms the
signature of a method. In general both inx and outx can be empty. For simplicity and without losing any
generality in the theory, we assume a method has one input parameter and one output parameter and thus
can be represented in the form op(in : U, out : V) by removing the key words in and out. Notice that the
names of parameters are irrelevant. Thus, op(in1 : U, out1 : V) and op(in2 : U, out2 : V) are treated as the
same method signature.

4.2.1 Interface inheritance and hiding operations

Inheritance is a useful means for reuse and incremental programming. When a component provides only
part of the services that one needs or some of the provided operations are not quite suitable for the need,

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 13

we may still use this component by rewriting some of the operations or extending it with some operations
and attributes.

Definition 1 (Interface inheritance) Let Ii (i = 1, 2) be interfaces. I1 and I2 are composable if no field
of Ii is redefined in Ij for i 6= j. When they are composable, notation I2 ⊕ I1 represents an interface with
the following field and method sectors

FDec
def
= FDec1 ∪ FDec2

MDec
def
= MDec2 ∪ {op(in : U, out : V)|op ∈ MDec1 ∧ op /∈ MDec2}

To enable us to provide different services to different clients of a component, we allow to hide operations
in an interface to make them invisible when the component is composed with certain components. Hiding
operations provides the opposite effect to interface inheritance and is to be used to restrict an interface.
In a graphical notation like UML, this can be achieved by the notation of generalization alone.

Definition 2 (Hiding) Let I be an interface and S a set of method names. The notation I\S denotes the
interface I after removal of methods of S from its method declaration sector.

FDec
def
= I.FDec, MDec

def
= I.MDec \ S

The hiding operator enjoys the following properties.

1. Hiding two sets of operations separately is the same as hiding all of the operations in the two set
together, (I\S1)\S2 = I\(S1 ∪ S2). Thus, the order in which two sets of operations are hidden is
inessential too.

2. Hiding distributes among operands of interface inheritance

(I⊕ J)\S = (I\S)⊕ (J\S)

4.3 Contract

A contract gives the functional specification of an interface.

Definition 1 (Contract) A contract is a pair Ctr = (I,MSpec), where

1. I is an interface,

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 14

2. MSpec maps each method op(in : U, out : V) of I to a specification of op that is a design with the
alphabet

inα
def
= {in} ∪ I.FDec, outα

def
= {out′} ∪ I.FDec′

For a contract Ctr = (I,MSpec), we will use Ctr.I, Ctr.FDec, Ctr.MDec and Ctr.MSpec to denote respectively
I, I.FDec, I.MDec and MSpec.

Two contracts can be composed to extend both of them only when their interfaces are composable and
the specifications of the common methods are consistent. This composition will be used to calculate the
provided and required services when components are composed.

Definition 2 (Composable contracts) Contracts Ctri = (Ii, MSpeci), i = 1, 2, are composable if

1. I1 and I2 are composable, and

2. for any method op occurring in both I1 and I2,

MSpec1(op(in1 : U, out1 : V)) =
MSpec2(op(u : U, v : V))[in1, out′1/u, v

′]

In this case their composition Ctr1‖Ctr2 is defined by

I
def
= I1 ⊕ I2, MSpec

def
= MSpec1⊕MSpec2

where MSpec1⊕MSpec2 denotes the overriding MSpec1(op) with MSpec2(op) if op occurs in both I1 and I2.

Notice that for the purpose of compositional reasoning, condition (2) makes the composition conservative
extension and serves as a limited form of UML generalization.

Based on this definition, a calculus of refinement of contracts and components is developed in [23]. In
the rest of this section, we present the generalized notion of contracts and components.

4.4 Reactive contracts

A contract defined in the previous subsection specifies the static functionality of a component that does
not require synchronization when the operations are used. Such components are often used in the func-
tional layer [11]. Business process and rules are, however, accomplished by invoking particular se-
quences of operations. This means a protocol of using the function operation must be imposed, often

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 15

by composing a component in the functional layer and a component in the system layer [11]. The com-
ponent then becomes reactive and only reacts to the calls of the operation that come in the right order.
To describe synchronisation, we introduce two Boolean observables wait and wait′ to the alphabet of an
operation op(in : U, out : V) in a contract. A design D on such an extended alphabet is called reactive if
W(D) ≡ D holds for the linking function

W(D)
def
= (true ` wait′)¢ wait¤D

And we extend the specification MSpec(op) to a guarded design (α, g,D) denoted as g&D, where

• g is boolean expression over I.FDec and represents the firing guard of op

• D is a reactive design over α = {in,wait, ok} ∪ I.FDec ∪ {out′, ok′,wait′} ∪ I.FDec′.

The semantics of a guarded design g&D is defined as (true ` wait′)¢ ¬g ¤D. The following theorem
forms the theoretical basis for using reactive designs as the semantic domain of a programming language.

Theorem 1 (Reactive designs are closed under programming constructors)

1. For any design p ` R, W(p ` R) is a design.

2. W maps a design to a reactive design: W2(D) ≡ W(D)

3. If D is a reactive design, so is the g-guarded version g&D.

4. W is monotonic: W(D1) v W(D2) iff (¬wait ⇒ (D2 ⇒ D1)). So, all reactive designs form a com-
plete lattice.

5. Reactive designs are closed under the conventional programming operators.

We can now formally define a reactive contract.

Definition 3 (Reactive Contract) A reactive contract is a tuple Ctr = (I, Init,MSpec,Prot), where

• I is an interface

• Init is a design that initialises the state and is of the form

true ` Init(v′) ∧ ¬wait′, where Init is a predicate

• MSPec assigns each operation to a guarded design (α, g,D).

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 16

• Prot, called the protocol, is a set of sequences of call events. Each is of the form

?op1(x1), . . . , ?opk(xk)

where ?opi(xi) is a (receipt of) call to operation opi in I.MDec with an input value xi.

We use guard(op) to denote the guard in MSPec(op) for an operation op ∈ MDec.

Notice that a contract defined in Section 4.3 can be used as the model of the static behavior of the
component, and can seen as special case of reactive contract with all the guards of the operations being
true, and the protocol being the whole set of sequences of the operations MDec∗.

Definition 4 (Semantics of Contracts) The dynamic behavior of Ctr is described by the triple

(Prot, F(Ctr), D(Ctr))

where

• the set D(Ctr) consists of the sequences of interactions between Ctr and its environment which
lead the contract to a divergent state

D(Ctr)
def
= {〈?op1(x1), op1(y1)!, . . . , ?opk(xk), opk(yk)!, ?opk+1(xk+1)〉 · s |

∃v, v′, wait′ • (Init; g1&D1[x1, y1/in1, out′1];
. . . ;
gk&Dk[xk, yk/ink, out′k])[true/ok][false/ok′]}

where opi(yi)! represents the return event generated at the end of execution of opi with the output
value yi, in1 and outi are the input and output parameters of opi, and gi&Di is the guarded design
of method opi.

• F(Ctr) is the set of pairs (s, X) where s is a sequence of interactions between C and its envi-
ronment, and X denotes a set of methods which the contract may refuse to respond to after it has
engaged all events in s

rej
def
= (true, false, true, false/ok,wait, ok’,wait′)

rej1
def
= (true, false, true, true/ok,wait, ok’,wait′)

F(Ctr)
def
= {(〈 〉, X) | ∃v′ • Init[rej] ∧ ∀?op ∈ X • ¬guard(op)[v′/v]}

∪

(〈?op1(x1), op1(y1)!, . . . , ?opk(xk), opk(yk)!〉, X) |
∃v′ • (Init; g1&D1[x1, y1/in1, out′1];
. . . ;
gk&Dk[xk, yk/ink, out′k])[rej] ∧ ∀?op ∈ X • ¬guarad(op)[v′/v]

∪

(〈?op1(x1), op1(y1)!, . . . , ?opk(xk)〉, X) |
∃v′ • (Init; g1&D1[x1, y1/in1, out′1];
. . . ;
gk−1&Dk−1[xk−1, yk−1/ink−1, out′k−1

])[rej]; gk&Dk[xk/ink][rej1]

∪ {s,X) | s ∈ D(Ctr) ∧ ∀?op ∈ X • ¬gi[v
′/v]}

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 17

F(Ctr) defines fives cases when events may be refused and thus deadlock may occur if the environment
only offers these refusals:

1. The first subset of the refusals records the cases when the operation call events ?op in X cannot
occur because their guards do not hold in the initial state.

2. The second subset identifies those cases where after a sequence of calls executed, the system may
reach a state where the guards of the events in X are false.

3. The fourth case defines the scenarios when the execution of an operation opk enters a waiting state.

4. Finally, the fifth case takes the divergent traces into account.

We define the traces of a contract as those traces in the failure set

T(Ctr)
def
= {s | ∃X • (s,X) ∈ F(Ctr)}

which are prefix closed.

Notice that the guarded designs of the operations defines a state-based model of the dynamic behavior
of the component. It corresponds to a state transition system [28, 17] and it has a clear link to temporal
logic approaches for analysis and verification [22, 25]. When the state space can be reduced to a finite
one, the specification of the operations can be represented by a finite state machine or automaton, that
model checking tools are based on. From the guarded designs, we can obtain the model of the static
behavior too. This is how a contract model combines the event-based model of the protocol, the state-
based model of the dynamic behavior and the pre- and postcondition specification of the static behavior
of a component. However, the protocol and the functional specification of the operations have to be
consistent.

Definition 5 (Consistency) A contract Ctr is consistent, denoted by Consistent(Ctr), if it will never
enter a deadlock state if its environment interacts with it according to the protocol. That is for all
〈?op1(x1), . . . , ?opk(xk)〉 ∈ Prot,

wp(Init;g1&D1[x1/in1]; . . . ; gk&Dk[xk/ink],¬wait ∧ ∃op ∈ MDec•guard(op)) = true

It is shown in [15] that a contract Ctr is consistent if and only if for all sequences tr in Prot

1. there is a trace s in T(Ctr) whose projection2 on operation calls sº{?} equals tr, and

2We use º for the projection (or restriction) operator in general.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 18

2. for any failure (s,X) ∈ F(Ctr), if sº{?} is a prefix of tr then not all operations and operation returns
are refusals, that is X 6= {?op, op! | op ∈ MDec}.

The following useful properties of consistency are proved in [15]:

1. The union of consistent protocols is a consistent protocol (with respect to a specification for
the operations), that is, if the contract Ctri = (I, Init,MSPec,Proti), i = 1, 2, are consistent, so is
Ctr = (I, Init,MSPec,Prot1 ∪ Prot2).

2. If contract Ctr1 = (I, Init,MSPec,Prot1) is consistent and Prot2 ⊆ Prot1, Ctr1 = (I, Init,MSPec,Prot2)
is also consistent. This allows us to restrict the services of a component.

3. For contracts Ctri = (I, Initi,MSPeci,Prot), i = 1, 2, if contract Ctr1 is consistent, Init1 v Init2, and
MSPec1(m) v MSPec2(m), for all m ∈ I.MDec, then Ctr2 is consistent.

Therefore, for a given (I, Init,MSPec), there is more than one protocol consistent with it. We call the
largest one the weakest consistent protocol, denoted as WProt(I, Init,MSPec), such that

Consistent(I, Init,MSPec,Prot)⇒ Prot ⊆ WProt(I, Init,MSPec)

The weakest consistent protocol can be directly defined as

WProt
def
= {〈?op1(x1), . . . , ?opk(xk)〉 | wp(Init; g1&D1[x1/in1]; . . . ; gk&Dk[xk/ink],

¬wait ∧ ∃op ∈ MDec • guard(op))}

We can show WProt is prefix closed [15]. For simplicity, we use (I, Init,MSPec) to denote (I, Init,MSPec,WProt).

Example 1 Consider a one-place buffer with an interface

BI = 〈empty : Boolean, {put(in : Item), get(out : Item))}〉

Given MSPec to assign put and get as

MSPec(put)
def
= empty&(true ` ¬empty′), MSPec(get)

def
= ¬empty&(true ` empty′)

With the initial condition Init
def
= empty, we can calculate the weakest consistent protocol to be (?put, ?get)∗

which is the set of alternating sequences of put and get, starting with a put. An n-place buffer can be sim-
ilarly defined.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 19

Definition 6 (Contract Refinement) Contract Ctr1 is refined by contract Ctr2, denoted by Ctr1 v Ctr2,
if

1. Ctr2 provides no less services than Ctr1:Ctr1.MDec ⊆ Ctr2.MDec

2. Ctr2 is not more likely to diverge than Ctr1: D(Ctr1) ⊇ D(Ctr2)ºCtr1.MDec, and

3. Ctr2 is not more likely to deadlock than Ctr1: T (Ctr1) ⊇ T (Ctr2)ºCtr1.MDec.

Notice that refinement allows us to add new services. The following two theorems (see [15] for the
proofs) link the notions of simulation and refinement and combine event-based and state-based mod-
elling.

Theorem 2 (Refinement by Downwards Simulation) Let Ctri = (Ii, Initi,MSPeci) be two contracts.
Ctr1 v Ctr2, if there exists a total mapping ρ(u, v′) from the fields FDec1 of Ctr1 to the fields FDec2 of Ctr2
such that the following conditions are satisfied

1. ρ preserves the initial condition: Init2 ⇒ (Init1; ρ)

2. ρ preserves the guards of all operations: (guard1(op); ρ) = (guard2(op)) for all op ∈ MDec1.

3. The function specification of each operation by Ctr1 is preserved by Ctr2: for each op ∈ MDec1

MSpec
1
(op); ρ v ρ;MSPec2(op)

Notice that the state mapping ρ is used as a design which does not change wait. In this case we say that
ρ is a downwards simulation from Ctr1 to Ctr2

Theorem 3 (Refinement by Upwards Simulation) Let Ctri = (Ii, Initi,MSPeci) be two contracts. Ctr1 v Ctr2,
if there exists a surjective mapping ρ(v, u′) from the fields FDec2 of Ctr2 to the fields FDec1 of Ctr1 such
that the following conditions are satisfied

1. ρ preserves the initial condition: (Init2; ρ)⇒ Init1

2. ρ preserves the guards of all operations: ρ⇒ (guard1(op) = guard2(op)) for all op ∈ MDec1.

3. The function specification of each operation by Ctr1 is preserved by Ctr2: for each op ∈ MDec1

MSpec
2
(op); ρ w ρ;MSPec1(op)

In this case we say that ρ is a upwards simulation from Ctr2 to Ctr1

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 20

The same results can be found about transitions systems and the temporal logic of actions [22, 25].

Theorem 4 (Completeness of simulations) If Ctr1 v Ctr2, then there exists a contract Ctr such that

1. There is an upwards simulation from Ctr to Ctr1.

2. There is a downwards simulation from Ctr to Ctr2.

4.4.1 Contract operations

All the operations defined by an interface are public, i.e, they are directly accessible by the environment
of the interface. We can remove services from a contract as we did for an interface.

Definition 7 (Removing Services) Let Ctr = (I, Init,MSPec) be a contract and S a subset of the opera-
tions MDec, then contract Crt\S

def
= (I\S, Init,MSPecº(MDec− S)), where we use “−” for set difference.

The behavior of Ctr\S is defined by

D(Ctr\S) = {s | s ∈ D(Crt) ∧ s ∈ {?op, op! | op ∈ MDec− S}∗}
F(Ctr\S) = {(s,X) | (s,X) ∈ F(Crt) ∧ s ∈ {?op, op! | op ∈ MDec− S}∗∧

X ⊆ {?op, op! | op ∈ MDec− S}}

When a component is to be implemented, an operation can be used in the code of another. We would like
to be able to remove the former from the interface but at the same the implementation of the latter method
should still work without the need for any modification. To handle this problem, we introduce in this
section the notion of private (or internal) methods/operations, which are not available to the public, but
can be used by the component itself. For this we need to generalize the notation of contracts to general
contracts.

Definition 8 (General Contract) A general contract GCtr extends a contract Ctr with a set of private
methods declarations PriMDec and their specification PriMSPec

GCtr = (Ctr,PriMDec,PriMSPec)

The behavior of GCtr is defined to be that of Ctr.

Now we can hide a public operation in MDec of a general contract to make it internal.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 21

Definition 9 (Hiding Service) Let GCtr = (Ctr,PriMDec,PriMSPec) be a general contract, and S a subset
of the public methods MDec. The restricted contract GCtr\S is defined as

(Ctr\S,PriMDec ∪ S,PriMSPec ∪MSPecºS)

We are now ready to define the composition of two general contracts.

Definition 10 (Composition of Contracts). Let GCtri, i = 1, 2 be two general contracts such that

1. all shared fields have the same types,

2. all shared methods have the same specification

3. the initial conditions of the two contracts are consistent, that is satisfiable.

The composition GCtr1‖GCtr2 is the general contract

GCtr = ((I, Init,MSPec),PriMDec,PriMSPec)

where

I.FDec
def
= I1.FDec ∪ I2.FDec union of the fields

Init
def
= GCtr1.Init ∧ GCtr2.Init conjoining the initial conditions

I.MDec
def
= I1.MDec ∪ I2.MDec union of the public methods

MSPec
def
= MSpec1 ⊕MSPec2 overriding union of the specifications

PriMDec
def
= PriMDec1 ∪ PriMDec2 union of the private methods

PriMSPec
def
= PriMSpec1 ⊕ PriMSPec2 overriding union of the specifications

Properties of the operations on contracts can be found in [15].

4.5 Components and their compositions

A component is an implementation of a contract. The implementation of an operation, however, may
call operations of other components. Therefore, a component may optionally have a required interface
as well as a provided interface and executable code.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 22

Definition 11 (Component) A component C is a tuple

(I, Init,MCode, PriMDec, PriMCode, InMDec)

where

1. I is an provide interface.

2. PriMDec is a set of method declarations which are private to the component.

3. The tuple (I, MCode, PriMDec, PriMCode) has the same structure as a general contract, except
that the functions MCode and PriMCode map each method op in the sets I.MDec and PriMDec
respectively to a guarded command of the form g −→ c, where g is called the guard, denoted as
guard(op) and c is a command, denoted as body(op).

4. InMDec denotes the set of input methods which are called by public or internal methods, but not
defined in MDec ∪ PriMDec.

We use C.I, C.Init, C.MCode, C.PriMDec, C.PriMCode and C.InMDec to denote the corresponding parts of
C.

The semantics of a component is defined to be a function that given a contract for the required interface,
returns a general contract calculated from the code of the operations.

Definition 12 (Semantics of Components) Let InCtr be a contract such that its interface methods are
the same as the required methods of C, InCtr.MDec = C.InMDec. The behavior C(InCtr) of a component
C with respect to InCtr is the general contract

((I,MSPec), Init,PriMDec,PriMSPec)

where

I.FDec
def
= C.FDec ∪ InCtr.FDec

I.MDec
def
= C.MDec ∪ InCtr.MDec

MSPec
def
= ΦºMDec

PriMSPec
def
= ΦºPriMDec

Init
def
= C.Init ∧ InCtr.Init

where function Φ assign each operation in Mdec ∪ PriMDec the guarded design calculated from the code:

Φ(op)
def
= guard(op)&[[body(op)]]

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 23

where if m ∈ InMDec is called in body(op), the specification of op assigned by InCtr is used in the calcu-
lation [15].

It is easy to show that if InCtr1 v InCtr2, then C(InCtr1) v C(InCtr2)

Definition 13 (Component Refinement) A component C1 is refined by component C2, denoted by C1 v C2,
if C1.MDec ⊆ C2.MDec, C1.InMDec ⊇ C2.InMDec, and the contract refinement C1(InCtr) v C2(InCtr) holds
for all input contracts InCtr.

4.5.1 Composition of components

The most natural composition is to plug the provided operations of one component into the required
operation of the other to chain these two together.

Definition 14 (Chaining) Let C1 and C2 be components such that

1. none of the provided or private methods of C2 appears in C1,

2. C1 and C2 have disjoint field declarations.

The chain C1〉〉C2 of C1 with C2 is the component, which has

• the fields C1FDec ∪ C2.FDec.

• the required operations C1.InMDec ∪ C2.InMDec− C1.MDec ∩ C2.InMDec

• the provide operation C1.MDec ∪ C2.MDec− C1.MDec ∩ C2.InMDec

• the initial condition C1Init ∧ C2.Init

• the code C1.Code ∪ C2.Code

• the private code C1.PriCode ∪ C2.PriCode

Theorem 5 For any given input contract InCtr

(C1〉〉C2)(InCtr)
def
= (C1(InCtr1)‖C2(InCtr2))\(C1.MDec ∩ C2.InMDec)

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 24

where

InCtr1
def
= InCtrºC1.InMDec

InCtr2
def
= InCtrº(C2.InMDec− C1.MDec)‖C1(InCtr1)º(C1.MDec ∩ C2.InMDec)

The chaining operator is monotonic and commutes with the hiding operator [15]. The other often used
composition is disjoint parallel composition.

Definition 15 (Disjoint Composition) Let C1 and C2 be components such that they do not share fields
or public operations. Then C1 ⊗ C2 is defined to be the composite component which has the provided
operations of C1 and C2 as its provided operations, and the required operations of C1 and C2 as its
required operations:

(C1 ⊗ C2)(InCtr)
def
= C1(InCtrºC1.InMDec)‖C2(InCtrºC2.InMDec)

Obviously, chaining C1〉〉C2 is the same as disjoint parallel composition C1 ⊗ C2 when the provided
services of C1 are disjoint from the required services of C2.

We also allow a provided operation to call another (possibly the same) provided operation, so as to link
a required operation to a provided operation.

Definition 16 (Feedback) Let C be a component and m ∈ C.MDec and n ∈ C.InMDec. C[m ↪→ n] is the
component such that for any InCrt

C[m ↪→ n](InCtr)
def
= C(InCtr.MSPec⊕ {n 7→ (g&[[c]]})\{m}

C.MCode(m) = g −→ c. Notice here the design [[c]] is the weakest fixed point of a recursive equation if it
calls other methods [15].

4.5.2 Publishing components and putting components together

Please notice that the conditions for disjoint parallel composition can be easily checked and carried out
by either assemblers or designers.

When putting two components together using the chaining composition C1〉〉C2, one may not have access
to the codes of the components. In this case, a black box specification of Ci must be given for Ci in the

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 25

form of a pair of 〈PCtri,RCtri〉 of a provided (or promising) contract and a required (or relied) contract
for the components Ci. They are provided by the designer who has checked to ensure

Ci(RCtri) w PCtri

In fact, in these black box specifications, it is not necessary for the specification of operations to include
the guards of the operations. The guards are only used by the designers to ensure the consistency of the
protocol and the functional behavior.

Definition 17 (Component publication). Let C be a component and InCtr a contract for the required
methods of C. Define

pMSpec
def
= {op 7→ Dop | op 7→ g&Dop ∈ C(InCtr).MSpec}

rMSpec
def
= {op 7→ Dop | op 7→ g&Dop ∈ InCtr.MSpec}

Then for any PProt ⊆ WProt(C(InCtr)) and RProt ⊇ WProt(InCtr)

We then call the pair 〈PCtrC,RCtrC〉 a publication of component C, where

PCtrC
def
= (C.FDec,C.MDec,C.Init, pMSpec,PProt)

RCtrC
def
= (C.InFDec,C.InMDec, InCtr.Init, rMSpec,RProt)

When C1 and C2 are to be chained, we need to check to ensure the compatibility of PCtrC1

and RCtrC2

,
i.e. PCtrC1

w RCtrC2

, so that the protocol in the required contract RCtrC2

agrees with that in the provided
protocol, and the functional designs of the operations in the provided contract PCtrC1

refine those in
RCtrC2

.

Furthermore, the components we have considered so far are passive components. Therefore, we treat
sequences in the required protocol in RCtrC2

as non-deterministic choices, but the provided protocol in
PCtrC1

as providing deterministic choice.

Let PubSpecCi
= 〈PCtrCi

,RCtrCi
〉, be a publication of component Ci, i = 1, 2, PProtCi

and RProtCi
the

provided protocol and required protocol, and MDeci and InMDeci the provided and required operations,
respectively. We define

PProtC1

/RProtC2

def
= {s|∃t1 ∈ PProtC1

, t2∈RProtC2

•((t1º(InMDec2)[!/?] = t2)∧

(t1º(MDec1 − InMDec2) = s))}

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 26

Definition 18 (Interaction compatibility) For a provided protocol PProtC1

and a required protocol
RProtC2

given in the previous paragraph, we say they are compatible if the following refinement relation
holds

RProtC1

ºInMDec2 ⊇ RProtC2

[?op/!op | op ∈ InMDec]

where a sequence in the required protocol is of the form 〈!op1(x1), . . . , !opk(xk)〉 and !opi(xi) is the call
out event3to operation op.

Furthermore, when they are compatible, we define the (largest) provided protocol after the provided
operations are plugged in the required operations

PProtC1

〉〉RProtC2

def
= PProtC1

/RProtC2

Note that the compatibility checking can be easily automated if we restrict proptocols to regular lan-
guages.

Example 2 For the one-place buffer, the provided protocol is (?put, ?get)∗. Assume a producer requires
to interact with the buffer to place items into the buffer only three times. The required protocol would be

{〈!put, !put, !put〉}. It is compatible with the provided protocol, and the protocol

(?put, ?get)∗/{〈!put, !put, !put〉} = {〈?get, ?get, ?get〉}

So a consumer that can be composed in must have such a required protocol.

When we have a number of components requiring services from following PProtC1

, the chaining com-
positions can be done (compatibility checking too) one by one

PProtC1

〉〉RProtC2

〉〉 . . . 〉〉RProtCk

The black box specifications of components are in fact the interfaces in UML. They represent the static
structural dependency among components as illustrated in Figure 1, which is from the example in [23].

For general system assembly, the model of components needs to be extended by adding the notion of
ports to represent the Service Access Points (SAPs) [36]. Each port is attached with a pair of provided

3It is different from op(y)! which is the return of the method op.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 27

IParceLoc

IParcelInfo

CustomerService LocateParcel ()

<<component>>

GTS

ISomeInterface <<component>>

CarrierSystem

where()

<<component>>

MLS

<<component>>

GIS
DispatchParcel ()

Figure 1: Static dependency among components

and required interfaces specified by their contracts 〈PCtr,RCtr〉, either can be optionally empty. We
require that interfaces at different ports are independent. For interaction between two components, a
binding has to be established between the required interface at a port of one component and a compatible
provided interface at a port of another. This extension allows us to refine (substitute) a component by
one with added ports.

4.6 Active components and connectors

The components (and contracts) we have studied so far are only passive components. When a provided
service is called (according to the protocol), the component starts to execute and during the execution it
may call services of other components. In general a component may be active (i.e. an actor in the sense
of ROOM [36]) and have its own control and once it is started it can execute its internal actions, call
services of other components, and wait to be called by other components. For purely active components,
we can simply give the specification of the required contracts, including the protocol. The sequences in
the protocol do not have to be non-deterministic choices in general. However, it is always safe to assume
the worst case, i.e. the choice over input (namely method calls) is non-deterministic. Otherwise, the
failure set must be given to describe when a choice is in the refusal set.

For a more general active component the provided and required operations may be tightly related and it
is not always possible to separate the provided protocol and required protocol by projections.

For example, an active producer that uses the buffer in Example 2 only produces the next item after
receiving an acknowledgement of the receipt of the previous one from the consumer. The protocols of
the producer Prd and the consumer Con are given respectively as

Prd
def
= (!put, ?ack)∗, Con

def
= (!get, !ack)∗

Again, we can introduce ports into the mode of active components to represent independently defined
interfaces that allow components to be connected in arbitrary configuration.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

rCOS 28

If we changed Prd to a pair of provided and required protocols by projections, we would have the
provided protocol (!put)∗ and the required protocol (?ack)∗. With these, we would not have been able to
check deadlock freedom when composing it with the producer and the buffer.

Composition of active components may cause livelock as infinite internal interaction between compo-
nents even though none of the services of components diverges. We believe composing this kind of
active element with gray box specifications will require the full power of a theory of concurrency, such
as a process algebra (CSP or CCS) or automata theory. In fact, most of the existing models adopt such a
gray box specification approach, e.g. [2, 6, 3, 13]

Connectors are often treated as first class elements in component-based architecture description lan-
guages. In our framework, the simple connectors are defined by the operations of chaining, disjoint
parallel composition and hiding. More general connectors are defined as predicates of protocols of the
form C(Prot1, . . . ,Protk,Prot), where Prot1, . . . ,Protk can be seen as roles that are mapped to components’
protocols and Prot can be seen as the glue which is the resulting protocol [2]. We call C a connector if
the roles are to be linked to the required protocols of components and the resulting protocol is linked to
the provided protocol of a component. C is a coordinator or manager if the roles are to be linked to the
provided protocols of components and the resulting protocol is used as a provided protocol (i.e. linked
to a required protocol). Connectors and coordinators for passive components are often simple. More
complicated coordinators and glues can be defined for general active components. Again the need of
writing complicated glue codes would push the users away from using component-based development.

4.7 Component-based and object-oriented methods

In most books on component-based design in the UML framework, e.g. [10, 32], a component is taken
as a family of collaborating objects (or class at the level of templates or styles) without being formally
defined. Some papers, e.g. [6, 3], are critical to object-orientation and think that objects or classes are
not composable and thus cannot be treated as objects. To some extent, this is true as objects or classes
do not specify their required interfaces. On the other hand, all the existing component technologies, such
as JavaBeans, EJB, .NET and COM, are based on object-oriented methods. Therefore, it is useful to
investigate the integration of the models of components and objects.

In our framework, we can take a class and translate it to primitive components easily by calculating the
required methods from the code of the class methods. However, in general, a component in our proposed
model can be realized by a family of collaborating classes. Therefore, for a component C, we treat the
interface methods of C and the protocol as the specification of the use cases of the component and the
components in environment of C as the actors of these use cases. The design and implementation of this
component can then be carried out in a UML-based object-oriented framework.

The types of the fields in interfaces and components can be classes. The classes and their associations
form the information (data) model. This model can be represented as a UML class diagram and formal-
ized as class declaration in rCOS [16, 14, 24]. The implementation of a contract in a component is based
on the implementation of the class model. Also, for example in UML2.0, a port of a component is real-

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

Conclusion and Future Work 29

ized by a class too (a port in an active component is realized by an active class). The component-based
part of rCOS presented here and its object-oriented part in [16, 14, 24] form a consistent combination.

5 Conclusion and Future Work

We have discussed the basic concepts of components and argued for the need to link methods and their
theories for programming. The link will go in two dimensions. In the horizontal direction, we need
the integration of theories of state-based functional refinement [18], event-based interaction simulation,
real-time [17, 25, 13], fault-tolerance [25], security, mobility and general QoS. In the vertical dimension,
we need to link the theories of domain and requirements analysis, system construction by assembly of
components, component construction, and component deployment.

So far most models focus on the theories of interfaces and coordination models to support system con-
struction by composing components. The link of these theories and models to software technology for
component construction is still weak. We have provided some initial results towards this direction in
rCOS. Within the framework of rCOS, a component is specified in different models used for by differ-
ent people in charge of different tasks:

• Interfaces and their contracts are used by the users to use the services provided by the component.
They are also the requirement specification of components, i.e. the correctness conditions for
certification.

• Components are implementation of interfaces (syntactically and semantically). From a compo-
nent, the designer can extract the consistent provided interfaces and required interfaces to provide
publications of the component.

• A component publication is the black-box specification and consists of the provided protocol, the
required protocol and the static pre and post conditions. the publication is used by application
developers for identifying compatible components. This model hides the entire internal behavior.
The checking of compatibility among components ensures the deadlock and divergence freedom,
provided that the publication is consistent. The checking is not very much theoretically demanding
and is easy to be automated.

• The dynamic behavior specified in terms of its traces, failures and divergence is used by the de-
signers to decompose an application into interacting components.

• The guarded contracts are used by domain engineers for the requirements specification of a sys-
tem. And by the designers to ensure the refinement between specifications at different levels of
abstraction. It can also be used by verifiers and certifiers the publication of the component. The
verification and certification is done by calculating the semantics (i.e. the contracts) of the compo-
nents from the code.

To some extent, rCOS extends the methods of many existing frameworks, such as those [2, 3, 30],
which focus on the first item above, to provide a more complete picture of CBSE. More work is needed

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

References 30

in the areas of component-based domain analysis, requirements analysis and component deployment. In
the horizontal direction, it is still a long way to deal with general QoS issues. Another challenge is the
combination of synchronous communication and asynchronous communication. This could be done by
adding message queues at the end of the receiving components or allowing shared fields in components.
However, it is not clear whether there is any better way at a higher level of abstraction.

We can see a clear link of rCOS to existing technologies and programming languages. For example,
with Java and UML, we have map rCOS in the following way:

1. Map a port to an Java class (use case controller class).

2. Map a component design to a realisation of a number of use cases (use cases are then services)
according to activity diagrams (statecharts).

3. Map a coordinator or a connector to sequence diagrams.

4. Map a target component at deployment to .class and the architecture at deployment to main.class.

5. Map interface to abstract class, a contract to JASS assertions, and implementation language to
Java.

We realise the tradeoff between the simplicity of the model required for the support to CBSE and the ex-
pressiveness of the model. While linking methods will help to ease the difficulties by localising a method
to a stage of the development, the need to develop sophisticated ‘glueware’ to coordinate components
in applications is one reason why the saving from using “off-the-shelf” components is sometimes not as
great as anticipated. If general active components and coordinators among them have to be all covered,
the formal method and theory of CBSE cannot be expected to be simpler than those established for gen-
eral concurrent and distributed systems. On the other hand, linking methods and their theories is useful
for general software and system engineering.

Acknowledgement

We would like to thank Chris George, Liu Xiaojian, Chen Xin and Rodrigo Ramos for their comments
on earlier versions of the paper. Zhiming would also like to thank Anders Ravn at Aalborg University
(Denmark) for the fruitful discussion on the topics during a number of their meetings.

References

[1] R. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon, School of Computer
Science, 1997.

[2] R. Allen and D Garlan. A formal basis for architectural connection. ACM Transactions on Software Engi-
neering and Methodology, 6(3):213 – 249, 1997.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

References 31

[3] F. Arbab. Reo: A channeled based coordination model for components composition. Mathematical Struc-
tures in Computer Science, 14(3):329–366, 2004.

[4] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley, 1999.

[5] G. Beneken and U. Hammerschall et al. Componentware - sate of the art 2003. Background Paper for
Understanding Components Workshop of the CUE Initiative, 2003.

[6] M. Broy. Multi-view modeling of software systems. In Z.Liu and J. He, editors, Mathematical Frameworks
for Component Software: Models for Analysis and Synthesis. World Scientific, to appear.

[7] M. Broy and K. Stølen. Specification and Development of Interactive Systems: FOCUS on Streams, Inter-
faces, and Refinement. Springer, 2001.

[8] M.R.V. Chaudron and E. de Jong. Components are from Mars. In Proc. 15 IPDPS 2000 Workshops on
Parallel and Distributed Processing, Lecture Notes In Computer Science; Vol. 1800, pages 727 – 733, 2000.

[9] E.W. Dijkstra. A Discipline of Programming. Prentece-Hall, INC, 1976.

[10] D. D’Souza and A.C. Wills. Objects, Components and Framework with UML: The Catalysis Approach.
Addison-Wesley, 1998.

[11] Hartmut Ehrig, Werner Damm, Jörg Desel, Martin Große-Rhode, Wolfgang Reif, Eckehard Schnieder, and
Engelbert Westkämper, editors. Integration of Software Specification Techniques for Applications in Engi-
neering, Priority Program SoftSpez of the German Research Foundation (DFG), Final Report, volume 3147
of Lecture Notes in Computer Science. Springer, 2004.

[12] D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural description of component-based systems. In G.T.
Leavens and M. Sitaraman, editors, Foundations of Component-Based Systems, pages 47–68. Cambridge
University Press, 2000.

[13] G. Gössler and J. Sifakis. Composition for component-based modeling. Science of Computer Programming,
55(1-3), 2005.

[14] J. He, Z. Liu, and X. Li. rCOS: A refinement calculus for object systems. Technical Report UNU-IIST
Report No 322, UNU-IIST, P.O. Box 3058, Macau, March 2005.

[15] J. He, Z. Liu, and X. Li. A theory of contracts. Technical Report UNU-IIST Report No 327, UNU-IIST, P.O.
Box 3058, Macau, July 2005.

[16] J. He, Z. Liu, X. Li, and S. Qin. A relational model of object oriented programs. In Proceedings of the
Second ASIAN Symposium on Programming Languages and Systems (APLAS04), Lecture Notes in Computer
Science 3302, pages 415–436, Taiwan, March 2004. Springer.

[17] T. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for real-time systems. In Proceedings
of the 8th ACM Annual Symposium on Principles of Programming Languages, pages 269–276, U.S.A, 1991.
ACM Press.

[18] C.A.R. Hoare and J. He. Unifying theories of programming. Prentice-Hall International, 1998.

[19] Tony Hoare. The verifying compiler: A grand challenge for computer research. Journal of the ACM,
50(1):63–69, 2003.

[20] J.P. Holmegaard, J. Knudsen, P. Makowski, and A.P. Ravn. Formalization in component based development.
In Z.Liu and J. He, editors, Mathematical Frameworks for Component Software: Models for Analysis and
Synthesis. World Scientific, to appear.

[21] D. Hybertson. A uniform component modeling space. Informatica, 25:475–482, 2001.

[22] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers.
Pearson Education, Inc., 2002.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

References 32

[23] Z. Liu, J. He, and X. Li. Contract-oriented development of component software. In Proc. 3rd IFIP Interna-
tional Conference on Theoretical Computer Science, pages 355–272, Toulouse, France, 2004. Kluwer.

[24] Z. Liu, J. He, and X. Li. rCOS: Refinement of component and object systems. Invited Talk at 3rd Interna-
tional Symposium on Formal Methods for Component and Object Systems. To Appear in Lecture Notes of
Computer Science, 2005.

[25] Z. Liu and M. Joseph. Specification and verification of fault-tolerance, timing and scheduling. ACM Trans-
actions on Languages and Systems, 21(1):46–89, 1999.

[26] D.C. Luckham and J. Vera. An event-based architecture definition language. IEEE Transactions on Software
Engineering, 21(9):717–734, 1995.

[27] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software architectures. In Proc. of
5th European Software Engineering Conference (ESEC95), pages 137–153. Springer-Verlag, 1995.

[28] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer-
Verlag, New York, 1991.

[29] N. Medvidovic and R.N. Taylor. A classification and comparison framework for software architecture de-
scription languages. IEEE Transactions on Software Engineering, 26(1):70–93, 2000.

[30] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE Transactions on Software
Engineering, 28(11), 2002.

[31] A. Pnueli. Looking ahead. Workshop on The Verification Grand Challenge February 21–23, 2005 SRI
International, Menlo Park, CA.

[32] R. Pooley and P. Steven. Using UML: Software Engineering with Objects and Component. Addison-Wesley,
1999.

[33] T. Rentsch. Object-oriented programming. SIGPLAN Notices, 17(2):51, 1982.

[34] R. Roshandel, B. Schmerl, N. Medvidovic, D. Garlan, and D. Zhang. Understanding tradeoffs among dif-
ferent architectural modeling approaches. In Proceedings of the Fourth Working IEEE/IFIP Conference on
Software Architecture (WICSA04). IEEE Computer Society, 2004.

[35] J.-G. Schneider and O. Nierstrasz. Components, scripts and glue. In L. Barroca, J. Hall, and P. Hall, editors,
Software Architectures Advances and Applications, pages 13 – 25. Springer, 1999.

[36] B. Selic, G. Gullekson, and P.T. Ward. Real-Time object-oriented modeling. Wiley, 1994.

[37] M. Shaw and D. Garlan. Software Architectures: Perspectives on an Emerging Discipline. Prentice Hall,
1996.

[38] I. Sommerville. Software Engineering (6th Edition). Addison-Wesley, 2001.

[39] C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-Wesley, 1997.

[40] R.N. Taylor, N. Medvidovic, K.M. Anderson, E. J. Whitehead Jr., J.E. Robbins, K.A. Nies, P. Oreizy, and
D.L. Dubrow. A component- and message-based architectural style for gui software. IEEE Transactions on
Software Engineering, 22(6):390 – 406, 1996.

[41] A. van de Hoek, M. Rakic, R. Roshandel, and N. Medvidovic. Taming architecture evolution. In Proceedings
of the 6th European Software Engineering Conference (ESEC) and the 9th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE-9), 2001.

[42] M. Wirsing and M. Broy. Algebraic state machines. In T. Rus, editor, Proc. 8th Internat. Conf. Algebraic
Methodology and Software Technology, AMAST 2000. LNCS 1816, pages 89–118. Springer, 2000.

Report No. 330, August 2005 UNU-IIST, P.O. Box 3058, Macao

