
UNU/IIST
International Institute for
Software Technology

UNU/IIST Report No. 325 T

Lecture Notes on Programming Concurrent
Computer Systems

Zhiming Liu

May 2005

UNU-IIST and UNU-IIST Reports

UNU-IIST (United Nations University International Institute for Software Technology) is a Research and Training
Centre of the United Nations University (UNU). It is based in Macau, and was founded in 1991. It started oper-
ations in July 1992.UNU-IIST is jointly funded by the Governor of Macau and the governments of the People’s
Republic of China and Portugal through a contribution to the UNU Endownment Fund. As well as providing two-
thirds of the endownment fund, the Macau authorities also supplyUNU-IIST with its office premises and furniture
and subsidise fellow accommodation.

The mission ofUNU-IIST is to assist developing countries in the application and development of software tech-
nology.

UNU-IIST contributes through its programmatic activities:

1. Advanced development projects, in which software techniques supported by tools are applied,

2. Research projects, in which new techniques for software development are investigated,

3. Curriculum development projects, in which courses of software technology for universities in developing
countries are developed,

4. University development projects, which complement the curriculum development projects by aiming to
strengthen all aspects of computer science teaching in universities in developing countries,

5. Schools and Courses, which typically teach advanced software development techniques,

6. Events, in which conferences and workshops are organised or supported byUNU-IIST, and

7. Dissemination, in which UNU-IIST regularly distributes to developing countries information on interna-
tional progress of software technology.

Fellows, who are young scientists and engineers from developing countries, are invited to actively participate in
all these projects. By doing the projects they are trained.

At present, the technical focus ofUNU-IIST is on formal methods for software development.UNU-IIST is an
internationally recognised center in the area of formal methods. However, no software technique is universally
applicable. We are prepared to choose complementary techniques for our projects, if necessary.

UNU-IIST produces a report series. Reports are either ResearchR , Technical T , CompendiaC or Adminis-

trative A . They are records ofUNU-IIST activities and research and development achievements. Many of the
reports are also published in conference proceedings and journals.

Please write toUNU-IIST at P.O. Box 3058, Macau or visitUNU-IIST’s home page:http://www.iist.unu.edu, if
you would like to know more aboutUNU-IIST and its report series.

G. M. Reed, Director

UNU/IIST
International Institute for
Software Technology

P.O. Box 3058

Macau

Lecture Notes on Programming Concurrent
Computer Systems

Zhiming Liu

Abstract

Concurrent programmingis the activity of constructing a program containing multiple processes that
execute in parallel. The aim of the course is to introduce the basic concepts, principles and techniques
in programming concurrent computing systems, and to provide practice in solving problems and skill in
writing concurrent programs. The course will also provide methods for evaluating systems, algorithms
and languages from a broad perspective.

The course provides the students with understanding of the notations of concurrency, nondeterminism,
synchronization, deadlock, livelock, safety and liveness. It provides students with the history of the
development different language mechanisms for the realization of synchronization and interactions, in-
cluding synchronization without using synchronization primitives, synchronization by semaphores, con-
ditional regions, monitors, hand-shake communication and remote invocation. It covers communication
via shared variables and message passing.

We will take an informal but prices approach in the discussion of of requirements, design and valida-
tion of concurrent programs.

Zhiming Liu is a research fellow at UNU/IIST. His research interests include theory of computing sys-
tems, including sound methods for specification, verification and refinement of fault-tolerant, real-time
and concurrent systems, and formal techniques for OO development. His teaching interests are Com-
munication and Concurrency, Concurrent and Distributed Programming, Software Engineering, Formal
specification and Design of Computer Systems. E-mail: Z.Liu@iis.unu.edu.

Copyright c© 2005by UNU/IIST, Zhiming Liu

Contents i

Contents

1 PREFACE 1
1.1 Aims & Objectives . 1
1.2 Syllabus . 1
1.3 Reading List . 2

2 INTRODUCTION 3
2.1 Goals for Chapter 1 . 3
2.2 Course Organisation . 3
2.3 Reading List . 3
2.4 Course Assessment . 4
2.5 Overview . 4
2.6 Concurrent Programming . 5

2.6.1 Sequential programming . 5
2.6.2 Concurrent programming as partial ordering . 8
2.6.3 Concurrent programming as interleaving . 11
2.6.4 Concurrent computer systems . 13

2.7 The motivation for concurrent programming . 14
2.8 Problems in concurrent programming . 15
2.9 Seat Reservation Problem . 16

2.9.1 Critical sections and Mutual exclusion . 19
2.10 Concurrent programming in Pascal-FC . 20
2.11 Exercises . 24

3 MUTUAL EXCLUSION 27
3.1 Process interaction . 27
3.2 Active and passive entities . 28
3.3 Communication via shared variable . 28

3.3.1 The Ornamental Gardens problem . 29
3.4 Old-fashioned recipes for synchronization . 32

3.4.1 An old-fashioned recipe for condition synchronization 33
3.4.2 Old-fashioned recipes for mutual exclusion . 34

3.5 Correctness of concurrent programs . 42
3.6 Exercises . 43

4 SEMAPHORES 51
4.1 Introducing Semaphores . 51
4.2 Definition of semaphores . 52
4.3 Mutual exclusion with semaphores . 54
4.4 Implementation of semaphores . 55
4.5 Analysing semaphore programs . 56
4.6 Condition synchronization with semaphores . 57

4.6.1 Producer and consumer with an unbounded buffer 57
4.6.2 Producer-consumer with bounded buffers . 59

4.7 More examples . 62

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

Contents ii

4.7.1 The Readers and Writers Problem . 62
4.7.2 The Dining Philosophers problem . 66

4.8 Final remarks on semaphores . 69
4.9 Exercises . 70

5 CONDITIONAL CRITICAL REGIONS AND MONITORS 72
5.1 Introduction . 72
5.2 Critical regions . 73
5.3 Conditional critical regions . 74

5.3.1 Example - condition synchronization . 76
5.4 Monitors . 78

5.4.1 The ideas behind monitors . 78
5.4.2 Definition of monitors . 79
5.4.3 Mutual exclusion with monitors . 80
5.4.4 Condition synchronization with monitors . 82
5.4.5 More examples . 85
5.4.6 Producer-Consumer with a bounded buffer . 85
5.4.7 Readers and writers . 87
5.4.8 Reasoning about monitor programs . 89
5.4.9 The expressiveness of monitors . 91

5.5 Exercises . 91

6 SYNCHRONOUS MESSAGE PASSINGS 93
6.1 Introduction . 93
6.2 Three forms of communication . 94
6.3 Naming the destinations and sources of messages . 95
6.4 Channels in Pascal-FC . 96
6.5 The types of channels . 96
6.6 A classification of distributed processes . 98

6.6.1 An network of filters – Prime number generation 99
6.7 Synchronous channels . 102
6.8 Selective waiting construct . 103
6.9 Guarded alternatives . 106
6.10 The terminate alternative . 107
6.11 Else and timeout alternatives . 111
6.12 Exercises . 112

7 REMOTE INVOCATION 113
7.1 Introduction . 113
7.2 The message passing primitives in the remote invocation model 114
7.3 Selective waiting with remote invocation . 119
7.4 Examples . 121

7.4.1 Resource allocation problem . 121
7.4.2 Dining philosophers problem . 123
7.4.3 Process idioms . 124

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

Contents iii

7.4.4 A reactive example - a controlling system . 126
7.5 The limitation of the Pascal-FC select construct . 129
7.6 Exercises . 131

8 SUMMING UP 132
8.1 The course . 132

8.1.1 Concepts . 132
8.1.2 Problems an Priciples . 132
8.1.3 Techniques and tools . 132

8.2 Possible application of the course . 133
8.3 Furthermore ... 133
8.4 What cannot we do? . 133

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

PREFACE 1

1 PREFACE

1.1 Aims & Objectives

The module will focus on basic concepts, principles and techniques in the programming of concurrent
and distributed computing systems, and not on specific systems or languages. The students who master
the material offered will be prepared not only to write concurrent programs or to read the research
literature, but also to evaluate systems, algorithms and languages from a broad perspective.

One cannot learn any programming technique without practising it. The practical classes will give stu-
dents practice in solving problems, methods in design and skill in writing concurrent programs in a
variety of language models exemplifying different programming paradigms.

This module will provide the essential background for further study and research in distributed systems,
real-times systems and fault-tolerant systems.

1.2 Syllabus

Break Away from Single Thread Computation: Sequential programming, single processor system,
sequential programming as total ordering (single-tread computation), multi-thread computation and its
advantages, multi-processor system, concurrent programming as partial ordering, single-processor multi-
tasking system, concurrent programming as interleaving.

[3 hours]

Problems in Concurrent Programming: Non-determinism, synchronisation, communication, critical
sections, atomic actions.

[3 hours]

Mutual Exclusion and Condition Synchronisation: Communication via shared variables, multiple
updating problem, active and passive objects, abstraction of mutual exclusion and condition synchro-
nisation, old-fashioned recipes for synchronisation, notions of busy-waiting, deadlock, livelock, safety,
and liveness.

[3 hours]

Semaphores: Motivations and definitions, implementation issues, programming techniques using
semaphores (the producers and consumers problem, the readers and writers problem, and the dining
philosophers problem), reasoning about semaphore programs.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

PREFACE 2

[4 hours]

Conditional Critical Regions and Monitors: Motivations and definitions, implementation issues, pro-
gramming techniques using CCRs and Monitors (the producers and consumers problem and the readers
and writers problem), reasoning about monitor programs.

[3 hours]

Synchronous Message Passing:Distributed computing, asynchronous vs synchronous, channels for
inter-process communication and synchronisation, selective waiting construct for non-determinism, im-
plementation issues, programming techniques using message passing, reasoning about message passing
programs.

[3 hours]

Remote Invocation: Motivation and definitions, message passing and synchronisation with remote in-
vocation, client-server paradigm of process interaction, implementation issues, programming techniques
using remote invocation.

[3 hours]

Summing Up: summary of the course and industry relevance.

[1 lecture]

1.3 Reading List

A. Concurrent Programming, A. Burns and G.Davies, Addison-Wesley, 1993.

B. Principles of Concurrent Programming, M. Ben-Ari, Prentice-Hall, 1982.

B. Principles of Concurrent and Distributed Programming, M. Ben-Ari, Prentice-Hall, 1990.

B. Concurrent Programming – Principles and practice, G.R. Andrews, The Benjaming/Cummings Pub-
lishing Company, Inc.., 1991.

C. Communication and Concurrency, R. Milner, Prentice-Hall, 1989.

C. Communicating Sequential Processes, C.A.R. Hoare, Prentice-Hall, 1985.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 3

2 INTRODUCTION

This chapter also shows how you organize a course and start the first lecture to introduce your course to
your students.

2.1 Goals for Chapter 1

• We shall first talk about the Course organisation.

• We shall give a Reading list.

• We shall discuss the Course Assessment.

• We shall discuss the aims and objectives and the materials to be covered in the course.

• Introduce concurrent programming.

• Introduce problems in concurrent programming to motivate the solutions that are provided in later
chapters.

• The seat reservation problem – an example.

• We shall discuss some of the basic features of the language that we shall be using for our examples,
assignments and exercises throughout the course: Pascal-FC (Functionally Concurrent Pascal).

2.2 Course Organisation

The course is organised as follows: 24 lectures, 10 tutorials, 10 two-hour practical sessions. Tutorials
will be based on studying examples and solving problems from the exercises provided in the lecture
notes. All course participants should attend these tutorial seminars (see the study

One cannot learn any programming technique without practising it. The practical classes will be based
on undertaking programming exercises. All course participants should attend the practical sessions (see
the study guide).

For details about the timetable, please see the study guide (I do have a study guide that I always handed
out to the students).

2.3 Reading List

• The Main Text:

A. Burns and G. Davies,Concurrent Programming, Addison-Wesley, 1993.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 4

• Recommended Reading:

M. Ben-Ari, Principles of Concurrent Programming, Prentice-Hall International, 1982.

G.R. Andrews,Concurrent Programming – Principles and Practice, The Benjamin/Cummings
Publishing Company, Inc., 1991.

G.R. Andrews and R.A. Olsson,The SR Programming Language, Benjaming/Cummings Publish-
ing Company, Inc., 1993.

J.G.P. Barnes,Programming in Ada (3rd Edition), Addison-Wesley, 1991.

G. Jones and M. Goldsmith,Programming in occam 2, Prentice-Hall, 1988.

D. Lea, Concurrent Programming in Java, Addison-Wesley, 1997.

J. Magee and J. Kramer, Concurrency: State Models and Java, Wiley, 1999.

• Background Reading:

C.A.R. Hoare,Communicating Sequential Processes, Prentice-Hall International, 1985.

R. Milner,Communication and Concurrency, Prentice-Hall International, 1989.

A. Burns and A. Wellings,Real-Time Systems and Their Programming Languages, Addison-
Wesley, 1990.

2.4 Course Assessment

• Coursework:30% of the total credit. Fiveassessed worksheetswill be given with explicit dead-
lines. Late submissions can get marked only when genuine reasons are given and adequate doc-
umentary evidence is produced. The final marks on coursework would be forwarded to the resit
examination in case one is required (though I sincerely hope this would never happen). There
would be no chance to resit on coursework.For detailed information, please read the study
guide.

• Written Examination:70% of the total credit. There will be a 3-hour examination in January 1997.

2.5 Overview

Concurrent programmingis the activity of constructing a program containing multiple processes that
execute in parallel. The aim of the course is to introduce the basic concepts, principles and techniques
in programming concurrent computing systems, and to provide practice in solving problems and skill in
writing concurrent programs. The course will also provide methods for evaluating systems, algorithms
and languages from a broad perspective.

The course will study the key features of concurrent programs, includingconcurrency, communica-
tion andsynchronization. It will introduce various language mechanisms includingshared variables,
semaphores, monitorsandvalue passing, to achieve these features.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 5

The course will cover some “classic” concurrent programming problems such as the problems ofmutual
exclusion, producers and consumers, readers and writers, and thedining philosophers.

The Pascal-FC (Functionally Concurrent), which is developed as ateaching languagefor concurrent
programming by A. Burns and G. Davies, will be used for practical programming assignments and
exercises.

2.6 Concurrent Programming

To talk about the nature and use of concurrent programming, it is better to talk a bit aboutsequential
programming, and then to introduce concurrent programming by the way of contrast.

2.6.1 Sequential programming

When we write a program using a sequential programming language such as Pascal, or C language,
we always expect the program is to be executed upon asingle processor architecture(or often called
uniprocessor system). Otherwise, the use of the programming language will not be successful. For
historic reason, this architecture is often referred to the von Neumann architecture. The essence of this
architecture (see Figure 1) can be summarized as follows:

• there is a single processing element (CPU), which is connected to Random Access Memory (RAM)
and to input/output devices by means of abus;

• both program instructions and data are stored in RAM;

• the processor repeatedly executes the cycle of loading and executing the next command (fetched
from RAM) as referenced by the current value of the program counter;

• as there is only one CPU, the system can at most be executing one instruction at any time;

• the process isdeterministic, i.e. there is only one possible execution sequence and one possible
final result (if any) can be produced if you run the program any number of times with thesame
input data; thethreadof execution in such a computation is the sequence of values of the program
counter.

This means that in a sequential programming language, such as Pascal/C, we are giving the system
(hardware & software) which runs the program verystrict instructions about the orderin which it may
carry out the statements in the program. For example, when we write a sequential program fragment

P;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 6

processor

program

data

program

RAM

I/Orunning time

The tread is the sequence

taken by the program

counterpccounter,

Figure 1: Uniprocessor System

Q;
R

we actually instruct the system that the execution of Pmustprecede the execution of Q, and that, in turn,
the execution of Qmustprecede the execution of R. At this level abstraction, what we are saying is that
the execution of the fragment can be viewed as thetotally orderedsequence

P, Q, R

More concretely let the three statements be

x := 1; (*P*)

y := x+1; (*Q*)

x := y+2 (*R*)

It is clear that the final values of the variables, x and y, depend on the order in which the statements are
executed. Indeed, the correctness of the algorithm which is written in a sequential languages relies on
the assumption that the textual order of the statement is the oder in which they are executed. There is, in
effect, a contract between the implementor and the user of the language that the language implementation
will behave in that way.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 7

In general, each statement would be compiled into severalmachine-codeinstructions, e.g.

1. P is treated as a single machine instruction p: store 1 at the address of x.

2. Q is broken into 3 machine operations q1,q2,q3 as follows:

• q1: load the value of x into a CPU register,

• q2: increment the value in this register by 1,

• q3: store the value in this register at the address of y.

3. R is broken into 3 machine operations r1,r2,r3 as follows:

• r1: load the value of y into a CPU register,

• r2: increment the value in this register by 2,

• r3: store the value in this register at the address of x.

Now, what does it mean when we saythe execution ofPmust precede the execution ofQ? It implies that
the execution of P must begin before the execution of Q begins, but more precisely, it also means that
the execution ofQ can only begin after the execution ofP finishes. Another way to say this is that there
should be no overlap in the execution of the component operations of P and Q. Thus the totally ordered
execution sequence at the program level

P, Q, R

implies the the following totally ordered execution sequence at the system level

p, q1,q2,q3, r1,r2,r3

Do control structures destroy the total ordering? Most sequential programming languages include
control structures for looping and branching, such asif andcasesandwhile. These may at first sight
appear to undetermine the assertion that the statements of a sequential program are totally ordered. But
these structures mean that the path through a program may vary from one run to another, only depends
on various input data. However, if we repeatedly run a sequential program with thesameinput data, then
it will alwaystrace the same path.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 8

Key nature of sequential programming In summary, the key nature of sequential programming is as
follows:

• A sequential program is visualised as being executed up on a single processor architecture.

• A sequential program represents a single threaded computation. Operations of the sequential pro-
gram are executed in atotal ordering, i.e. givenanypair of different machine instructions p and q,
the execution of one must precede the other.

• A sequential program isdeterministic, i.e. repeated runs of a sequential program with thesame
input dataalwaysproduce thesame resultand trace thesameexecution sequence of operations.

• Control structures for looping and branching do not undetermine the above two statements.

Thus, writing a sequential program means finding some strict sequence of steps to achieve the desired
end. This odd constraint is a legacy when programs are written only to be executed by sequential com-
puters (uniprocessor systems), and sequential computers are machines that do one thing at a time.

2.6.2 Concurrent programming as partial ordering

Parallel computation

Now the first question:does the total ordering of the sequential paradigm capture the real nature of
computation?

Let us get an answer to the question from the following story:

Once upon a time long before there was a computer, an intelligent Chinese princess wanted to get mar-
ried. She announced to the generals of her father, then the emperor of China, that the general who
was younger than 30 and could within one month find all the non-trivial factor of 368788194383 would
be the prince. Before the deadline, a young general, called Bingxing (meaningparallel) brought her
the numbers7, 17, 23, 119, 161, 257, 391, 1799, 2737, 4369, 5911, 30583, 41377, 100487, 524287,
52684027769, 21693423199, 16034269321, 3099060457, 2290609903, 1434973519, 943192313, 204996217,
134741759, 84410207, 62390153, 12058601, 8912879, 3670009, and703409. 524287. The princess
was very happy because she made up the number by the formula

368788194383 = 7× 17× 23× 257× 524287

She asked the general how he found the number. He said that

1. he first calculated607280 = d√368788194383 e; He then gave each of the numbers between 2
and 607280 to one of his 607279 soldiers, and ordered them to check if the numbers they got were
factors of 368788194383,

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 9

Rl

Gk

S11 S(p-1)1

S1m S(p-1)n

R1

G1

Figure 2: Partial ordering

2. 20 minutes later the soldiers who got7, 17, 23, 119, 161, 257, 391, 1799, 2737, 4369, 5911, 30583,
41377, 100487, and524287, reported that their number were factors.

3. Using these, General Binxing then found the rest factors:52684027769, 21693423199, 16034269321,
3099060457, 2290609903, 1434973519, 943192313, 204996217, 134741759, 84410207, 62390153,
12058601, 8912879, 3670009, and703409.

4. So he came to the princess with these numbers.

Finally, the princess happily married the young general.

Let n = 274876858369 andp = 607280. The computationin the story was to find all the non-trial
factors ofn. The computation was carried out by the operations of General Bingxing and hisp − 1
soldiers. But those operations werenot carried out in a total order : it could not be said that the
operations of soldier s1mustprecede the operations of soldiers s2, or the other way around. Indeed, the
operations of the soldiers were carried outin parallel, though the operations of each individual soldier
might be assumedto be carried out in sequence. The operations in the computation were carried out in a
partial order as illustrated in Figure 2.

You may wonder what all the other generals in the story were doing with the problem. They were
certainly trying hard as well because being the prince of the state meant a lot. But they were not as clever
as General Bingxing. They were doing as what a sequential program nowadays does:

G1;
.
.
.;

Gk;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 10

S1;
.
. (*all the operations by a general himself*)
.;

S(p-1);

R1;
.
.
.;
Rl

Though they were not at all slow in doing divisions, it still needed more one year to do the607279
required divisions. Thus, they were hopeless to become the prince.

The comparison between the two ways of carrying out the computation shows that sometimes the total
ordering of sequential paradigm is not the most appropriate model of computation. It has been wrong
(at least infeasible) in sequential programming toalwaysconstraining the execution in a way that is
not required by thelogic of the algorithm. It has been wrong because writing the statements inany
particular sequence implies an ordering that is not essential to the algorithm, and thus over-specifying
the computation. Therefore, we have to break away from sequential paradigm.

Multiprocessors systems

The second question:is a parallel computation realizable by a computer?

For simplicity, let us ignore the operations G1,...,Gk and R1,...,Rl. Suppose that we have a computer
system with more than 607279 central processors. We can now replace each General Bingxing’s 607279
soldiers by one of the central processor. Then each of the tasks S1,...,S(p-1) has its own private processor,
so that these tasks could all be executed in parallel. Computing in this way is usually calledmaximum
parallel computing.

Computer systems with multiple processors, such as transputers and computer networks, are also called
parallel computer systems. Now, parallel computers are becoming more common, and computers are
becoming more parallel. Thus, writing programs for parallel computers is becoming more imporatant.

Programming parallel computation

The third question:how can we program parallel computer systems?

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 11

To program the parallel computation illustrated in the story, we need to introduce someprogramming
notationto indicate when parallel execution is sensible and when it is not. We can then have a mixture,
within a single program, of sequential and parallel execution. We shall use acobegin/coendstructure1:

G1;
.... (*calculating p =607280*)
Gk;

COBEGIN
S1; (*BEGIN S11; ...; S1m END*)
S2;
.....
S(p-1) (*BEGIN S(p-1)1; ...; S(p-1)n END*)

COEND;
R1;
... (*reporting to the princess*)
Rl

This notation implies the partial ordering of the computation events represented by Figure 2. It must
be noted that the above program terminatesonly if all the processes in thecobegin/coendstructure
terminate.

2.6.3 Concurrent programming as interleaving

The fourth question:can a uniprocessor system realize a parallel computation?

For the program outline in the previous subsection, the question can be restated as:

Does each of the blocksSi within thecobegin/conendstructurehaveto be executed on its
own processor?

Now assume there is a single processor system which supportsmultitasking, such as an UNIX system
(Figure 3). We then can treat each of General Bingxing’s soldiers as a user of the system with a task Si
called aprocess.

During the execution of these processes, each process has its own process counter. The program counter
forks to produce many process counters, these laterjoining to produce the program counter. In each
processor cycle a process isnon-deterministicallychosen, and its next command is loaded and executed.
This means that there may be many different possible threads. For example, suppose we have two
processes,

1Dijkstra first introduced theparbegin/parend for a ”parallel compound” in 1968.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 12

pc

pc1 pcn

pc1 pcn

pc

Program

process 1 process n

data 1 data n

shared data

program
counter, pc

process

counter, pc1
process
counter, pcn

processor

Figure 3: Uniprocessor multitasking system

PROCESS p1; (*process declaration*)
BEGIN A; B; C END; (*body of process p1*)

PROCESS p2; (*process declaration*)
BEGIN S; T END; (*body of process p1*)

BEGIN (*main program*)
COBEGIN

p1;
p2

COEND
END.

Each possible thread is one of the ten possible paths through a lattice (Figure 4). Each thread determines
a uniqueinterleavingof the statements in the bodies the two processes. One run of the program exhibits
one of the ten threads, butrepeatedruns with the same input data may trace different threads.

The outcomeof a finite concurrent computation is the final values of the variables. The number of
outcomes is thus at most the number of possible threads. For

PROCESS p;
BEGIN S1; ...; Sm END;
PROCESS q;
BEGIN T1; ...; Tn END;

BEGIN

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 13

Each possible thread is one of
the 10 paths in the lattice.

Each thread determins a unique
interleaving of the statements
in the processes.

One run of the program exhibits
one thread.

Repeated runs with
the same input
may trace different
threads.

cobegin

(begin,begin)

(A, T)

(A, S)

(B, S)

(C, S)
(B, T)

(end, S) (C, T)

(A, end)

(B, end)

(C, end)(end T)

(end, end)

coend

Figure 4: Possible interleavings of p1 and p2

COBEGIN
p; q

COEND
END.

The number denoted byf(m,n) of possible threads (interleavings) is the combination, i.e. the number
of n-choice out ofn + m.

Cn+m
m = Cn+m

n =
(n + m)!

n!m!

n : 1 2 3 4 5 6 7 8 9 10 · · ·
f(n, n) : 2 6 20 70 252 924 3432 12870 48620 184756 · · ·

Note: Pascal-FC is implemented on a single processor system.

2.6.4 Concurrent computer systems

Computing with maximum parallelism and uniprocessor multitasking are the two extreme cases of con-
current computing. The first requires that each process has its own processor, while in the later all
processes in the program compete for a single processor. On one hand, central processors are expensive.
Real processors also sometimes break down. We may not, therefore, always have 524286 processors
when executing S1 ... S524286. On the other hand, a uniprocessor system can, after all, execute at

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 14

most one machine instruction at any time. We certainly cannot expect very much increase in program
execution speed from such a system.

The general case is a computer system with one or more processors some of which may be shared by
more than one process (task). In our course, we shall call such a computer system aconcurrent computer
system. The programming problems that we will deal with are the problems in writing programs for
concurrent computer systems.

However, when writing a concurrent program, we want our source code to beportable: we do not want
to have to rewrite thecobegin/coendstructure (perhaps even eliminate it altogether) each time when the
program is to be run on a different hardware configuration. This means that thecobegin/coendstructure
provides such ahigh level abstractionso that it has somefixedmeaning regardless of the number of
processors available. The meaning we choose is that the statements in thecobegin/coendmayoverlap
when the program is executed, but we cannot say that theymustdo so.

In keeping with our aim of using abstractions that are independent of hardware, we can adopt the follow-
ing two ways (I personally use the first more often).

1. We use the interleaving model. This means that the meaning of

PROCESS p1;
BEGIN S1; ... ; Sm END;
PROCESS p2;
BEGIN T1; ...; Tn END;

BEGIN
COBEGIN p1; p2 COEND

END.

is define to be the set of all possible interleavings (merges) of the two sequences (S1,...,Sm) and
(T1, ... , Tn). This is based on the fact that all concurrent computations can be simulated by a
logical single-processor multi-tasking system.

2. We use the maximum parallel model, assuming each process is given alogical processorwhich
executes one instruction at a time. This means the computation events are in a partial ordering.

How the single logical processor in the first model is broken into more than onephysical processor, or
how the logical processors in the second model are mapped onto physical ones, is an implementation
detail in just the same way that implementation of multiplication (by multiply instruction or repeated
addition) was. We can safely ignore this problem.

2.7 The motivation for concurrent programming

Here we give three reasons to show why concurrent programming is important.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 15

• Using multiprocessor hardware, we can achieve faster execution speed by assigning different phys-
ical processors to different processors, as illustrated in our story of the Chinese princess.

• On a uniprocessor system, we can improve processor utilization by sharing the processor between
a number of programs that run as concurrent processes. This is based on the fact that a single
process is usually unable to keep a physical processor fully occupied throughout its execution. For
example, the process may need to input some data (through the keyboard) before it can carry out
any calculation, and in the meantime the CPU is idle, having nothing to do. It certainly makes
sense to switch the processor to another process thatcan make use the expensive processor time.

In this case, individual processes may take even longer to execute. The motivation on running a
concurrent program on a uniprocessor is certainly not an increase in program execution speed.

The exploitation of the possibility for suchmulti-tasking was one of the earliest applications
of concurrency and still remains as one of the most important. Thus, historically the problems
and solutions to concurrent programming emerged from the design and implementation of multi-
tasking operating systems. Multi-tasking was partly motivated by the need to have multi-user
access to very expensive hardware. Also there was the need to handle real-time process control
and transaction processing as in a bank. These problems generated creative solutions which today
form the basis of concurrent programming.

For further reading, Lister gives a nice introduction to the essential problems and solutions in
operating systems in his book:

A.M. Lister, Fundamentals of Operating Systems, The Macilan press Ltd., 1975, Second Edition
1979.

• Many applications are inherently non-deterministic and concurrent. The sequential paradigm is
simply not able to deal with those problems.

The order in which program operations should occur may be determined at run time by events
external to the computer system. This is because that it may not be possible to predict in what
order these external events may occur.

For example, if we are producing software to control traffic lights at a crossroads, we cannot predict
in what order the various sensors will be triggered by vehicles approaching the junction, because
that will depend on who decides to drive where, and at what time.

For further exploitation with an example, read Burns & Davies’ book, pp14-19.

2.8 Problems in concurrent programming

Although concurrent programming was in the earliest motivated by the problems of constructing operat-
ing systems, it is not the study of operating systems. Concurrent programming is the study ofabstract
programming problems posed under certain rules.

In our definition, a concurrent program consists of several sequential processes whose execution se-
quences are interleaved. In consequence, a concurrent program could produce different output results
on different runs, even with the same input data. The sequential processes are not totally independent

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 16

– if they were so there would be nothing to study. They mustcommunicatewith each other in order to
synchronizeor to exchange data.

Synchronization In general, we do not want achaoticprogram which could produce anything as a
result. We only want a program to produce a result compatible with the purpose of the program. This
implies that wedoneed some language facilities which provide us with a way of constraining the possible
interleavings, so that a program will only produce theacceptableresults (though there may be many). In
other words, we must be provided with mechanisms tosynchronisecertain computation events whenever
necessary.

For example, suppose we have awriting processand areadingprocess running concurrently, the writing
process write a value to a variable and the reading process read the value from thesamevariable. It is
often the case that a value can be read (by the reading process) only after the value has been written (by
the writing process).

The way of constraining execution of concurrent programs is calledprocess synchronization. The
languages facilities, and how we use them to eliminating all the unacceptable interleavings, will be the
central theme of the study of concurrent programming.

Communication Concurrent processes often need to communicate information with each other, to
carry out cooperative computation. There are various ways in achieving proper communication between
processes. Some languages usecommon memoryas the means of passing information from one process
to another. In our abstraction, common memory will be represented simply byglobal variables(shared
variables) accessible to all processes. In this case, the synchronization facilities must be properly used to
allow processes to know when valid information is ready. This is prefered for single processor computers.

With the introduction of distributed computing, it is not valid to assume that a common central memory
exists. We have to use sending and receiving signals (often calledmessage passing) as the means of
process communication. In this case synchronization is provided through communication.

Therefore, synchronization and communication are complementary concepts and equally important in
concurrent programming.

2.9 Seat Reservation Problem

Problem description: A central computer connected to remote terminals via communication links
is used to automate seat reservation for a concert hall. The terminals are located in booking offices
in different cities. When a client enters a booking office, the clerk displays the current state of the
reservation on a screen. The client chooses one of the free seats and the clerk enters the number of the
chosen seat at the terminal. A ticket for that seat is then issued.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 17

Central Computer

T1

T2

T3

T4

T5

T6

Figure 5: Seat reservation problem

Requirements:

1. no multiple booking for any seat;

2. allow the client a free choice among the available seat.

A first attempt We write a concurrent program which consists of a number of processes calledtermi-
nal handlers, one for each terminal:

COBEGIN

HANDLER1;
HANDLER2;
HANDLER3;

.

.

.
HANDLERn

COEND

The pseudo code for process HANDLERi:

REPEAT
display seat on screen;
read(client_choice);
seat[client-choice]:=reserved;
issue ticket

FOREVER

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 18

Problem: This obviously violates Requirement 1. If two clients were shown the seating plan at the
approximately same time, say in different booking offices, they could both choose the same seat and tell
the clerks to book it.

A second attempt Now in the terminal handler, we insert acheckbefore committing a reservation to
ensure that the position has not changed since the display was presented.

REPEAT
IF sold-out THEN
BEGIN

present a suitable display;
await further instructions

END
ELSE
BEGIN

success:=false;
REPEAT

display seat plan on screen;
read(client_choice);
IF seat[client_choice]=free THEN (*check before reservation*)
BEGIN

seat[client_choice]:=reserved;
success:=true;
issue ticket

END
ELSE

give_error_message
UNTIL success

END
FOREVER

However, this has not solved the problem, and multiple bookings are still possible. For simplicity, con-
sider the case of two terminal handers HANDLER1 and HANDERLER2. We may still have the follow-
ing interleaving.

1. HANDLER1 check seat[k] and finds it is free,

2. HANDLER2 check seat[k] and find it is free,

3. HANDLER1 marks seat[k] reserved,

4. HANDLER2 marks seat[k] reserved.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 19

2.9.1 Critical sections and Mutual exclusion

To essentially see why both of the two solutions to the seat reservation problem have failed, we take the
second attempt and look at its machine level execution. The compiler would translate theif statement
into a sequence of machine instructions:

o1: load seat[client_choice] to CPU register
o2: test value of CPU register
o3: go to L1 if reserved
o4: set seat[client_choice] to reserved
o5: set success to true
o6: issue ticket
o7: go to L2
L1: code to output error message
L2: code following if statement

Each machine instruction of a terminal handler is executedatomically, i.e. no other process can observe
its effect or interfere with its execution. But between any two successive machine instructions of one
handler interference from another handler may well possibly occur. Indeed, Requirement 1 was violated
because the sequence o1,o2,o3,o4 in one handler may be interleaved with the same sequence of another
handler.

To meet Requirement 1, what we require is that the sequence of instructions o1,o2,o3,o4 in one terminal
handler must not interleave with that of another terminal handler. In other words, the executions of
this sequence in different terminal handlers must be undermutual exclusion. This means that at any
time no more than one handler is within thiscritical section. From the interleaving point of view, these
operations from different terminal handlers cannot be interleaved. From the partial ordering point of
view, executions of these sequences in different terminal handlers cannot be overlapped. Any terminal
handler which wants to execute o1 must wait until no other is executing any of these four operations.

In general, acritical sectionis a section of code in a process that accesses one or moreshared variables
in a rea-update-writefashion. Thus a critical section is always associated with a set of shared variables
representing shared resources. We say two critical section in two processescorrespondto each other if
they are associated with same shared variables.

Mutual exclusionrequires that at any time no two or more processes can execute their corresponding
critical sections.

What we need now is some language synchronization facilities by which we can tell the compiler the
corresponding critical sections in different processes. In our example, we want the complier to generate
the following machine instructions, where those contained in angle brackets form a critical section of a
terminal handler.

<

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 20

o1: load seat[client_choice] to CPU register
o2: test value of CPU register
o3: go o L1 if reserved
o4: set seat[client_choice] to reserved
>
o5: set success to true
o6: issue ticket
o7: goto L2
L1: code to output error message
L2: code following if statement

2.10 Concurrent programming in Pascal-FC

Sequential Pascal (and the subset used in this course) must be augmented by concurrent programming
constructs. The concurrent processes are declaredasSequential Pascal procedures, but with a reserved
word processrather thanprocedure. The declared and only the declared processnames(identifiers)
must be listed within thecobegin/coendstructure for concurrent execution, separated by ”;”. Here is a
simple schema outline of a concurrent Pascal-FC program:

PROGRAM schema1; (*program header*)
TYPE
(*type declarations as in the sequential Pascal*)
VAR
(*global variable declarations as in the sequential Pascal*)
PROCESS p1; (*process declaration for p1*)

VAR
(*local variable declarations*)
BEGIN

... (*body of process p1*)
END;

PROCESS p2; (*process declaration for p2*)
VAR
(*local variable declarations*)
BEGIN

... (*body of p2*)
END;

BEGIN (*the main program*)
(*sequential execution prior to *)
(*execution of concurrent processes*)
COBEGIN

p1;
p2 (*the textual order of p1

and p2 is inessential*)
COEND
(*sequential execution after concurrent *)
(*processes have all terminated*)

END.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 21

A concurrent program terminatesonly if all the concurrent processes terminate.

Example 1

PROGRAM example1; VAR x,y,
y: integer; PROCESS p1; VAR l: integer; BEGIN l:=1; x:=x+l END;
PROCESS p2; VAR l: integer; BEGIN l:=2; y:=y+l END; BEGIN (*main
program*)

x:=0; y:=0;
COBEGIN p1; p2 COEND;
z:=x+y

END.

Notes on example 1:

• the program sequentially assigns 0 tox andy, then incrementsx andy concurrently, finally assigns
x + y to z;

• x y, andz are global variables whose scope in the whole program, declared in the main program,
and initialized in the main program body before COBEGIN;

• the two l’s are local, each to one process, whose scope is limited to that process,

• local variables in different processes are different, even if they happen to have the same name.

Process type Sometimes the processes in a concurrent program can be declared as instances of a certain
type. Pascal-FC allows us to declare aprocess typein the following way.

PROGRAM schema2;
(*definition of process types*)
PROCESS TYPE PTYPE(i:integer);
BEGIN
.....
END;
VAR

(*definition of process objects*)
p1,p2,p3: PTYPE;
........

BEGIN (*main program}
......
COBEGIN

p1(1);
p2(2);
p3(3)

COEND
.......

END.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 22

Using process type like this, we can useloopwithin cobegin/coendto make programs simpler.

PROGRAM simple;
PROCESS TYPE PTYPE(i: integer);
BEGIN
.....
END;
VAR

count: integer;
p: ARRAY[1..3] of PTYPE;

BEGIN
COBEGIN (*this is semantically the same as *)

FOR count:=1 TO 3 DO
(*COBEGIN p1;p2;p3 COEND*)
pcount

COEND
END.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 23

Example 2

PROGRAM example2;
(*parallel initialize all

*elements of a[1:3] to 0)
VAR a:ARRAY[1..3] OF integer;
PROCESS TYPE PTYPE(i: integer);
BEGIN a[i]:=0 END;
VAR

count: integer;
p: ARRAY[1..3] of PTYPE;

BEGIN
COBEGIN

FOR count:=1 TO 3 DO
pcount

COEND
END.

Standard Pascal features not supported by Pascal-FCThe following facilities are not supported by
Pascal-FC.

1. Files. There are no files, apart from the standard input and output. Therefore, the only form of the
program header is:

program_header ::= PROGRAM identifier;

2. The with statement. Record types may be declared as in standard Pascal, but there is nowith
statement.

3. Sets.There are no set types.

4. Subrange types.Subrange types are not provided.

5. Dynamic storage.There are no pointer types, and the standard proceduresnew anddisposeare
not provided.

6. Packed data.The language does not support thepackedquantifier, and consequently there is no
facility for string variables (though string literals inwrite andwriteln procedures are supported).

The reason for removing these features is just for simplicity. Pascal-FC is designed as ateaching lan-
guage, not as a language to be used in the software industry. It intends to provide more concurrent
facilities by loosing efficiency in the language implementation.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 24

Useful extensions to standard Pascal When writing a sequential process, we are allowed to use the
following abstractions.

1. Extension to the repeat ... until loop.In a concurrent program, cyclic process may execute indef-
initely. Such a process can be written by using a loop REPEAT...FOREVER, which is semantically
equivalent to the loop REPEAT ... UNTIL false.

2. The null statement. The null statement has been added as an alternative to the Pascal’s empty
statement. Its execution has no effect.

3. Therandom function. This function returns a pseudorandom integer. A call has the form:

i:=random(n)

which returns an integer in the range 0...abs(n).

In addition to these, we certainly need extensions for process communication and synchronization. We
will introduce them along the progress in the course.

Other characteristics

1. Case of alphabetic in the source program.Case is not significant, except in string andchar
literals. I will use upper cases for reserved words as a convention, while the book uses bold lower
case.

2. Order of declarations. No like the original Pascal, there is no restrictions on the order of decla-
rations forlabel, const, type, var, procedureandfunction.

Further reading: Visit the website for Pascal-FC at

http://www-users.cs.york.ac.uk/ burns/pf.html.

2.11 Exercises

1. In Pascal-FC, give the pseudocode of the program for the seat reservation problem. You do not
have to care about the multiple booking problem in this program.

2. Parallel sort: Write a concurrent program in Pascal-FC to sort an array ofn integers. The
program should have two processes which are to sort the halves of the array in parallel; and finally
merges the two sorted halves.

3. Write a two-process concurrent program to find the mean ofn numbers.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 25

4. Assume that each of the assignments in the following program, except forx := 1 which is imple-
mented as one single machine instruction, is implemented by three machine instructions that load
a register, add a value to the register, then store the result. What are the all possible outputs of the
following programs?

PROGRAM P1; VAR
x: integer;

PROCESS p1;
BEGIN
x:=x+1; x:=x+2
END;
PROCESS p2;
BEGIN
x:=x+1;x:=x+1
END;
BEGIN

x:=0;
COBEGIN

p1;p2
COEND

END.

PROGRAM P2;
VAR

x: integer;
PROCESS p1;
BEGIN
x:=1
END;
PROCESS p2;
BEGIN
x:=x+1;x:=x+1
END;
BEGIN

x:=0;
COBEGIN

p1;p2
COEND

END.

5. Consider the concurrent program:

PROGRAM P2;
VAR

x,y: integer;
PROCESS p1;
BEGIN
x:=x+1;y:=y+x
END;
PROCESS p2;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

INTRODUCTION 26

BEGIN
x:=x+2;y:=y-x
END;
BEGIN

x:=0;y:=0;
COBEGIN

p1;p2
COEND

END.

(a) Suppose the above assignments are implemented by single machine instructions and hence
are atomic. How many possible interleavings are there? What are the possible final values of
x andy?

(b) Suppose each of the above assignments is implemented by threeatomicinstructions: load a
register, add or subtract a value from that register, then store the result. How many possible
interleavings are there? What are the possible final results ofx andy?

6. Write a three-process concurrent program to multiply two3× 3 matrices.

7. Write a program to find the maximum value in an integer arraya[1..n] by searching even and odd
subscripts ofa in parallel.

8. Can a multiprocessor system allow us to solve computational problems thatcannotbe solved with
a uniprocessor system, or does it merely permit us to solve the same problems more quickly?

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 27

3 MUTUAL EXCLUSION

The goals of the chapter

• Understand the two different classes of entities in a concurrent program:activeones andpassive
ones.

• Discuss the mutual exclusion and condition synchronization and their solutions without using syn-
chronization primitives.

• Understand some important concepts of concurrent programming, includingmultiple update, busy-
waiting, livelock, deadlock, safety,andliveness.

3.1 Process interaction

All concurrent languages, though may have various constructs, must in one way or another provide three
fundamental facilities, which allow:

1. the expression of concurrency

2. inter-process synchronization

3. inter-process communication

We have seen in Chapter 1, Pascal-FC provides us with thecobegin/coendstructure to express concurrent
execution of processes. The rest of the course is main concerned with process interactions: inter-process
synchronization and communication. As discussed in Chapter 1, the key nature of processes behaviour
in a concurrent program is:

• processes may behaveindependentlyfrom each other – parallel execution,

• processes maycooperatewith each other by means of synchronization and communication to
achieve a common goal.

There is a trade-off between the two types of processes behaviour. First, programs that consist oftotally
independentprocesses are rare and not very much interesting. Second, too much interaction means
too little parallel computation forsignificant processing, since synchronization and communication both
take time. Thus, the meaningful concurrency is possible only if the processes areloosely connected.
This means that for most of the execution time, processes behave independently of each other, but they
must also compete for resources and coordinate their activities in order to meet the program requirement.
They achieve this interaction by means of synchronization and communication.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 28

3.2 Active and passive entities

In concurrent programs, there are two kinds ofentities(calledobjectsin object-oriented program paradigm):
active entities and passive entities.

Active entitiesin a program are those that undertake spontaneous actions to make the computation of the
program proceed. Clearly, these active entities will be expressed as processes.

Passive entitiesin the program are those which perform actions only when ‘invoked’ (‘requested’) by an
active entity. They are needed to encapsulate resources needed by processes, and theymust controlhow
the resources are accessed. For example, a bounded data buffer cannot have an element removed if it is
empty, or an element added if it is full. We will see that passive objects can also been represented by
processes, and other primitives as well.

Certainly, there are other non-active entities, such as the usual data variables, that can be accessed without
any restriction. We call such an entity aneutral entity.

3.3 Communication via shared variable

The simplest way for two or more processes to communicate is via ashared variablex that is in the scope
of the communicating processes. One processp sendsmessages bywriting (updating) the variable, e.g.

x:=e (*p writes x*)

Another processq receivesa message sent byp by readingthe variable, i.e. assigning the valued of the variable to
another variable. More generally, we may have an assignment inq

y:=e’

(* e’ contains x:
*q receives the value of x and uses it *)

A special case of this is that a shared variable is updated by two (or more) processes, for example

PROCESS p;
BEGIN ...; x:=x+1; ... END;

PROCESS q;
BEGIN ...; x:=x+1; ...END;

BEGIN
......
COBEGIN p;q COEND;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 29

......
END.

To illustrate the problems of shared variables andmultiple updating, we consider an example called the
Ornamental Gardens Problem.

3.3.1 The Ornamental Gardens problem

A large ornamental garden is open to members of the public. However, to enter the garden, one has to
pay an admission fee. Entry is gained bytwo tunstiles. The management of the garden want to be able to
determine, at any time, thetotal number of visitorsin the garden. They propose that a computer system
should be installed which has connections to each turnstile and a terminal from which the management
can get the current total. We shall attempt to construct some prototype software for the proposed system.

To count the visitors as they enter and leave the garden, we suppose that the turnstiles are able to send a
signal to the computer to indicate each arrival and each departure. To develop a software prototype, we
will simply construct a simulation of the system and ignore the hardware details.

As there are two turnstiles behaving in parallel and the order of the their events should not be predictable:
we do not know in advance when or from which turnstile visitors will arrive or leave. It is obviously an
application of concurrent programming. We simulate the system as follows:

• each turnstile is simulated by a process in the program, the two processes run in parallel;

• a shared (global) integer variable will represent the current number of visitors in the garden,

• a terminal handler process (which will not be considered further) will provide the management
information.

We only want to illustrate the multiple updating problem. Thus, we further simplify the problem by only
counting the visitors as they enter. Furthermore, we only simulate an experiment in which 20 people
enter the garden from each turnstile: no-one is allowed to leave until the experiment has been completed.
The global counter should show that there are 40 people in the garden at the completion.

We provide the following program for the simulation:

PROGRAM gardens1; VAR count: integer;
(*shared variable*)

PROCESS turnstile1;
VAR

loop: integer; (*local variable of turnstile1*)

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 30

BEGIN
FOR loop:= 1 to 20 DO
count:=count+1

END; (*turnstile1*)

PROCESS turnstile2;
VAR

loop: integer; (*local variable of turnstile2*)
BEGIN

FOR loop:= 1 to 20 DO
count:=count+1

END; (*turnstile2*)

BEGIN (*the main program*)
count:=0; (*initialization*)
COBEGIN

turnstile1; turnstile2
COEND;
WRITELN(‘Total admitted: ’, count)

(*output the result*)
END.

Does the program gardens1 work for our purpose?

The answer is NO. If you run the program many times, you may find that the following values are all
possible outputs (i.e. the final value of variablecount):

25, 29, 31, 20, 21, 26, 27, 28, 18, 31, 35, 40

But 40 is the only one we want. Where did it go wrong then?

It is certainlynotbecause one of the turnstile processes may not execute all its statements. Bear in mind
that the program terminates only after both processes terminate. Thus, they both do execute all their
statements.

The problem is fundamentally the same as illustrated in the Seat Reservation Example. At the machine
level execution, the update action on the variablecount is broken into three instructions:

1. load the value ofcount into a processor register,

2. increment the value in the register,

3. store the value in the register at the address forcount.

Since we have written the program in the way that the two tunstile processes aretotal independentof one
another. It is possible for their actions to interfere with each other. Consider the case that whencount

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 31

has the value0, and the process counters are both at the beginning of ‘count := count+1’. The following
ordering of operations is possible:

1. turnstile1 loads the value 0 ofcount into a CPU register,

2. turnstile2 loads the value 0 ofcount into a CPU register,

3. turnstile2 increments the value in its register (becomes 1),

4. turnstile1 increments the value in its register (becomes 1),

5. turnstile2 stores the value 1 in its register at the address ofcount (the value ofcount becomes 1),

6. turnstile1 stores the value 1 in its register at the address ofcount (the value ofcount becomes 1)

At the completion of step (6), each processes has executed its assignmentcount := count+1 once. But
the value ofcount has had one increment though itappearsto have had two increments. If we run the
program gardens1 from the beginning to the end, we may have much fewer increments than weappear
to have in the program. In other words, by using this program we have lost a lot of increments that we
wanted.

The mistake we have made in this program is that we have treatedcount as aneutralobject. We should
treat it as apassiveobject so that the access to it should be controlled under certain rules. The solution
to the problem is the same for the Seat Reservation Problem. What we need is to code the updates to the
shared variable in a Critical Section which must be accessed under mutual exclusion.

Condition synchronization Consider a case that a shared variable of a program can only beupdated
by oneprocess (while it can bereadby another). There is certainly no multiple updating problem here.
Do we still have to treat such a shared variable as a passive object? In order words, is synchronization
still needed for the access to that variable? The answer is yes. Consider a simple version of the Sender-
Receiver problem:

PROGRAM passing1;
VAR value: integer;

PROCESS sender;
VAR message : integer;
BEGIN

.......
message:=42;
value:= message;
(*updates the shared variable*)
.......

END;

PROCESS receiver;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 32

VAR data: integer;
BEGIN

......
data:=value; (*reads the shared variable*)
write(data);
......

END;
BEGIN (*main program*)

COBEGIN sender; receiver COEND
END.

Error: If the receiver reads thevalue before thesender has written into it, then it will get anundefined
value rather than 42 that is intended.

So we need synchronization to guarantee that, in this situation, theupdatingaction of sender must
precede thereadingaction ofreceiver.

Condition synchronizationis the name given to the required property that one process should not perform
an event until some other process has undertaken a designated action to make acondition occur.

The Sender-Receiver problem is also a special case of the general Producer-Consumer problem: the
senderproducesan item by writing into the shared variable, and the receiverconsumesthe written item
by reading it from the shared variable.

3.4 Old-fashioned recipes for synchronization

We have seen that the naive use of shared variables for inter-process communication is not sufficient.
We need some way of providing inter-process synchronization. As far as shared variables are concerned,
there are two forms of synchronization in concurrent programs:mutual exclusionandcondition sys-
nchronization. Mutual exclusion is concerned with ensuring thatcritical sectionsof statements that
access shared objects are not executed at the same time. Condition synchronization is concerned with
ensuring that a process delays if necessary until a given condition occurs. It is usually the case that
events in another process will make the required condition occur. For example, communication between
a sender process and a receiver process is often implemented using a shared buffer. Mutual exclusion is
used to ensure that the sender and receiver do not access the buffer at the same time – hence a partially
written message is not read. Condition synchronization is used to ensure that a message is not received
before it has not been sent and that a message is not overwritten before it has been received.

We said that we would need new language features (primitives) for synchronization. Butis it possible
to program synchronization by using only the data types normally provided in a sequential language?
Or is it possible to achieve mutual exclusion and condition synchronization without using new language
features?

We shall show that the answer is YES. But we want also to show the solutions by this old-fashioned

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 33

recipe are inefficient, overcomplicated, and very much error-prone. This will motivate the need of high
level primitives and abstractions.

3.4.1 An old-fashioned recipe for condition synchronization

Consider the Sender-Receiver (Producer-Consumer) problem again. We modify the programpassing1
by introducing another shared variableflag, which delays the receiver process when its value is false:

PROGRAM passing2;
VAR value: integer;

flag: boolean;

PROCESS sender;
VAR message: integer;
BEGIN

message:=42;
value:= message;
flag:=true (*to indicate receiver to read*)

END;

PROCESS receiver;
VAR data: integer;
BEGIN (*busy waiting loop*)

WHILE NOT flag DO NULL;
(*read after flag becomes true*)
data:=value;
write(data)

END;
BEGIN

flag:=false;
COBEGIN sender;receiver COEND

END.

The program passing2 has the following feature:

• no use of any new primitive instructions, and the shared variablesvalue andflag which are just
simple variables in sequential Pascal;

• busy waitingis used: this means that a process that finds itself unable to proceed immediately
remains executable and continues to execute instructions while it is waiting;

• the program is very inefficient, as the process is using up valuable processor cycles while doing
nothing useful.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 34

Time

Overlap

Mutual exclusion
A1 A2

A2 A1

Time

Figure 6: Mutual exclusion and overlap

3.4.2 Old-fashioned recipes for mutual exclusion

From the earlier discussions, we must have got the feeling that mutual exclusion is a basic problem in
concurrent programming. It is the abstraction of many synchronization problems. It turns out, as we will
show, a very difficult problem as well.

We say that activityA1 of processP1 and activityA2 of processP2 must excludeeach other if the
execution ofA1 may not overlap with the execution ofA2. This means that ifP1 andP2 simultaneously
attempt to execute their respective activitiesA1 andA2, then we must ensure that only one of them
succeeds. The losing process must be blocked, that is it must not proceed until the winning processPi

completes the execution of its activityAi. This is illustrated in Figure 6

The most common example of the need for mutual exclusion in real systems is resource allocation.
Obviously, two tapes cannot be mounted simultaneously on the same tape drive. Some provision must
be made for deciding which process will be allocated a free drive and some provision must be made to
block processes which request a drive when none is free. There is an obvious solution: run only one
job at a time. But this defeats one of the main aims of concurrent programming – parallel execution of
several processes.

Theabstractmutual exclusion problem will be expressed:

non-critical section1
entry-protocol
critical section
exit-protocol
non-critical section2

Thenon-critical sectionsrepresents some sets of actions in a process that can be executed concurrently
with any part of the other processes in the program without the danger of interference. After the com-
pletion of non-critical section1, the process needs to enter thecritical section. It will execute certain
sequences of instructions, calledprotocolsbefore and possibly after the critical section. These protocols
will ensure that the critical section is in fact executed so as to exclude the critical sections in the other
processes of the program. Thus, we are mainly concerned with these protocols.

This section considers the mutual exclusion problem for two processes as follows:

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 35

Two processesP1 andP2 are each in an infinite loop consisting of two sections, a critical section and a
non-critical section. Letcritic1 andcritic2 represent the critical sections ofP1 andP2, andnocritic1

andnoncritc2 for their non-critical sections, respectively. The execution of The critical sectionscritic1

andcritic2 must be under mutual exclusion, i.e. must not overlap.

We present Dijkstra’s (Dijkstra, 1968) development step-by-step from failed attempts to the elegant
Dekker’s solution, to show how difficult the problem is.

Each of the attempts will be a program outline of the following form:

PROGRAM outline;
VAR;
PROCESS P1;

VAR.....;
BEGIN

REPEAT
entry-protocol1
critic1
exit-protocol1
noncritic1

FOREVER;
PROCESS P2;

VAR.....;
BEGIN

REPEAT
entry-protocol2
critic2
exit-protocol2
noncritic2

FOREVER;
BEGIN (*main program*)

.......
COBEGIN P1; P2 COEND

END

First attempt Similar to the idea of the busy-wait condition synchronization algorithm in the Sender-
Receiver problem, a process uses aflag to delay the other process.

PROGRAM attempt1;
VAR flag1, flag2: boolean;
PROCESS P1;

BEGING
REPEAT

WHILE flag2 DO NULL; (*busy-wait*)
flag1:=true; (*announce*)
critic1;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 36

flag1:=false; (*exit protocol*)
noncritic1

FOREVER
END;

PROCESS P2;
BEGIN

REPEAT
WHILE flag1 DO NULL; (*busy-wait*)
flag2:=true; (*announce*)
critic1;
flag2:=false; (*exit protocol*)
noncritic2

FOREVER
END;

BEGIN (*main program*)
flag1:=false; flag2:=false;
COBEGIN P1;P2 COEND

END.

This violates the mutual exclusion requirement: consider the following interleaving

flag1 flag2
Initially false false
P1 checks flag2 false false
P2 checks flag1 false false
P1 sets flag1 true false
P2 sets flag2 true true
P1 enters critic1 true true
P2 enter2 critic2 true true

Second attempt

PROGRAM attempt2;
VAR flag1,flag2: boolean;
PROCESS P1;

BEGIN
REPEAT

flag1:=true; (*announce intent to enter*)
WHILE flag2 do NULL;
(*busy wait if P2 is in its *)
(*critical section*)
critic1;
flag1:=false; (*exit protocol*)
noncritic1

FOREVER
END;

PROCESS P2;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 37

BEGIN
REPEAT

flag2:=true; (*announce intent to enter*)
WHILE flag1 do NULL;
(*busy wait if P1 is in its *)
(*critical section*)
critic2;
flag1:=false;(*exit protocol*)
noncritic2

FOREVER
END;

BEGIN (*main program*)
flag1:=true;
flag2:=true;
COBEGIN P1;P2 COEND

END.

NB:

• The mutual exclusion requirement is met by the program: when P1 is incritc1, flag1 must be
true, P2 has to wait, similar for the case when P2 is incritic2.

• But, the program maydeadlock: both P1 and P2 keep remaining in busy waiting forever without
making any progress. This happens because the program allows the following interleaving:

flag1 flag2
Initially false false
P1 sets flag1 true false
P2 sets flag2 true true
P1 checks flag2 true true
P2 checks flag1 true true
.....both busy-wait without making progress......

In this case no process can enter its critical section only after that it could set its flag to false.Processes
have no other way to withdraw their announcement of their intent to enter the critical sections.The
program hopelessly deadlocked.

In general,deadlockmeans that the execution of the program is no longerpossiblydoing any (useful)
work.

We need to add a requirement for the program to rule out deadlock:

Progress Requirement: if both processes continuously request for entry into their critical sections,
one of them musteventuallysucceed to do so.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 38

Third attempt In the previous solution, whenP1 setsflag1 to indicate its intention to enter its critical
section, it also turns out that it isinsistingon its right to enter the critical section. Deadlock occurs
when both announced their intention and no one wants to back off. In our next attempt, we correct this
stubbornbehaviour by having a processtemporarilygive up its intention to enter its critical section to
give the other process a chance to do so.

PROGRAM
attempt3; VAR flag1,flag2: boolean; PROCESS P1; BEGIN

REPEAT
flag1:=true; (*announce its intention*)
WHILE flag2=true DO

BEGIN
flag1:=false; (*give P2 a chance*)
flag1:=true (*reannounce its intention*)

END;
critic1;
flag1:=false;
noncritic1

FOREVER
END;
PROCESS P2;
BEGIN

REPEAT
flag2:=true;
WHILE flag1=true DO

BEGIN
flag2:=false; (*give P2 a chance*)
flag2:=true (*reannounce its intention*)

END;
critic2;
flag2:=false;
noncritic2

FOREVER
END;
BEGIN (*main program*)

flag1:=false; flag2:=false;
COBEGIN P1;P2 COEND

END.

This program, like the previous one, meets the mutual exclusion requirement. But we may have the
following situation:

flag1 flag2

Initially false false
P1 sets flag1 true false
P2 sets flag2 true true

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 39

P1 checks flag2 true true
P2 checks flag1 true true
P1 downs flag1 false true
P2 downs flag2 false false
P1 sets flag1 true false
P2 sets flag2 true true
... REPEAT FOREVER

In this situation, both processes are looping on a protocol which is certainly not useful computation and
this situation appears to be similar to the previous attempt. However, it is a quite different situation and
we call it situation alivelock. In the previous attempt the solution is hopeless: from the instant that the
program is deadlocked, all future execution sequences remain deadlocked (no hope for breaking the lock
at all). In this solution however, the possibility of remaining in the loop forever isvery verysmall. In
both practice and principle, keep the execution running, one of the processes will be eventually freed. In
such a sense, the loop of on this protocol is stilluseful.

In general,livelock is a situation in which all the processes areindefinitely delayed.

Livelock is less serious than deadlock since the computer is still doing (presumably) useful work. How-
ever, livelock is difficult to discover and correct (it is hopeless to discover livelock by testing) since it can
only happen in complex scenarios.

Precisely speaking, attempt2 indeed meets the progress requirement since the processes donot contin-
uouslyrequest for the entry to their critical sections, though they may requestinfinitely oftenwithout
success. Therefore, we need to strengthen the progress requirement as follows.

New progress requirement:whenever both processes requestinfinitely oftenfor the entry to the critical
sections, one should eventually enter its critical section.

Fourth attempt The problem with the above three attempts seems to be at the setting of one’s own
flag and the check on he other’s cannot be done as one indivisible action. The fourth attempt is to use
just one flag that indicates whoseturn it is to enter the critical section next.

PROGRAM attempt4;
VAR turn: integer;
PROCESS P1;

BEGIN
REPEAT

WHILE turn=2 DO NULL;
critic1;
turn:=2; (*next is P2’s turn*)
noncritc1

FOREVER
END;

PROCESS P2;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 40

Time

P1 enters noncritic1and remains there ever after

Time

turn=2

turn=1 and P2 busy waits forever

P2 in critic2

Figure 7: Starvation

BEGIN
REPEAT

WHILE turn=1 DO NULL;
critic2;
turn:=1; (*next is P1’s turn*)
noncritc2

FOREVER
END;

BEGIN (*main program*)
turn:=1; (*can also be 2*)
COBEGIN P1;P2 COEND

END.

This program meets both the mutual exclusion requirement and the new progress requirement (WHY?).

But the program may suffer fromStarvation (or indefinite postponement, or lockout). If one process,
say P1 is indefinitely postponed in its non-critical section (e.g. an infinite loop in noncritic1, or P1’s
processor crashed during the execution of critic1), it will never intent to enter the critical section again.
At the same time P2 keeps trying to enter its critical section thus,turn will be eventually be 1 and
remains as 1 forever since P1 will never change it to 2 again. This will block P2 from entering its critical
section again even though it keeps trying (see the time diagram in Figure 7).

Starvation is a condition that while the program as a whole still making progress, but a set of processes
do not because their request for some conditions will never be fulfilled.

In this case, starvation islocal deadlockin the sense that the program as whole still making progress but
a subset of processes cannot. Starvation is sometimes classified into livelock or deadlock according to
the nature of the ‘lock’.

Note that attempt4 does meet both the mutual exclusion and the new progress requirements, since not
all processes request infinitely often but only one does. The new progress requirement needs further
strengthened.

Liveness requirement: If one process requests for the entry infinitely often, it will eventually enter its
critical section.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 41

Dekker’s solution Dekker’s solution is an ingenious combination of the third and fourth attempted
solution.

In the third attempt, each process behaves like agentleman. When a process wants to enter its critical
section, it announces it intention and then checks on another’s intention. If it finds that the other intents
to enter as well, it kindly give up its right to enterbut only temporarily. This may unfortunately lead to
an indefinite loop on giving up and reclaiming the right to enter the critications.

The fourth attempt could be viewed as processes passing a shared key (turn) to the critical sections
between them. Unfortunately, if a process passed the key to another process which will not come back
to return the key again after leaving its critical section (stays in the noncritical section or terminates), the
first process will be ever sincelockedout

Dekker’s solution solves the problem by using two flagsflag1 andflag2, and a shared keyturn which
will be only used when both processes intent to enter the critical sections. A process intents to enter its
critical section sets its flag to announce its intention. It then checks on another’s intention:

• if the other does not intent to enter, then it enters its critical section (the gate is open to him),

• if the other intents to enter as well (the door is locked to it), then it needs to see whether it has the
key,

• if it has, then it can enter, if not it gives up its right and wait for the key to be returned to it before
reclaiming its right.

PROGRAM Dekker; VAR turn: integer;
flag1,flag2: boolean;

PROCESS P1;
BEGIN

REPEAT
flag1:=true; (*announce intention*)
WHILE flag2 DO (*check on flag2*)

IF turn =2 THEN (*if no key *)
BEGIN

flag1:=false; (*give up right*)
WHILE turn=2 DO NULL;(*busy wait*)
flag1:=true (*reclaim right*)

END;
critic1;
turn:=2; (*return the key*)
flag1:=false; (*exit*)
noncritic1

FOREVER
END;
PROCESS P2;
BEGIN

REPEAT

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 42

flag2:=true; (*announce intention*)
WHILE flag1 DO (*check on flag1*)

IF turn =1 THEN (*if no key *)
BEGIN

flag2:=false; (*give up right*)
WHILE turn=1 DO NULL;(*busy wait*)
flag2:=true (reclaim right*)

END;
critic2;
turn:=1; (*return the key*)
flag2:=false; (*exit*)
noncritic2

FOREVER
END;
BEGIN (*main program*)

flag1:=false;
flag2:=false;
turn:=1; (*can be 2 as well*)
COBEGIN P1;P2 COEND

END.

3.5 Correctness of concurrent programs

As you have seen, when we write a program, we always start with a problem description followed by the
requirement(s) of the program. Then we try to reach a solution. And after we get a solution, we need to
analyse whether the program meets the requirements.

We say aproperty is some assertion on the program execution: i.e. an assertion on all possible inter-
leavings that the program may exhibit. A programsatisfies(or has) a property iff the property istrue of
everyinterleaving (execution) of the program.

A requirement of a program is just stated as a property. A program iscorrect with respect to a require-
ment if the program satisfies the requirement property. For example, the mutual exclusion requirement
and the liveness requirement are properties that every execution of the program Dekker satisfies.

In general, (useful) properties of programs are classified (by Owicki & Lamport, 1982) assafetyproper-
ties andlivenessproperties:

• A safety propertystates that nothingbadwill ever happen during an execution.

More precisely, a safety property asserts that the program execution will never enter abad state. A
bad state can be a state, for examples, in which two or more processes are in their critical sections,
or a state at which the program deadlocks.

• A liveness propertystates that somethinggoodwill eventuallyhappen duration an execution.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 43

Again in other words, a liveness property asserts that an execution will eventually enter anexpected
state. Such an expected state can be a state in which a process is in its critical section, or a state in
which the execution outputs the result, or a state in which the execution normally terminates.

It is noted that a liveness property is often under a condition. Thus, in full a liveness property
states that “if a property (condition) holds in an execution, then something good will eventually
happen in the execution”. For example, if a process requests infinitely often for a resource, it will
eventually get the resource infinitely many times.

A program violating safety property is dangerous to use: a banking system should never allow a customer
to enter another’s account. In this sense, safety properties are treated more seriously.

On the other hand, a program without liveness property can be useless. For example, a program termi-
nates without doing anything satisfies any safety property.

Program Verification Program verification is a procedure of reasoning about a program against its
requirements. For example, we claimed the program Dekker is correct w.r.t. the mutual exclusion and
liveness requirements. Can we prove this?

Without a formal notation, it would be very complicated to prove that Dekker’s solution is correct. At
most we can only give some informal explanation. It would be very confusing and ambiguous. We rather
not enter this topic in this course.

Formal methods in specification and verification have been developed for tackling this problem effec-
tively.

3.6 Exercises

1. In Pascal-FC,clock is a function of no argument, which returns an integer that represents the
number of system clock units (seconds) elapsed since some arbitrary zero (not necessarily the
start of the execution of the concurrent program), andsleep is a procedure whose call is of form
sleep(n), wheren is an integer constant, that causes the calling process delayed forn seconds.
Read Pascal-FC User Guide for Sun Systems and consider the following program.

PROGRAM sleeper;
CONST period =4;
VAR start: integer;

PROCESS A;
VAR time: integer;

BEGIN
REPEAT

time:= clock;
IF (time-start) MOD 4 < 2 THEN

writeln(’Uninterruptable write by A’);

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 44

sleep(1)
FOREVER

END;

PROCESS B;
VAR time: integer;

BEGIN
REPEAT

time:= clock;
IF (time-start) MOD 4 >= 2 THEN

writeln(’Uninterruptable write by B’);
sleep(1)

FOREVER
END;

BEGIN
start:=clock;
COBEGIN

A;B
COEND

END.

Are thewriteln statements uninterruptable as the program claims?

2. With the program in Exercise 1, is the fair scheduler actually fair? What is the output of the
program likely to look like with the unfair scheduler? If the twosleepstatements are removed (or
replaced bynull), what will the behaviour of the program be with the fair and unfair schedulers?

3. Assume that theclock andsleepstatements work on a one-second time constant. Write a program
that consists of five processes. Each process is periodic, but the periods differ. One process should
run every 2 seconds, one every 3, one every 5, one every 7 and the last every 9 second. Use the
unfair scheduler. Each process should simulate an intensive computational load by executing:

FOR i:=1 to MAX do
temp:=163*10 MOD 975

wheretemp is a local variable (to each process) andMAX is a global constant. Experiment
with different values ofMAX. When is the computational load too excessive for each process to
complete its executions before its next period starts? (Hint: see pages 54-55 of Burns& Davies
book.)

4. We said that the update of a variable would be accomplished on most current hardware by three
separate operation: load the value of the variable to a register, update the value in the register, and
store the value of the register at the address of the variable. How many possible interleavings are
there when two processes currently execute the update on a uniprocessor? How many of them lead
to the ‘loss’ of an increment?

5. Given that the Pascal-FC compiler generates these three instructions when the variablecount is
updated by a process in the programgarden1 for the Ornamental Gardens problem, what is the

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 45

minimum value that you would expectcount to have when the program completes? What is the
maximum forcount?

6. The following program is a solution originally proposed by Peterson (1981) to the mutual exclusion
problem for two processes.

PROGRAM peterson; VAR turn: integer;
flag1, flag2: boolean;

PROCESS P1;
BEGIN

REPEAT
flag1:=true; (*announce intent to enter*)
turn:=2; (*give priority to other process*)
WHILE flag2 AND (turn=2) DO null;
critic1;
flag1:=false;
noncritic1

FOREVER
END;

PROCESS P2;
BEGIN

REPEAT
flag2:=true; (*announce intent to enter*)
turn:=1; (*give priority to other process*)
WHILE flag1 AND (turn=1) DO null;
critic2;
flag2:=false;
noncritic2

FOREVER
END;

BEGIN(*main program*)
flag1:=false; flag2:=false;
turn:=1; (*arbitrary value, could be 2*)
COBEGIN

P1; P2
COEND

END.

Show that program peterson meets the both safety and liveness requirements.

7. Adapt Peterson’s algorithm so that three processes wish to gain access to the critical sections.

8. The following attempts to show how two processes can pass data (without blocking) using two
slots for the data:

PROGRAM twoslots;
TYPE data=RECORD

A: integer;
B: integer;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 46

C: integer
END;

VAR twoslot: ARRAY[false..true] OF data;
slot: boolean;

PROCESS writer;
VAR I:integer;

D:data;
BEGIN

FOR I:=1 TO 30 DO
BEGIN

twoslot[slot].A:=I;
twoslot[slot].B:=I;
twoslot[slot].C:=I;
slot:=NOT slot

END
END;

PROCESS reader;
VAR I: integer;

D: data;
BEGIN

FOR I:=1 TO 40 DO
BEGIN

write(twoslot[NOT slot].A);
write(twoslot[NOT slot].B);
write(twoslot[NOT slot].C);
writeln

END
END;

BEGIN (*main program*)
slot:=true;
twoslot[false].A:=0;
twoslot[false].B:=0;
twoslot[false].C:=0;
COBEGIN

writer;
reader

COEND
END.

The data is coded as a record so that atomic updates are clearly impossible. Boolean variables can,
however, be assumed to be updated atomically. Does this program possess safety and liveness?

9. The following complete Pascal-FC program implements Simpson’s 4-slot algorithm for informa-
tion exchange between a single reader process and a single writer process. Neither process busy
waits; instead the reader process will get immediate access to an old version if the writer process
is currently updating the ‘shared’ data. Four slots for the data are needed so that no interleaving
will break mutual exclusion on any copy of the data:

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 47

PROGRAM simpson; TYPE data=RECORD
A: integer;
B: integer;
C: integer

END;

VAR fourslot: ARRAY[false..true,false..true] OF data;
slot: ARRAY[false..true] OF boolean;
reading, latest: boolean;

PROCESS writer;
VAR I:integer;

D:data;
pair, index: boolean;

BEGIN
FOR I:=1 TO 30 DO

BEGIN
pair:= NOT reading;
index:= NOT slot[pair];
fourslot[pair,index].A:=I;
fourslot[pair,index].B:=I;
fourslot[pair,index].C:=I;
slot[pair]:=index;
latest:=pair

END
END;

PROCESS reader;
VAR I: integer;

D: data;
pair, index: boolean

BEGIN
FOR I:=1 TO 40 DO

BEGIN
pair:=latest;
reading:=pair;
index:=slot[pair];
write(fourslot[pair,index].A);
write(fourslot[pair,index].B);
write(fourslot[pair,index].C);
writeln

END
END;

BEGIN (*main program*)
reading:=false;
latest:=false;

slot[false]:=false;
fourslot[false,false].A:=0;
fourslot[false,false].B:=0;
fourslot[false,false].C:=0;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 48

COBEGIN
writer;
reader

COEND
END.

Study the program. Does it possess safety? Can you find two liveness properties that this program
meets? Can you find a liveness property that this program does not meet?

10. The following program is an attempted solution to the mutual exclusion problem for two processes.
Discuss the correctness of the solution: if it is correct, then prove it. If not, write scenarios that
show that the solution is incorrect.

PROGRAM attempt; VAR c1,c2: integer; PROCESS
p1; BEGIN

REPEAT
noncritic1;
REPEAT

c1:=1-c2
UNTIL c2<>0;
critic1;
c1:=1

FOREVER
END;
PROCESS p2;
BEGIN

REPEAT
noncritic2;
REPEAT

c2:=1-c1
UNTIL c1<>0;
critic2;
c2:=1

FOREVER
END;

BEGIN (*main program*)
c1:=1; c2:=1;
COBEGIN

p1;p2
COEND

END.

11. The IBM 360/370 computers have a primitive instruction calledTST (Test an Set). There is
a system global variable calledc (condition Code). ExecutingTST (l) for a local variablel is
equivalent to the following two assignments:

l:=c;
c:=1

(a) Discuss the correctness (safety, deadlock, lockout) of the solution of mutual exclusion prob-
lem shown in the programtestandset.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 49

(b) Generalize ton processes.

(c) What would happen if the primitiveTST instruction were replaced by the two assignments?

PROGRAM testandset; VAR c:integer; PROCESS
p1; VAR l: integer; BEGIN

REPEAT
noncritic1;
REPEAT

TST(l)
UNTIL l=0;
critic1;
c:=0

FOREVER
END;
PROCESS p2;
VAR l: integer;
BEGIN

REPEAT
noncritic2;
REPEAT

TST(l)
UNTIL l=0;
critic2;
c:=0

FOREVER
END;
BEGIN (*main program*)

c:=0;
COBEGIN

p1;p2
COEND

END.

12. TheEX instruction exchanges the contents of two memory locations.EX(a, b) is equivalent to
an indivisibleexecution of the following assignment statements:

temp:=a;
a:=b;
b:=temp

(a) Discuss the correctness (safety, deadlock, lockout) of the solution for the mutual exclusion
shown in programexchange.

(b) Generalize ton processes.

(c) What would happen if the primitiveEX instruction were replaced by the three assignments?

PROGRAM exchange; VAR c: integer; PROCESS
p1; VAR l: integer; BEGIN

l:=0;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

MUTUAL EXCLUSION 50

REPEAT
noncritc1;
REPEAT

EX(c,l)
UNTIL l=1;
critic1;
EX(c,l)

FOREVER
END;
PROCESS p2;
VAR l: integer;
BEGIN

l:=0;
REPEAT

noncritc2;
REPEAT

EX(c,l)
UNTIL l=1;
critic2;
EX(c,l)

FOREVER
END;
BEGIN (*main program*)

c:=1;
COBEGIN p1;p2 COEND

END.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 51

4 SEMAPHORES

The goals of the chapter

• Introduce the synchronization primitives calledsemaphores.

• Apply semaphores to mutual exclusion and condition synchronization.

4.1 Introducing Semaphores

As we have seen in Chapter 2, the outline of the solutions to mutual exclusion is of the form:

entry-protocol
critical section
exit-protocol
non-critical section

We have shown that the problem can be solved by directly programming theentry andexit synchro-
nization protocols, without using new language facilities. In general, these protocols are sequences of
statements whose executions can overlap in time.

However, synchronization protocols that use only busy waiting can be difficult to design, understand,
and reason about. We saw in the last chapter, most busy-waiting protocols are quite complex. Also
there is no clear separation between variables that are used for synchronization and those that are used
for computing results. A consequence of these attributes is that one has to be very careful to ensure
that processes are correctly synchronized. For example the order of setting one’s own flag and checking
another’s is crucial and needs serious consideration. This implies that such an old-fashioned approach is
very much error-prone.

A further deficiency of busy waiting is that it is inefficient when processes are implemented by multipro-
gramming (multitasking). A processor executing a spinning process can usually be more productively
employed executing another process.

From Chapter 1, we should have had the feeling that all theentry/exit protocols have a common feature:
a process’s entry protocol forces the process towait to enter its critical section until no other processes
are in the their critical sections; a process’s exit protocol gives asignal to all the relevant processes about
its exit from the critical section. Because synchronization is fundamental to concurrent programming, it
is desirable to have special tools that aid in the design of synchronization protocols and that can be used
to block processes that must be delayed.

Would it not be much nicer if we can always represent the entry and exit protocols by single statements?

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 52

WAIT;
critical section;
SIGNAL;
non-critical section

Semaphoresare one of the first such tools and certainly one of the most important to provide such an
abstraction. The introduction of semaphores by Dijkstra (1968) gave a decisive thrust to the scientific
study of concurrent programming.

4.2 Definition of semaphores

A semaphoreis represented as a programvariablewhich can take on only non-negative integers.

Then what is thedata type of a semaphore variable? Can it beInteger? To answer the questions, we
must first understand what is a data type.

For computer scientists, a data type hastwoattributes:

• a set ofpermissible values,

• a set ofpermissible operationson the values.

For example, the type BOOLEAN has only two values, true and false, and has the boolean operations
such asand, or andnot. We are not allowed to assign an integer, such as 5, to a boolean variable, or
apply the operation ‘+’ on boolean values.

Therefore, a semaphorecannotbe of typeinteger. The first reason is that it does not take on all integers.
The second reason it does not allow the conventional integer operations.

Pascal-FC provides a newstandardtype,semaphorewhich has:

• the set of non-negative integers as its permissible values,

• two priciple permissible operationswait andsignal (the original Dijkstra’s notation is P forwait
and V forsignalwhich are the initials of the corresponding words in Dutch).

Given a semaphores, meanings of these two definitions are given as follows:

• wait(s): If s > 0 then s := s − 1 elsethe execution of the process calling wait(s) is suspended
(blocked ons).

• signal(s): If some processes have been blocked by a previous wait(s) ons then unblock one of
themelses := s + 1.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 53

Remarks on semaphores

• Remark 1: If a semaphore only assumes values 0 and 1 in a program, it is called abinary
semaphore, otherwise it is called ageneral(or counting) semaphore.

• Remark 2: wait(s) and signal(s) are the only operations allowed. In particular, assignment tos or
tests ons are prohibited except for an assignment tos of an initial non-negative value in themain
program by the procedureinitial (s,n), where n is a non-negative integer.

• Remark 3: The standard procedures wait(s) and signal(s) are implemented as single indivisible
operation. This means that they exclude one another just as Load and Store operations exclude
one another. But semaphore operations ondistinctsemaphores need not exclude one another.

• Remark 4: The definitions of wait(s) and signal(s) here usesblock-waiting rather than busy-
waiting, a blocked process was taken off from its processor by the scheduler, so that the processor
can be switched to another process.

Question: Can you give the busy-waiting definitions for wait(s) and signal(s)?

Declarations of semaphores
Since a semaphore is represented as variable of type SEMAPHORE, it must be declared before being
used. Pascal-FC declarations of semaphore variables are as for any other Pascal’s unstructured data types.
We can have the following declarations:

TYPE
semtable=ARRAY[1..10] OF semaphore;

VAR
s1, s2: semaphore;
stab: semtable;
semarray: ARRAY[1..20] OF semaphore;
semrc:

RECORD
i: integer;
s: semaphore

END;

But we have the following two restrictions:

• a semaphore may only be declared in the main program declaration part;

• they may be parameters of processes, procedures or functions, but they must be always beformally
declared asvar parameters.

Question: Why these restrictions are needed?

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 54

4.3 Mutual exclusion with semaphores

Solving the two-process mutual exclusion problem is trivially easy now:

PROGRAM two-process-mutual-exclusion; VAR
s: semaphore; PROCESS P1; BEGIN

REPEAT
wait(s);
critic1;
signal(s);
noncritic1

FOREVER
END;
PROCESS P2;
BEGIN

REPEAT
wait(s);
critics2;
signal(s);
noncritic2

FOREVER
END;
BEGIN (*main program*)

initial(s,1);
COBEGIN P1; P2 COEND

END.

You can easily imagine that we can add as many processes as we want to the program and the program
will still guarantee the mutual exclusion. Let us ignore the differences in the the critical sections and
noncritical sections among different processes. We have have a program like

PROGRAM mutualexclusion; PROCESS TYPE
proc; BEGIN

REPEAT
wait(s);
critic;
signal(s);
noncritic

FOREVER
END;
VAR s: semaphore;

P: ARRAY[1..N] OF proc;
CONST: N= 50; (*for example*)
BEGIN

initial(s,1);
COBEGIN

FOR i:=1 to N DO P[1]

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 55

COEND
END.

About initial(s, n)

Notice that inthis casewe have usedinitial(s, 1) which initializeds with value 1. Can we chose another
n ≥ 0, say 0, or 2, or 1000, as the initial value ofs? The answer is NO!

Consider the case that we have three processes P1, P2 and P3, and the initial value of s is0:

s P1 P2 P3
Initially 0 begin begin begin
P1 executes wait 0 blocked begin begin
P2 executes wait 0 blocked blocked begin
P3 executes wait 0 blocked blocked blocked

...... Deadlock.......

If the initial value is greater than 1, say 2:

s P1 P2 P3
Initially 2 begin begin begin
P1 executes wait 1 critic begin begin
P2 executes wait 0 critic critic begin

......mutual exclusion violated

Does this mean that we must always initialize the semaphores with 1? If so, an implementation of
semaphores could automatically assign 1 to all semaphores in their declarations and there would have
no need to provide this initialization primitive. In some other applications, 1 turned out not to be an
appropriate initial value.

4.4 Implementation of semaphores

The definitions ofwait andsignaloperations do not specify which of the blocked processes is unlocked.
This is a matter taken care by the scheduler. There are several scheduling policies in practice for the
implementation of semaphores, which have different effect on the liveness properties of a program. Here
we consider three of them.

• FIFO. Any process attempting await on a semaphores with a value of 0 is blocked on a FIFO
queue. When asignal is executed ons (by an unblocked process), the first process in the queue
(i.e. at the head of the queue) is unblocked (allowed to complete itswait).

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 56

• PRIORITY. Each process is associated (either statically or dynamically) with apriority which is
usually an integer. Any process attempting await ons with a value of 0 is blocked and joins a set
ordered by according to the priorities of processes. When asignal is executed ons, the blocked
process with the highest priority in the set will be unblocked.

• RANDOM. Any process that attempts await on s with a value of 0 is blocked and joins an
unordered set of processes. When asignal is executed ons, one member of the set is chosen at
random and completes itswait.

The FIFO scheduling is afair in the sense thata blocked process will eventually be unblocked. And it
is even more than fair that the process which is blocked earlier will be unblocked earlier. The priority-
based scheduling is certainly not fair because “lower class” processes have to give way to “higher class”
processes. The random scheduling is sometimes saidweak fair (but I personally do not) in the sense that
if a process stays in the blocked set long enough it will be unblocked (with probability 1). But note that
it is possible that an event with probability 1 may never happen. So in both of the last two scheduling
policies, starvation of some processes may be allowed, though this isunlikely to happen for the random
scheduling.

4.5 Analysing semaphore programs

In analysing the behaviour of semaphore programs, it is important to know the following two properties
calledsemaphore invariantsbecause they are satisfied at all times during the execution of a program.

• (1). s ≥ 0: at any time the value ofs is no less than0.

• (2). s = s0 + #siginal − #wait: at any time the value ofs equals the summation of the
initial value s0 and the number ofsignal operations#signal carried out up to the timeminus
the number ofcompletedwait operations#wait up to the time. In other words, the value of a
semaphore always equals to the summation of its initial value and the number of increments (by
signaloperations) minus the number of decrements (carried out bywait operations).

Note the fact that asignal operation may not actually increments to unblock a blocked process, but in
this case the unblocked processcompletesits wait without decrementings either.

Analysis of program mutualexclution

Using the two semaphore invariants, we can prove the mutual exclusion property of programmutualexclution:
the number#CS of processes in their critical sections is at all times no more than 1 during the execution:

Invariant : #CS ≤ 1

The proof outline is:

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 57

Producer ConsumerBuffer

Figure 8: Producer and consumer–unbounded buffer

i). #CS = #wait(s) −#signal(s): this can be shown by examination of the program text (can you
prove it as an exercise?);

ii). s = 1 + #signal(s)−#wait(s): this is semaphore invariant (2) sinces is initialized as 1;

iii). #CS = 1− s ≤ 1: this is from (i) and (ii) and the semaphore invariant (1).

The liveness requirement depends on the semaphore implementation. It is satisfied by the FIFO schedul-
ing policy. In general, it is difficult to rigourously reason about a liveness property without using a formal
notation, such a Temporal Logic.

4.6 Condition synchronization with semaphores

We consider a number of examples to show further applications of semaphores.

4.6.1 Producer and consumer with an unbounded buffer

Problem description
Consider two processes, aproducerwhich repeatedlyproducesitems, and aconsumerwhich consumes
the produced items one-by-one. The producer sends its produced items to the consumer byplacingthem
into a unbounded FIFO buffer, and the consumer receives these items bytaking them from the FIFO
buffer (see Figure 8).

We assume that we have an implementation of an unbounded buffer with two operationsplaceandtake,
which guarantees a FIFO discipline on buffer accesses.

Requirements

1. the producer may produce a new item at any time;

2. the consumer may only consume an item when the buffer is not empty.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 58

3. all items produced are eventually consumed —liveness requirement.

To meet the requirements, the consumer must be blocked when the buffer is empty. We propose to use a
semaphore whose value records the current number of items in the buffer: the number of items that have
been produced and have not yet been consumed. The initial value of the semaphore should be 0 since
nothing has been produced at the beginning. After the producer executes aplace, it should signal the
semaphore.

PROGRAM producer-consumer1; VAR
ItemsReady: semaphore; PROCESS producer; VAR item: sometype; BEGIN

REPEAT
produce(item); (*may be a sequence of statements*)
place(item); (*place the newly produced item *

(*into the buffer*)
signal(ItemsReady);

FOREVER
END;
PROCESS consumer;
VAR item: sometype;
BEGIN

REPEAT
wait(ItemsREady); (*blocked if buffer is empty*)
take(item); (*take an item from the buffer*)
consume(item) (*may be a sequence of statements*)

FOREVER
END;

BEGIN
initial(ItemsReady,0);
COBEGIN

producer; consumer
COEND

END.

This program meets the three requirements that we gave for the problem. And it has the property that the
order in which items are consumed is the same of the order in which they are produced because of the
use of the FIFO buffer.

Question: Can you give a proof of requirement 2 of the problem in the similar way as we did for the
mutual exclusion program?

However, the above program is not entirely satisfactory. The problem is that when the buffer isnot
empty, there is nothing to stop overlapping of aplace and atake. We might have assumed that these
two operations could be safely overlapped, but it is not always necessarily so. It depends on how the
buffer has been implemented, e.g. on how the bits are shift from one side to another. Moreover, if we
consider a general case in which there are multiple producers and consumers sharing the same buffer,
then overlapping buffer operations would be undesirable.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 59

Now we introduce another semaphore enforce the mutual exclusion on the buffer operations. This can
be easily done following the mutual exclusion solution.

PROGRAM producer-consumer2; VAR
ItemsReady, MutEx: semaphore; PROCESS producer; VAR item:
sometype; BEGIN

REPEAT
produce(item);
wait(MutEx);
place(item); (*a critical section*)
signal(MutEx);
signal(ItemsReady)

FOREVER
END;
PROCESS consumer;
VAR item: sometype;
BEGIN

REPEAT
wait(ItemsReady);
wait(MutEx);
take(item); (*a critical section*)
signal(MutEx);
consume(item)

FOREVER
END;
BEGIN(*main program*)

initial(ItemsReady,0);
initial(MutEx,1);
COBEGIN

producer; consumer
COEND

END.

Note thatItemsReady is a general semaphore which may take on any negative integers.

4.6.2 Producer-consumer with bounded buffers

In practice, there is no implementation of an unbounded buffer. We now consider the use of a buffer
of finite capacity. The requirement 1) for the producer-consumer with an unbounded buffer has to be
changed as

• the producer must never attempt toplacean item into the buffer when the buffer is full.

All the other requirements for the unbounded buffer case remain as requirements for this case.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 60

We solve this problem by using another (in addition toItemsReady andMutEx) semaphoreSpacesLeft
which records the number of spaces left in the buffer. The producer must be blocked whenever there is
not space left, i.e. whenever the value of this semaphore is 0.

We give a full executable Pascal-FC program in which the buffer is a record, andplaceandtake are two
procedures.

PROGRAM producerconsumer3; (*with a
bounded buffer*) CONST

BuffSize=5; (*for example*)
BuffInxMax=4; (*BufferSize-1*)

VAR
MutEx: semaphore; (*binary*)
ItemsReady: semaphore; (*general*)
SpacesLeft: semaphore; (*general*)
Buffer: RECORD

products: ARRAY[0..BuffInxMax] OF char;
NextIn: integer;
NextOut: integer;

END;
PROCEDURE place(ch:char);
BEGIN

Buffer.products[Buffer.NextIn]:=ch;
Buffer.NextIn:= (Buffer.NextIn+1) MOD BuffSize

END; (*place*)
PROCEDURE take(VAR ch:char);
BEGIN

ch:=Buffer.products[Buffer.NextOut];
Buffer.NextOut:=(Buffer.NextOut+1) MOD BuffSize

END; (*take*)
PROCESS producer;
VAR

item: char;
BEGIN

FOR item:=’a’ TO ’z’ DO
BEGIN

wait(SpacesLeft);
wait(MutEx);
place(item);
signal(MutEx);
signal(ItemsReady)

END
END; (*producer*)
PROCESS consumer;
VAR

item: char; (*local variable*)
BEGIN

REPEAT
wait(ItemsReady);

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 61

d e f g

NextIn

NextOut

Moving direction

point to the current position

Figure 9: Behaviour of the buffer

wait(MutEx);
take(item);
signal(MutEx);
Signal(SpacesLeft);
write(item)

UNTIL item=’z’;
writeln

END; (*consumer*)

BEGIN
Buffer.NextIn:=0; (*it is safe to initialize *)
Buffer.NextOut:=0; (*these two variables *)
initial(SpacesLeft, BuffSize);
initial(ItemsReady,0);
initial(MutEx,1);
COBEGIN

producer;
consumer

COEND
END.

Figure 9 can hopefully help the illustration of the behaviour of the buffer, especially theplaceandtake
procedures.

NB:

• In general a global variable such asBuffer.NextIn andBuffer.NextOut should be initial-
ized. But it is mysterious (to me) the above program works fine without initializingBuffer.NextIn
andBuffer.NextOut.

• It is always safe to initialized the global variables in the main program. But they must be initialized
correctly.

QUESTIONS:

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 62

1. Can we swap the order of the two signal operations in each processes?

2. Would it be correct if we initializedBuffer.NextIn andBuffer.NextOut to 3?

3. Would it be correct if we initialized these two variables with different values, say one with0 and
the other with2? What would happen with the program executions if in this case?

4. Try the above questions by running the corresponding programs.

4.7 More examples

4.7.1 The Readers and Writers Problem

A generalization of the mutual exclusion problem is the problem of the readers and writers. The prototype
for the abstract problem is an on-line transaction system such as a banking system which does not require
mutual exclusion among several processes whichonly readthe data. However, an update or any operation
that writes data must be considered to be a critical section which should be carried out under mutual
exclusion with all other operations on the data (including reading operations). We abstract our problem
as follows.

Problem description: Consider a number of processes accessing to some shared data. Any process
requiring access to the data must first call a procedureopen, indicating whether the access is for reading
or writing. When the process finishes its access, it must call a procedureclose, again indicating whether
it had been reading or writing. We ignore the details of how the data are given their initial values.

Requirement: Any number of readers can be concurrently active while write accesses to the data
must excludeall other accesses.

So we have two types of processes: readers and writers, whose life cycles are as follows.

PROCESS TYPE reader; VAR
local: SomeType;

BEGIN
REPEAT

open(ReadAccess);
rs_1; (*access data, copying to local*)
close(ReadAccess);
rs_2 (*use local data*);

FOREVER
END; (*reader*)

PROCESS TYPE writer;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 63

VAR
local: SomeType;

BEGIN
REPEAT

ws_1; (*produce new local data*);
open(WriteAccess);
ws_2; (*write local values to data*);
close(WriteAccess)

FOREVER
END; (*writer*)

To meet the requirement, we make the following design decisions foropenandclose:

1. Anyprocess attempting an access to the data has towait when there is writer currently accessing
the data. So we need a semaphorewriting whose value should be0 when there is such a writer.

2. A reading process does not have towait atwriting if there is already a reader is currently reading
the data.

3. A writing process attempting an access to the data has to wait atwriting when there isanyprocess
is currently accessing the data. Sowriting can besignalledon by a process which is the only one
currently accessing the data.

4. Decisions 2&3 implies that we need to keep a record on the number of readers currently accessing
to the data. Since this number iscommonlyupdated by all the readers, we have to use another
semaphoreMutEx to ensure the updating operations are carried out under mutual exclusion.

5. writing andMutEx must both have an initial value1.

These decisions lead to the following solutions for the proceduresopenandclose(Courtois et al, 1971):

PROCEDURE open(readwrite: boolean); (*true
for read and false for write*) BEGIN

IF readwrite THEN (*if it is a reading access*)
BEGIN

wait(MutEx); (*wait if another process *)
(*is accessing nr*)

nr:=nr +1; (*update the shared variable*)
IF nr =1 THEN (*only the first reader has *)

wait(writing); (*wait for no writer condition*)
signal(MutEx) (*allow other readers to update nr*)

END ELSE (*if it is a writing access then*)
wait(writing) (*wait for no access condition*)

END; (*open*)

PROCEDURE close(readwrite:boolean);
BEGIN

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 64

IF readwrite THEN (*if it was a reading access*)
BEGIN

wait(MutEx); (*wait if another process is *)
(*accessing nr*)

nr:=nr-1;
IF readers =0 THEN (*if it is the only process *)

(*left in accessing to the data*)
signal(writing); (*allow a writer/reader to enter*)

signal(MutEx) (*allow another to access nrs*)
END ELSE

signal(writing) (*allow a writer/reader to enter*)
END;

Characteristics of the program

Analysing the behaviour of the above procedures, we find:

• the procedures meets the safety requirement that a writing access operation excludesall other
accesses;

• writers can be locked out indefinitely: as long as a reader is active, no writers can gain access, but
other readers are allowed in.

A Reader-and-Writer program with these properties is calledreaders’ preferenceprotocols. In applica-
tions where there are frequent read accesses and it is important to make frequent updates, such a readers’
preference feature becomes unsuitable. For this reason, Courtoiset al. (1971) presented awriters’ pref-
erenceversion for the Readers-and-Writers problem, in which incoming readers become blocked when a
writer is waiting to access the data. This thus guarantees that the number of active readers will eventually
decreased to0 and a blocked writer will then be unblocked. The solution uses five binary semaphores,
and two shared variablesnr andnw which record the numbers of currentlyactivereaders and currently
blocked/activewriters respectively. These variables are declared as:

VAR
nr, nw: integer; (*initially 0*)
MutEx1, (*for mutual exclusion of accesses to nr*)
MUtEx2, (*for mutual exclusion of accesses to nw*)
r, (*for blocking the first reader when *)

(* there is a blocked writer)
Mutex3, (* for blocking the second and subsequent readers *)

(* when there is a blocked reader*)
writing: semaphore ;
(*for blocking all accesses to the data if there is *)
(*an active writer*)

All the five semaphores must have an initial value1.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 65

Theopenandcloseprocedures are:

PROCEDURE open(readwrite:boolean); BEGIN
IF readwrite THEN (*if it is a read access*) BEGIN

wait(MutEx3); (*wait if there is already a reader *)
(*blocked because of a blocked a reader*)

wait(r); (*wait if there is a writer active/blocked*)
wait(MutEx1); (*wait if nr is being accessed*)
nr:=nr+1; (*one more reader attempting*)
IF nr =1 THEN (*if no reader is already active*)
wait(writing); (*wait if a writer is active*)
signal(MutEx1);(*allow another reader to access nr*)
signal(r); (*unblock one which is blocked on r*)
signal(MutEx3) (*unblock one which is blocked on MutEx3*)

END ELSE (*if it is write access then*)
BEGIN

wait(MutEx2); (*wait if another writer access nw*)
nw:=nw+1; (*one more writer attempting*)
IF nw=1 THEN (*if no writer is blocked*)
wait(r); (*a first incoming writer has equal right*)

(*as the incoming reader*)
signal(MutEx2);(*allow another writer to access nw*)
wait(writing) (*wait if there is an active reader/writer*)

END
END;

PROCEDURE close(readwrite: boolean);
BEGIN
IF readwrite THEN (*if it was a read access*)
BEGIN

wait(MutEx1); (*wait if nr is currently accessed*)
nr:=nr-1; (*number of active/blocked readers reduced by one*)
IF nr=0 THEN (*If this was the last reader accessing the data*)

signal(writing);(*Allow a reader/writer to enter*)
signal(MutEx1); (*Allow another access to nr*)

END ELSE (*If it was a write access*)
BEGIN

signal(writing); (*allow another process to enter*)
wait(MutEx2); (*wait if nw is being accessed*)
nw:=nw-1; (*the No. of active/blocked writers reduced by one*)
IF nw=0 THEN (*If this is the only one being active/blocked*)

signal(r); (*allow a reader/writer to enter*)
signal(MutEx2) (*allow another writer to access nw*)

END
END;

We can see that though semaphore primitives have made the life of concurrent programmers much easier,
we still face the challenge and difficulties in both understanding semaphores and using them in our design

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 66

Figure 10: Philosophers dining table

tasks.

Questions

1. Do we have to use semaphoreMutEx3 in our above procedures?

2. Can you illustrate why an attempting writer will eventually gain access to the data?

3. Can a reader be blocked on semaphorewriting?

4. Can a reader be blocked indefinitely?

4.7.2 The Dining Philosophers problem

The problem of the dining philosophers (originally proposed by Dijkstra) is of great importance in con-
current programming research. The problem allows all of the pitfalls of concurrent programming to be
demonstrated in a vividly graphical situation (as we will see in later chapters).

Problem description: In a monastery, there are five Chinese monks who are dedicated philosophers.
Each philosopher would be happy to engage only inthinkingwere it not occasionally necessary to eat.
Thus the life of a philosopher is an endless cycle:repeat think; eatforever.

The communal dining arrangement is shown in Figure 10. In the center of the table there is a bow of
rices that is endlessly replenished; there are five plates and five chopsticks. A philosopher wishing to eat
enters the dining room, takes a seat (which reserved for him), eats and then returns to his cell to think.
However, it is hopeless (even for Chinese philosophers) to get any rice by only using one chopstick.
Philosophers are too polite to reach across the table and pick up a spare chopstick or to eat with their
hands.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 67

Requirement:

• Safety requirement: A philosopher cannot be eating concurrently with his neighbour.

• Liveness requirement:A hungry philosopher will eventually eat assuming that a eating philoso-
pher will be eventually full and go back his cell to think.

We use a binary semaphore to represent a chopstick: the chopstick is free if the semaphore is1, it is not
free if the semaphore is0. So the life cycle of philosopher (represented as a process) should be:

BEGIN
REPEAT

think;
wait(LeftChop);
wait(RightChop);
eat;
signal(LeftChop);
signal(RightChop)

FOREVER
END;

We simulate the activities of thinking and eating by the process callingsleepprocedure. Thesleep
procedure in Pascal-FC is provided mainly for timing features in real-time systems. The call of the
procedure is of the form:sleep(n), wheren can be any integer. The meaning of this call is:

• Whenn > 0, the calling process is blocked (delayed) for n seconds of time.

• Whenn ≤ 0, the calling process can be considered to make an instantaneous transition from
”executable” to ”blocked” and back to ”executable”.

We assume that a philosopher may think or eat for a random time between 0 to 10 seconds.

We can have the following program for the dining philosopher problem.

PROGRAM philsem1; (*Dining
philosophers with semaphores*) CONST

N=5; (*5 philosophers*)
VAR

chopsticks: ARRAY[1..N] OF semaphore;
I: integer;

PROCESS TYPE philosophers(name:integer);
BEGIN

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 68

REPEAT
sleep(random(10)); (*thinking*)
wait(chopsticks[name]);(*picking up the left chopstick*)
wait(chopstick[(name MOD N)+1]); (*the right chopstick*)
sleep(random(10)); (*eating*)
signal(chopsticks[name]); (*release the left chopstick*)
signal(chopsticks[(name MOD N)+1]); (*release the right*)

FOREVER
END; (*philosopher*)
VAR

phils: ARRAY[1..N] OF philosophers;
BEGIN

FOR I:=1 TO N DO
initial(chopsticks[I],1);

COBEGIN
FOR I:=1 TO N DO philsI

COEND
END.

This program meets the safety requirement for a solution. But it does not meet the liveness requirement
because deadlock may occur. The following situation may happen: each philosopher has picked his left
chopstick and waiting for his right one, but no one will release its left until he finishes eating.

chop1 chop2 chop3 chop4 chop5
Initially 1 1 1 1 1
phils1 0 1 1 1 1
phils2 0 0 1 1 1
phils3 0 0 0 1 1
phils4 0 0 0 0 1
phils5 0 0 0 0 0
................Deadlock from here.....................

A deadlock free solution uses an additional semaphore (general) which ensures that no more than N-1
(4 in this case) philosophers are ever simulated seated at the table (to attempt picking up chopsticks).
Then the circular pattern requests for chopsticks is broken since at least one philosopher can get his two
chopsticks.

PROGRAM philsem2; (*Dining philosophers
with semaphores*) CONST

N=5; (*5 philosophers*)
VAR

chopsticks: ARRAY[1..N] OF semaphore; (*binary*)
freechairs: semaphore; (*general*)
I: integer;

PROCESS TYPE philosophers(name:integer);
BEGIN

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 69

REPEAT
sleep(random(10)); (*thinking*)
wait(freechairs);
wait(chopsticks[name]);(*picking up the left chopstick*)
wait(chopstick[(name MOD N)+1]); (*the right chopstick*)
sleep(random(10)); (*eating*)
signal(chopsticks[name]); (*release the left chopstick*)
signal(chopsticks[(name MOD N)+1]); (*release the right*)
signal(freechairs)

FOREVER
END; (*philosopher*)
VAR

phils: ARRAY[1..N] OF philosophers;
BEGIN

FOR I:=1 TO N DO
initial(chopsticks[I],1);
initial(freechairs, N-1); (*there are only N-1 chairs*)

COBEGIN
FOR I:=1 TO N DO

philsI
COEND

END.

4.8 Final remarks on semaphores

1. In theory, we do not have to use general semaphores. A general semaphore can be simulated by
using binary semaphores. But in practice, such a simulation would be very inefficient. See pages
183-184 in Burns&Davies book for further discussions.

2. Semaphore primitives are powerful enough for program all kinds of synchronizations in the shared
variable framework.

3. Semaphore are easy to be implemented.

4. But semaphores are still at a too low level of abstraction, and, therefore they are difficult to use
reliably. Missing asignal, for example, is likely to lead to deadlock. And missing await may
lead to a violation of safety requirement, such as mutual exclusion. The more difficult issue is to
put wait andsignal operations in the correct place. Putting them in wrong places can be equally
dangerous as missing them.

5. The next chapter will introduce primitives at a higher level of abstraction.

Further Reading: Burns&Davies book, pp171–199.

Are binary semaphores sufficient?

• Any general semaphore can be simulated by binary semaphores.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 70

• This means that thewait andsignal operations on a general semaphore can be simulated by oper-
ations on some binary semaphores.

• How can we define the simulation?

4.9 Exercises

1. Can a process be simultaneously blocked on more than one semaphore? Give reason for your
answer.

2. If a semaphore has a non-zero value, is it possible for processes to be currently blocked on it?

3. Generalize the solution to the mutual exclusion problem so that the programmer can specify fork,
the number of processes that can be simultaneously in their ‘critical’ section, any possitive integer.

4. In attempting to solve the Producer-Consumer problem (bounded buffer), suppose that the con-
sumer process had been written as follows:

PROCESS consumer; VAR
item: sometype;

BEGIN
REPEAT

wait(MutEx);
wait(ItemsReady);
take(item);
signal(MutEx);
signal(SpacesLeft);
consume(item)

FOREVER
END; (*consumer*)

Would this then have been a satisfactory solution? What about the following?

PROCESS consumer; VAR
item: sometype;

BEGIN
REPEAT

wait(ItemsReady);
wait(MutEx);
take(item);
signal(SpacesLeft);
signal(MutEx);
consume(item)

FOREVER
END; (*consumer*)

5. Write a scenario that shows thatsignal must be a primitive instruction and not simplys := s + 1.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SEMAPHORES 71

6. A set of processes haveprecedencerelationships if there are restrictions on the order in which they
can execute. Consider six processes. P1 and P2 must both run before P3; P3 runs before P4 and P5;
and P6 runs after all other processes. Use semaphores to enforce these precedence relationships.
Allow each process to be cyclic so that, for example, the first execution of P6 can be concurrent
with the second execution of P1 and P2.

7. The Unisex Bathroom.Suppose there is one bathroom in your department. It can be used by both
men and women, but not at the same time.

(a) Develop a solution which allow any number of men or women to be in the bathroom at the
same time. Your solution should ensure the required exclusion and avoid deadlock, but it
need not to be fair.

(b) Modify your answer to (a) so that at most four people are in the bathroom at the same time.

(c) Modify your answer to (a) to ensure fairness (i.e. any person who wants to use the bathroom
will eventual get it.)

8. In the lecture notes, we presented a solution to the Dinning Philosophers problem (philsem2)
which prevented deadlock by removing the circular wait condition. Another possible approach is
to remove the hold-and-wait condition, whereby processes hold on to resources already allocated
to them while waiting for others. This can be done by allowing a philosopher to acquire both
chopsticks, or none at all. Use semaphore to solve the problem using this strategy.

9. In the programphilsem2, can any semaphore have more than one process simultaneously blocked
on it?

10. Write a program that implements a lift (elevator) control system. A server process accepts calls on
floor buttons and moves the lift to the requesting floor. The lift is very small and so can only take
a single person at a time. In the lift are buttons that allow the passenger to choose the destination
floor. The program should contain a number of passenger processes that make calls on the lift.

11. Modify the previous example so that there are nowm lifts (each only carrying a single person).

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 72

5 CONDITIONAL CRITICAL REGIONS AND MONITORS

The goals of the chapter

• Understand the ideas of usingcritical regionsfor mutual exclusion.

• Understand the ideas of using generalconditional critical regionsfor condition synchronization.

• Introduce the synchronization primitives calledmonitors.

• Apply monitors to mutual exclusion and condition synchronization.

5.1 Introduction

Semaphores are fundamental synchronization mechanisms. As shown in chapter 3, semaphores are
elegant synchronization primitives that can be efficiently implemented. They can be used systematically
to solve any synchronization problem. But they are at a rather low level of abstraction that leaves too
much for the application programmer to do. The programmer must be careful not to omit or add a wait or
signal operation accidently, not to employ the wrong semaphore, or to fail to protect all critical sections
or to fail to meet a liveness property. Thus, semaphore algorithms can be difficult to design, understand
and reason about.

A final problem with semaphores is that one programs both mutual exclusion and condition synchroniza-
tion using the same pair of primitives. This makes it difficult to identify the purpose of a given wait or
signal without looking at other operations on the same semaphore. Since mutual exclusion and condition
synchronization are distinct concepts, they should ideally be programmed in different ways.

The consequences of these disadvantages are:

1. low programmer productivity,

2. non-reliable programs: a system built on semaphores alone is subject to disaster if

• even one occurrence of a semaphore operation is omitted, or

• one occurrence of semaphore operation is mistaken anywhere in the program.

Thesemotivate the need of a more structured tool(i.e. primitives at a high level of abstraction). For
example, a programming language with the provision of procedures and functions is more abstract and
easier to use and understand than one without these facilities.

Beyond semaphores

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 73

Since semaphores have the above disadvantages that may cause various errors in programming, attempts
were made to make those errors less likely by providing language constructs of high level abstraction,
which allowed the compiler to partially automatically look after the necessary controls on access to
shared data objects. This chapter will look at two such constructs:conditional critical regions(CCRs)
(Brinch Hansen, 1972) andmonitors(Hoare, 1974).

Pascal-FC provides an implementation of monitors, but not of CCRs. Therefore, the examples of CCRs
here will not be executable programs.

5.2 Critical regions

Before looking at CCRs, we first look at a simpler and less powerful construct called thecritical regions
(CRs).

Similar to thecritical section, a CR is a piece of code. However, while a critical sectionshould be
executedunder mutual exclusion to get the program work correctly and this must be ensured by the
programmer by proper use of semaphores, a CRis alwaysexecuted under mutual exclusion, and this is
ensured by the implementation of CRs.

Notation and semantics of CRs

A shared variable (resource) which should be accessed only under mutual exclusionmustdeclared in
such a way that the compiler can know this requirement. This can be done by the declaration:

VAR
V: SHARED sometype

where V is the name of the variable of typesometype, the reserved word SHARED indicates that V
must be accessed in a CR.

In some other books, the following declaration is used:

RESOURCE V: sometype;

A statement S which accesses the shared V should be written in a CR in the form

REGION V DO
S

where S can refer to the shared variable V as well as other variables which can be accessed concurrently
without danger of interference.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 74

This construct provides a secure way of programming mutual exclusion, because:

• a shared variable V is declared such that it should be accessed in a CR tagged with the name V -
the compiler can flag as an error any attempt to access it outside the CRs;

• all CRs tagged with the same variable name V are executed under mutual exclusion, but statements
in CRs tagged with distinct variables can be executed concurrently,

• in effect, thewait and signal operations which would be required to protect a CS when using
semaphores are automatically generated by the compiler, so that they cannot be overlooked.

An Example

For the ornamental gardens problem, we can easily have the following solution:

PROGRAM GARDENS; VAR
count: SHARED integer;

PROCESS Turnstile1;
VAR loop:integer;
BEGIN

FOR loop:=1 To 20 DO
REGION count DO

count:=count+1
END;
PROCESS Turnstile2;
VAR loop:integer;
BEGIN

FOR loop:=1 To 20 DO
REGION count DO

count:=count+1
END;
BEGIN (* main program*)

REGION count DO
count:=0;

COBEGIN Turnstile1; Turnstile2 COEND
END.

5.3 Conditional critical regions

CRs provide a more structured and securer way of implementing mutual exclusion than semaphores.
However, they are not expressive enough to be as widely applicable as semaphores: CRs are not capa-
ble of simulating semaphores. They cannot solve the condition synchronization problem. Therefore,
conditional Critical regions(CCRs) are introduced to meet such requirements.

Notation and semantics for CRs

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 75

In a language with CCRs:

• The declaration of a SHARED variable V may be done as for CRs.

• But the structured statement needs to be extended to allow for a condition to be expressed. The
following is one possible form:

REGION V WHEN B DO
S

Another possible form could be:

REGION V WHEN B => S

Here B is a boolean expression (called theguardor theconditionof the CCR). Both B and S can
refer to V as well as variables local to the executing process.

• The semantics (i.e. the execution) of a CCR is as follows: execution of CCR for V delays (i.e.
blocks) the executing process until B is true; then S is executed. The access to the same SHARED
variable in different CCRs is mutually exclusive; in particular B is guaranteed to be true when
execution of S begins.

• This semantics can be implemented as follows:

– A process wishing to enter a CCR for V must obtain mutual exclusion lock on V. A queue
can be used to implement blocked waiting.

– Once the mutual exclusion lock has been obtained, the guard B can be evaluated. If it eval-
uates to true, the process can proceed to execute S under mutual exclusion. Otherwise it
must release the mutual exclusion and become blocked. It cannot execute S until it has again
obtained mutual exclusion on V and found B to be true.

– A process that completes the execution of S must release its mutual exclusion on V.

Expressiveness of CCRs

Now we show that CCRs are as expressive as semaphores. We use a CCR to simulate a semaphore as
follows: given a semaphores

VAR
s: SHARED integer;

REGION s WHEN s>0 DO s:=s-1; (*simulate wait(s)*)

REGION s DO s:=s+1; (*simulate signal(s)*)

REGION s DO s:=n ; (*simulate initial(s,n)*)

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 76

So CCRs are of no less expressive power than semaphores. Obviously, they have no more expressive
power than semaphores.

Question: Can you simulate a CCR by using semaphores?

5.3.1 Example - condition synchronization

We apply CCRs to the producer-consumer problem:

PROGRAM PCCCR; CONST
BuffSize = ...;

TYPE
ITEM = ...;
BUFFTYPE = RECORD

NextIn: integer;
NextOut: integer;
Count: integer;
elements: ARRAY[0..BuffSize-1] OF ITEM

END;
VAR

Buff: SHARED BUFFTYPE;
PROCESS producer;
BEGIN

REPEAT
produce(product);
REGION Buff WHEN Buff.Count < BuffSize DO

place(product)
FOREVER

END;
PROCESS consumer;
BEGIN

REPEAT
REGION Buff WHEN Buff.Count <> 0 DO

take(product)
FOREVER

END;
BEGIN (*main program*)

(*initialize Buff*)
COBEGIN

producer; consumer
COEND

END.

Drawbacks of CCRs

Though CCRs are an improvement on semaphores, they still suffer from shortcomings. For examples:

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 77

• They may be dispersed in the program text. Thus, to understand how shared variables are used, one
must examine the entire program. Ideally, all code that manipulates a particular shared variable
(whose access needs to be under mutual exclusion) should be collected together in one place.

• The integrity (consistency) of a shared data structure is easily to be damaged because there is no
control over what operations are carried out by the application programmer inside a CCR. The
programmer himself/herself has to guarantee the correctness of the operations. So if a new process
is added to the program, the programmer must verify that the process uses the shared variables
correctly.

Ideally, a set of approved operations (which can be designed by a senior person) on the data
structure should be provided and all processes should be restricted to thoseofficial operations.
This can be illustrated with a simple example.

Suppose that a data structure represents the accounts of customers in a bank. The data structure
might, for example, be an array of records:

CONST
CustomerMax = ...;

TYPE
AccountNumber = 1..CustomerMax;
AccountRec = RECORD

.....
balance: integer;
.....

END;
VAR

Accounts: SHARED ARRAY[1..CustomerMax] Of AccountRec;

The data structure would be shared by processes running on behalf of customers at automatic
service machines, clerks in branches, the manager at the customer’s home branch, and so on, and
clearly need controls for concurrent access.

The accounts are manipulated by various kinds of transactions. Each transaction could be modelled
as a procedure; one would be the procedure to transfer funds from one customer to another.

Procedure XFER(FromAcc, ToAcc:
AccountNumber; Sum: integer); BEGIN

REGION Accounts DO
BEGIN

Accounts[FromAcc].balance:=Accounts[FromAcc].balance-Sum;
Accounts[ToAcc].balance:=Accounts[ToAcc].balance+Sum;

END
END;

Ideally, this procedure should be provided so that all parts of the program that need to perform transfers
could call it. However, with CCRs we cannot prevent programmer from writing code elsewhere which
attempts to carry out the operation. Suppose that a programmer did this and by mistake (or malice)
omitted the debit of the first customer’s account. We have now lost the integrity of the data structure: its
state is inconsistent.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 78

Also CCRs are difficult to implement efficiently (see Page 207 in Burns & Davies’s book). To improve
CCRs, monitors were proposed (Hoare, 1974).

5.4 Monitors

5.4.1 The ideas behind monitors

The first idea behind the monitor is the use of procedures and functions in sequential programming. Spe-
cial tasks are programmed as procedures or functions that can be called by the main program. Procedures
and functions enable a programmer to write more robust programs because a change in a procedure or a
function does not affect other parts of the program.

This idea led to the use of themonolithic monitorused in current operating systems. Most of these
systems are in effect single programs that centralized all critical functions. If a message must be passed
from P1 to P2 thenP1 passes it to a ‘big brother’ monitorM with a request to forward it toP2, or at least
P1 requests permission fromM to pass the message. Such monitors are supported by hardware facilities
that ensure the privileged position of the monitor:M runs in an uninterruptable mode thus guaranteeing
mutual exclusion; onlyM can access certain areas of memory; onlyM can execute certain instructions
such as I/O instructions.

The monitors in concurrent programming can be viewed as decentralized versions of the monolithic
monitors. Each monitor will be entrusted with a specific task and in turn it will have its own privileged
data and instructions. Thus, ifM1 is the only monitor that can access variablex1 then we are ensured
of mutual exclusion of access tox1 becauseM1 will be uninterruptable or as we say in the abstraction:
entry (or call) to the monitor by one process excludes entry by any other process. In addition, since
the only processing that can be done onx1 is the processing programmed into the monitorM1, we are
assured that no other assignments or test are accidentally made onx1. We can design different monitors
(like that we can design different procedures and functions in sequential Pascal) for different task. Thus,
the system is both more efficient because execution of distinct monitors can be done concurrently, and
more robust because a change in one monitor cannot surreptitiously change a variable in another monitor.

The other idea behind monitors is that of structuring data and structuring accesses to data in a program-
ming language. As we have said before that a data type has two attributes:

• a set ofpermissible valuesand

• a set ofpermissible operationson the values.

Structuring data bytypingwas first used successfully in Pascal. The main purpose of data typing is to
prevent indiscriminate mixing of data that have no purpose being mixed even though their representations
may be identical, and to prevent applying ‘meaningless’ operations on data. For example, the Pascal
complier flags a syntactic error for a statement which adds a number to a character.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 79

Although typing in Pascal is successful in dealing with the safe use of data, it has not gone far enough.
For example, we have no way in Pascal to define (or declare) a type which consists ofintegersthat
mayonly be added or subtracted. Though this type would have the same permissible values as the type
integer, it would not have the same set of permissible operations.

The idea oftyping by the permissible operationsis found in the language Simula 67. Aclassin Simula
67 is a data declaration together with a set of procedures which define the only legal operations that may
be performed on the data. The Simula class has been combined with the Pascal data type in the Ada
packagefeature which provides a carefully designed mechanism that allows the programmer to structure
his/her program to reflect his/her knowledge of the properties of the data.

A monitor in concurrent programming can be viewed as a class that can executed by several processes
under mutual exclusion. For example, although the buffer is an array, there is no reasonable operations
to do with a buffer except toplacea new element ortakean old one.

5.4.2 Definition of monitors

A monitor is written as a set of global variable declarations followed by a set of procedures (which
may be parameterized). The monitor has abody(begin end) which is a sequence of statements that
is executed immediately when the program is initiated. The body is used to give initial values to the
monitor variables. Therefore, the monitor exists only as a package of data and procedures. The syntax
of a monitor declaration is outlined as:

monitor_declaration::=

MONITOR identifier; (*name the monitor*)
export_list (*::= EXPORT procedure_identifier_list; *)

(*{EXPORT procedure_identifier_list; }*)
{

const_declaration
|type_declaration
|variable_declaration
|procedure_declaration (*include the exported procedures*)
|function_declaration
}
[BEGIN (*the body of the monitor*)
(*statement_sequence*)]
END;

Now let’s make some remarks about monitors.

1. The declaration in a monitor may include constants, types, variables, procedures and functions,
but not processes or other monitors.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 80

2. All the declarations except for the identifiers appearing in theexport list, are only in the scope
within the monitor.

3. Only the names of procedures in theexport list can be called by a process statement of the form:

monitor_identifier.export_procedure_identifier[actual parameters]

4. The monitor body (begin statement-sequence), which is optional (i.e. not all monitor need a
body), is executed immediately when the program is initiated, to give initial values to the monitor
variables. It is just executed once during the program execution.

5. The compiler guarantees that access to the code within a monitor is done under mutual exclusion.
A process that tries to execute a monitor procedure when there is already a process executing one
of the procedures in thesamemonitor becomes blocked on a what is called a monitorboundary
queue. In general, several processes may be blocked on this queue by the time an occupying
process completes its monitor procedure call. Mutual exclusion is then passed tooneof the blocked
processes. In Pascal-FC, monitor boundary queues are defined to be FIFO.

5.4.3 Mutual exclusion with monitors

As an example of application of monitors to mutual exclusion, we consider the Ornamental Gardens
problem with monitor. A general ornamental gardens problem is the case that we have a number of
turnstiles (rather than only two) concurrent updating the numbercount of people in the garden. The
solution of the problem is now very easy: we define a monitor to control the updating ofcount under
mutual exclusion.

PROGRAM
GARDMON; (*Ornament gardens - monitor version*) CONST

max=10; (*number of turnstiles*)
MONITOR Tally;

EXPORT
inc, print; (*export list*)

VAR
count: integer; (*global variable*)

PROCEDURE inc;
BEGIN

count:=count+1
END; (*inc*)
PROCEDURE print;
BEGIN

writeln(count)
END; (*print*)
BEGIN (*body of Tally*)

count:=0
END; (*Tally*)

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 81

PROCESS TYPE turnstiletype;
VAR

loop:integer;
BEGIN

for loop:=1 TO 20 DO
Tally.inc (*call monitor procedure inc*)

END; (*turnstiletype*)
VAR

turnstile: ARRAY[1..max] OF turnstiletype;
procloop:integer;

BEGIN (*main*)
COBEGIN

FOR procloop:=1 TO max DO
turnstile[procloop]

COEND;
Tally.print

END.

The key feature of the program:

1. The shared data structure, such ascount, is declared in the monitor; the code in the monitor body
is executed to give initial values of the monitor variables before processes begin to call the monitor.

2. The monitor proceduresinc andprint sit passively until called from a process.

3. If a process wishes to incrementcount, all it needs to do is to call the monitor procedureinc.

4. The monitor data structure is not directly visible from outside the monitor; it can only be accessed
by executing one of the ‘official’ operations implemented by the exported procedures. For exam-
ple, it is necessary to call the monitor procedureprint from the main program in order to view the
final result, even though the monitorTally’s mutual exclusion is not required any more after the
completion of concurrent phase of execution.

5. The mutual exclusive access to the shared variablecount is enforced automatically by the complier
when it generates code for a call to an exported monitor procedure: it is not possible to access the
data except under mutual exclusion.

6. In comparison with semaphores, monitors are more structured:

• easier to understand: all the code that manipulates a given data structure must be located in
one place;

• easier to modify: a change in a monitor does not lead to change in other parts;

• safer to use: a monitor can be written by a senior person with unimpeachable competence
and trustworthiness; then the users of the monitor need only call a procedure.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 82

5.4.4 Condition synchronization with monitors

As we saw in the case of the Producers-Consumers Example, the problem with condition synchronization
is that a shared data can only be accessed when some condition holds. For example in the producers-
consumers problem with a bounded buffer, a producer canplacea new item into the bufferonly when the
buff is not full; and a consumer cantakean item out of the bufferonly when the buffer is not empty. This
means that a producer wishing to place an item to the buffer must bedelayeduntil the condition that
the buffer is not full holdseven when no process is currently accessing the buffer. Similarly, a consumer
wishing to consume an item must be delayed until the condition that the buffer is not emptyeven when
no process is currently accessing the buffer.

We can program the buffer as a monitor with two exported proceduresplaceandtakeas follows.

MONITOR Buffer; EXPORT
place, take;

CONST
BuffSize=5;
BuffMax=4;

VAR
b: ARRAY[0..BuffMax] Of char;
n, in, out: integer;

PROCEDURE place(ch: char);
BEGIN

IF n>= BuffSize THEN
"wait until not full";
b[in]:=ch;
n:=n+1;
in:=(in+1) MOD BuffSize;
"signal that the buffer is not empty"

END; (place*)
PROCEDURE take(VAR ch:char);
BEGIN

IF n=0 THEN
"wait until not empty";

ch:=b[out];
n:=n-1;
"signal that the buffer is notfull";

END; (*take*)

BEGIN (*body of Buffer*)
n:=0;
in:=0;
out:=0
END; (*Buffer*)

The problem is then how we represent the statements ”wait until condition” and ”signal condition”. As
we saw in Chapter 1, we can of course use busy waiting: “wait until condition” is represented as

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 83

WHILE NOT condition DO null

And ”signal condition” will be simply an empty statement. But as we pointed out before, busy waiting
is inefficient and thus not desirable in concurrent programming. Furthermore if a process is busy waiting
in a monitor procedure, the monitor will never be released. This would lead to deadlock (or at least
starvation). We prefer an implementation using blocked waiting so that a process waiting for a condition
is taken from the processor to allow other executable process to be executed. For this purpose, Hoare’s
suggested (in 1974) the use ofcondition variables for condition synchronizations. Variables of type
condition have no values accessible to the programmer but instead are FIFO queues which are initialized
automatically to the empty queue on declaration. The declarations of condition variables are exemplified
by:

VAR
c: condition;
carray: ARRAY[1..10] OF condition

To block and unblock a process on a condition, Pascal-FC introduced two principle operations called
delay and resume respectively. Many discussions of monitors elsewhere use termswait and signal
respectively, which has been reserved for the semaphore operations in this course.

The delay operation

The delay operation on a condition is the counterpart of the semaphore wait operation. In Pascal-FC, it
is implemented as a (standard) procedure, which is called in the following way:

delay(c)

wherec is a condition variable. A process calling this procedure can be understood to announce ‘I am
waiting for c to occur’. So it looks as if we should define the semantics of delay(c) as follows:

delay(c): the calling process is blocked
and is entered into a queue of processes blocked onc.

However, remember that it is the monitor that controls the mutual exclusion. If we take the above
semantics, a process executing the delay operation inside the monitor would still hold up the monitor and
no further process could gain access to the monitor. This would be undesirable because that on the one
hand it might lead to waste of execution time, and on the other hand that is more dangerous, this would
lead to deadlock when only such a further access to the monitor could make the conditionc to occur.
Therefore, the full semantics ofdelay(c) should be:

delay(c): the calling process releases the monitor
the calling process is blocked
the calling process is entered into a queue of processes blocked onc

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 84

The differences between delay and semaphore wait

There are important differences betweendelayon a condition andwait on a semaphore.

1. delay always causes the calling process to be blocked, whereas the semaphorewait only does so
if the value of the semaphore is0.

2. delayalways release the current monitor when blocking a process. If semaphores were used rather
than conditions in a monitor,wait on a semaphore does not release the current monitor when
blocking a process. So using a semaphore rather than a condition in a monitor is likely to lead
deadlock.

The resume operation

This is the counterpart of thesignal operation on semaphores. This operation is again a procedure in
Pascal-FC, and is called as follows:

resume(c)

A process callingresume(c) can be understood as to announce ‘I am signalling thatc has occurred’, so
that the first process waiting forc to occur can carry on its execution. A first description of the semantics
of this operation is;

resume(c): unblock the first process waiting onc

What happens ifno process is blocked onc whenresume is blocked? It is defined that executing re-
sume(c) when there are no processes waiting in the queue forc is a non-operation. So the full semantics
of resumeshould be

resume(c): IF the queue forc is not empty THEN
unblock the first process on the queue

The difference between resume and semaphore signal

If the queue for the condition is empty,resumehas no effect at all. Butsignal always has some effect:
either it unblocks a process, or increments the semaphore value.

A note on the operations of conditions

Consider the following problem with the use ofresumeto unblock a process.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 85

• ProcessP is blocked when executingdelay(c) in monitorM ,

• ProcessQ unblocksP when executingresume(c)in monitorM .

The problem is that whenP is unblocked, it will re-enter theM from the point just after thedelay(c).
However,Q is already insideM . To have two processes in one monitor at the same time would violate the
mutual exclusion. So we cannot permit this to happen. Here we consider two solutions to this problem.

1. The resumed processP must wait until the resumerQ leaves the monitor (by completing its call
to the monitor procedure or by executing adelay) before re-enteringM .

2. The resumerQ must immediately ‘step outside’ the monitorM , handling the mutual exclusion to
the resumed processQ.

Pascal-FC has chosen the second solution.

5.4.5 More examples

This section gives more illustrative examples starting with a full program for the Producer-Consumer
with a bounded buffer.

5.4.6 Producer-Consumer with a bounded buffer

We simple replace ”wait until not full” bydelay(notfull), ”signal not empty” byresume(notempty),
etc. in our monitor given at the beginning of Section 4.

PROGRAM PCMON;
(*Producer-Consumer - monitor version*)

MONITOR Buffer;
EXPORT

place, take;
CONST

BuffSize=5;
BuffMax=4;

VAR
b: ARRAY[0..BuffMax] Of char;
n, in, out: integer;
notfull, notempty: condition;

PROCEDURE place(ch: char);
BEGIN

IF n>= BuffSize THEN

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 86

delay(notfull);
b[in]:=ch;
n:=n+1;
in:=(in+1) MOD BuffSize;
resume(notempty)

END; (place*)

PROCEDURE take(VAR ch:char);
BEGIN

IF n=0 THEN
delay(notempty);

ch:=b[out];
out:=(out+1) MOD Buff
n:=n-1;
resume(notfull);

END; (*take*)

BEGIN (*body of Buffer*)
n:=0;
in:=0;
out:=0
END; (*Buffer*)

PROCESS producer;
VAR

ch: char; (*local to producer*)
BEGIN

FOR local:=’a’ TO ’z’ DO
Buffer.place(ch);

END; (*producer*)

PROCESS consumer;
VAR

ch: char; (*local to consumer*)
BEGIN

REPEAT
Buffer.take(ch);
write(ch);

UNTIL ch=’z’;
writeln

END; (*consumer*)

BEGIN (*main*)
COBEGIN

producer;
consumer

COEND
END.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 87

5.4.7 Readers and writers

In Chapter 3, we presented two semaphore solutions for this problem, both used the protocolsopenandclosefor
accessing to the data structure. We now implement these protocols as monitor procedures. The monitor version of
the first solution becomes as follows.

PROGRAM RWMON1;
MONITOR ReadWrite1;

EXPORT
open, close;

VAR
nr: integer;
writing: boolean;
oktowrite: condition;
PROCEDURE open(read: boolean);
BEGIN

IF read THEN
BEGIN

IF nr=0 THEN
IF writing THEN

delay(oktowrite);
nr:=nr+1;

END ELSE
IF nr>0 OR writing THEN

delay(oktowrite);
writing:=true;

END; (*open*)
PROCEDURE close(read:boolean);
BEGIN

IF read THEN
BEGIN

nr:=nr-1;
IF nr=0 THEN resume(oktowrite)

END ELSE BEGIN writing:=false; resume(oktowrite) END
END; (*close*)

BEGIN
nr:=0; writing:=false

END; (*ReadWrite1*)

PROCESS TYPE reader;
VAR local: SomeType;
BEGIN

REPEAT
ReadWrite1.open(true);
"access data, copy to local";
ReadWrite1.close(true);
"use copied data"

FOREVER
END; (reader)

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 88

PROCESS TYPE writer;
VAR local: SomeType;
BEGIN

REPEAT
"produce new local value";
ReadWrite1.open(false);
"write local value to data"
ReadWrite1.close(false)

FOREVER
END; (*writer*)

VAR
I,J: integer;
reasderprs: ARRAY[1..10] OF reader;
writerprocs: ARRAY[1..10] OF writer;

BEGIN (*main*)
COBEGIN

FOR I:=1 TO 10 DO
readerprocs[I];

FOR J:=1 TO 10 DO
writerprocs[J]

COEND
END.

Note that in this program we used a test operationempty on the conditionoktowrite. In general this operation is
called in the form

empty(c) where c is a condition variable

It is a Pascal-FC function which returns a boolean result: it returnstrue if the condition queue is empty (i.e. if no
process is blocked on the condition), false otherwise.

This program, as the first semaphore solution to the problem, may lead to starvation of writers. The second
semaphore solution in Chapter 3 avoided this liveness problem, but it was quite complex. We shall see that a
monitor solution that treats readers and writes fairly is reasonably simple. The following solution was proposed by
Hoare (1974):

1. a new reader should not be permitted to start if there is a waiting writer;

2. at the end of a write operations, waiting readers are given preference over waiting writers.

Thus, we need another conditionoktoread to block readers.

MONITOR ReadWrite2;
EXPORT

open, close;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 89

VAR
nr: integer;
writing: boolean;
oktoread, oktowrite: condition;

PROCEDURE open (read:boolean);
BEGIN

IF read THEN
BEGIN

IF writing OR NOT empty(oktowrite) THEN
delay(oktoread); (*Hoare’s proposal 1*)

nr:=nr+1; (*permitted to read*)
resume(oktoread); (*unblock the blocked readers*)

END ELSE
BEGIN

IF writing OR (nr<>0) THEN
delay(oktowrite)

writing:=true; (*permitted to write*)
END

END; (*open*)

PROCEDURE close(read:boolean);
BEGIN

IF read THEN
BEGIN

nr:=nr-1; (*one reader leaving*)
IF nr=0 THEN

resume(oktowrite)
END ELSE
BEGIN

writing:=false; (*finished writing*)
IF NOT empty(oktoread) THEN (*Hoare’s proposal 2*)

resume(oktoread)
ELSE

resume(oktowrite)
END

END; (*close*)

BEGIN
writing:=false; (*no one is writing initially*)
nr:=0; (*no one is reading initially*)

END; (*ReadWrite2*)

5.4.8 Reasoning about monitor programs

Let us now give semi-formal proofs of some properties of second solution to the readers and writers problem using
monitorReadWrite2. Let R be the number of processes currently reading and letW be the number processes
currently writing.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 90

The basic safety property required of a solution to the problem of the readers and writes will be proven if we can
show that the following formulaI is invariant, i.e. I holds at any time during the program execution:

((R > 0) ⇒ W = 0) ∧ ((W > 0) ⇒ (W = 1 ∧R = 0))

This property reads

If R > 0 thenW = 0 and ifW > 0 then (W = 1 andR = 0)

This means that if there is some process currently reading then no process is current writing, and if there is some
process currently writing then there is exactly one process current writing and no process is current reading.

To prove the safety propertyI, we need to prove the followingmonitor invariants, i.e. the formulae are invariant
outsidethe monitor.

(a) R = nr;

(b) W > 0 iff writing = true;

(c) nonempty(oktoread) only if (writing or nonempty(oktowrite));

(d) nonempty(oktowrite) only if (nr 6= 0 or writing).

To prove these formulae are monitor invariants of monitorReadWrite2, we have to show that

1. each of these statements is initially true (i.e. just after the execution of the body of the monitor);

2. if a statement is true upon entry into a monitor procedure, it is still true when the process exit the procedure.

Thus, it allows these formulae to be false during the execution of a monitor procedure. However, we should be
clear about the points of a process entry to and exit from a monitor procedure:

• a process enters a monitor procedure either by acall to the procedure, or by aresume(c)operation executed
by another process;

• a process exits from a monitor procedure by completing the procedure, or by executing adelay(c)operation,
or by executing aresume(c)operation when there is a process waiting forc (see item 1 as well).

We leave the proofs of these monitor invariants as an exercise.

Now we use these monitor invariants to prove the program invariantI by showing that any attempt to describe
an execution (interleaving) sequence which falsifiedI is unsuccessful. We first note thatI holds initially since
R = W = 0.

1. SupposeR > 0 andW = 0 (so thatI holds) and thenI is falsified by some process starting to write (soW
will be 1).

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 91

By (a),R > 0 impliesnr > 0 so the process that wishes to write willdelay in procedureopen. Therefore,
the only way this scenario could falsifyI is if a resume(oktowrite) occurs. Theresumeoperation in the
close(true)procedure is only executed only ifnr = 0, contrary to the assumption thatnr > 0. Theresume
operation in theclose(false)will also not be executed since there are no writers by the assumptionW = 0.

2. SupposeR = 0 andW > 0 and then some process starts reading so thatR = 1, falsifying I.

W > 0 implieswriting = true by (b), so any process executingopen(true)will delayonoktoread. Since
R = 0, there are no readers soresume(oktoread)is not executed inclose(true). Now I is assumed true
soW > 0 impliesW = 1. Thus, executingresume(oktoread)in close(false)upon termination of writing
occurs whenW = 0 contradicting the assumption of this scenario.

3. W = 1, R = 0 and then some process starts writing to falsify the second clause ofI.

This is impossible by the code inopen(false). the only possibleresume is the one fromclose(false), but
R = W = 0 soI is not falsified.

We have claimed that the second solution to the readers and the writers problem satisfies the liveness property:

• If a processP wishes to read (or to write), theneventuallyit will be allowed to so.

The proof of this liveness property will use the four monitor invariants (a), (b), (c), and (d), and the assumption
that queue of processes that are blocked on a condition is FIFO. We leave the proof of this property as an exercise.

5.4.9 The expressiveness of monitors

We claim here that

1. a program with semaphores can always be simulated by a program with monitors.

2. a program with monitors can always be simulated by a program with semaphores.

This means that the semaphore facilities have exactly the same expressive power. Hence the decision to use
monitors can be made solely on the basis of their contribution toclarity andreliability of the resulting system.

5.5 Exercises

1. Using the following declaration:

VAR
eating : SHARED ARRAY[1..N] Of boolean

and CCRs to solve the dining philosophers problem, assuming that acquiring chopsticks involves setting
eating[i] to true; releasing chopsticks involves settingeating[i] to false. Your solution should not deadlock.

2. Show how CCRs can be used to solve the problem of Readers and Writers problem. Your solution should
have readers to have preference over writers.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

CONDITIONAL CRITICAL REGIONS AND MONITORS 92

3. Show how CCRs can be used to solve the problem of Readers and Writers in which waiting writers have
preference over coming readers.

4. (Atomic Broadcast) Assume that one producer process andn consumer processes share a bounded buffer of
sizeb. The producer deposits messages in the buffer; consumers fetch them. Every message deposited by
the producer is to be received by alln consumers. Furthermore, each consumer is to receive the messages
in the order they were deposited. However, different consumers could receive up tob more messages than
another if the second consumer is slow.

Develop a solution to this problem that uses CCRs for synchronization.

5. Use monitor(s) to solve question 1.

6. Use monitors to solve question 4.

7. Use monitors to write a program in which a number of customer processes interact with a bank cash dis-
pensing process. A customer can ask for balance information or request money; however, the account must
not go negative. A maximum of 100 pounds can be withdrawn in an one-hour period.

8. Modify the previous exercise so that there are now three cash dispensers. a customer may go to any dis-
penser. Note that more than one custmomer may share an account.

9. Tow kinds of processes, A’s and B’s, enter a room. An A process cannot leave until it meet two B processes,
and a B process cannot leave until it meets one A process. Either kind of process leaves the room – without
meeting any other processes – once it has met the required number of processes.

(a) Develop solution to the problem that uses a monitor to implment this synchronization.

(b) Modify your answer to (a) so that the first of the two B processes that meets an A process does not
leave the room until after the A process meets a second B process.

10. Prove the four monitor invariants (a), (b), (c), and (d) forReadWrite2.

11. Prove the liveness property of the second solution to the readers and the writers problem.

12. Write a program to implement a binary semaphore by a monitor.

13. Give an algorithm for transforming a program using monitors to a program that uses semaphores.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 93

6 SYNCHRONOUS MESSAGE PASSINGS

The goals of the chapter

• Motivation for message passing

• Understand asynchronous and synchronous message passing

• Understand the use ofchannelsfor inter-process communication and synchronization

• Understand non-determinism in the message passing model and the use of selective waiting construct for
non-determinism.

• Programming techniques using message passing

6.1 Introduction

The synchronization constructs we have examined so far are all based on shared variables. Consequently, they are
used in concurrent programs that execute on a hardware in whichprocessors share memory.

However,network architectures, in which processors share only a communication network, have become increas-
ingly common. Examples of such architectures are networks of workstations or multicomputers. In addition,
hybrid combinations of shared-memory and network architectures are sometimes containing workstations and
multiprocessor computers. Even on shared memory architectures, it is often necessary or convenient for processes
not to share variables; e.g., processes executing on behalf of different users usually have different protection re-
quirements.

To write programs for a network, it is first necessary to define the network interface, i.e., the primitive network
operations. In abstraction, there are two primitive operations on a network,SEND andRECEIVE . These could
simply be read and write operations analogous to read and write operations on shared variables. However, this
would mean that processes have to employ busy-waiting synchronization. Better approach is to define special
network operations that include synchronization, much as semaphore operations are special operations on shared
variables. Such network operations are calledmessage-passing primitives. In fact, message passing can be viewed
as extending semaphores to convey data as well as to provide synchronization.

When message passing is used, networks are typically the only objects that processes share. Thus, every variable
is local to and accessible by only one process, itscaretaker. This implies that variables are never subject to
multiple accesses, and therefore no special mechanism for mutual exclusion is required. The absence of shared
variables also changes the way in which condition synchronization is programmed since only a caretaker process
can examine the variables that encode a condition. This requires using programming techniques different from
those employed with shared variables. The final consequence of the absence of shared variables is that processes
need not execute on processors that share memory; in particular, processes can be distributed among processors.
For this reason, concurrent programs that employ message passing are calleddistributed programs. Such programs
can, however, be executed on centralized processors, just as any concurrent program can be executed on a single,
multitasking processor. In this case, networks are implemented using shared memory.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 94

6.2 Three forms of communication

With message passing, we are usually concerned with three kinds of synchronization classified according to the
nature of theSENDandRECEIVE operations:

• asynchronous message passing

• synchronous message passing (simple rendezvous)

• remote invocation (extended rendezvous)

If the SENDing process continues executing without being blocked by theSENDING operation, the message
passing is calledasynchronous. In other words, theSEND operation in asynchronous message passing is anon-
blockingprimitive. However, in contrast toSEND, the RECEIVE operation is ablockingprimitive since the
receiving process has to be delayed by this operation if there is no message which has already sent and not yet
received.

Alternatively, the message passing is calledsynchronousif a sender attempting aSEND operation is delayed until
the correspondingRECEIVE is ready to be executed. In other words, both theSEND andRECEIVE operations
areblockingprimitives. If the sending (or receiving) process arrives atSEND (or RECEIVE respectively) earlier
than the receiving (or sending respectively) process arriving atRECEIVE (or SEND), it has to wait for the arrival
of the receiving (or sending respectively) process. For this reason, synchronous communication is also called
rendezvous.

If the SENDing process is delayed further until a reply message is received by it from the RECEIVing process, the
value passing is called remote invocation (or extended rendezvous). This will be dealt with in the next chapter.

Obviously, the syntaxes for theSEND andRECEIVE operations in representing these forms of communication
must be different as well as their semantics.

To understand the difference between these three kinds of communication, consider the following analogy:

• The posting and receiving of a letter is an asynchronous message passing - once the letter has been put into
the letter box the sender proceeds with his/her life. Only by receiving a reply letter from the receiver can
the sender ever know that the first letter actually arrived. From the receiver’s point of view, a letter can only
inform the receiver about an out-of-date event; it says nothing about the current position of the sender.

• Sending and receiving of messages through fax machines is synchronous communication. The SENDing
fax machine waits until contact is made and the identity of the RECEIVing machine verified before the
message is transmitted. When the transmission is complete, the sender continues.

• Communication by telephones is an analogy for remote invocation. The sender (caller) waits not only for
the message to be transmitted, but also for a reply to be returned.

There is a tradeoff between asynchronous and synchronous message passing. On the one hand, since theSEND
operation is non-blocking, it has the following consequences.

• A sending process can get arbitrarily far ahead of a receiving process. If process P sends a message to
process Q and later needs to be sure Q got it, P needs to wait to receive a reply from Q.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 95

• Message delivery is not guaranteed if failures can occur. If P sends a message to Q and does not get a reply,
P has no way of knowing whether the message could not be delivered, Q crashed while acting on it, or the
reply could not be delivered.

• Messages have to be buffered, yet buffer space is finite in practice. If too many messages are sent, either the
program will crash orSENDwill be blocked.

Synchronous message passing avoids these consequences. In particular, bothSEND andRECEIVE are blocking
primitives. If a process tries to send to another process, it delays until the receiver is waiting to receive from it.
Thus, a sender and a receiver synchronize at every communication point. If the sender proceeds, then the message
was indeed delivered, and message do not have to be buffered.

On the other hand, synchronous message passing is more difficult and inefficient to program algorithms that in
nature need messages to be buffered.

However, synchronous and asynchronous message passing can simulate one another. Thus, they have the same
expressive power. We will not cover asynchronous communication in this course. But students should be able to
learn it after the lectures on synchronous message passing.

6.3 Naming the destinations and sources of messages

Another important issue in the design of a programming language for message passing is how destinations and
sources of messages are designated: the sending process should indicate where (which process) the message goes
to, and the sending process should know from which process it receives (waits for) the message. There are basically
two independent decisions that the language designer may consider here:

• whether naming isdirector indirect;

• whether the naming scheme is symmetrical or asymmetrical.

Obviously, different decisions made by the designer lead to different syntactic and semantic definitions of the
SEND andRECEIVE operations.

Direct naming: This is the simplest form of naming. All processes in the system have unique names (identifiers);
aSENDoperation will then directly name the destination processes:

SEND message TO ProcessName

A symmetric form for theRECEIVE operation in the receiving process would be

RECEIVE message FROM ProcessName

Thus, this symmetric form requires the receiver to know the name of any process liable to send it a message. By
contrast, an asymmetric form may be used if the receiver is only interested in the existence of a message, rather
than from where it came:

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 96

RECEIVE message

Indirect naming: Where the unique naming of all processes is inappropriate, a language may define intermedi-
aries (usually called mailboxes or channels) that are named by both partners in the communication. The naming is
then said to be indirect:

SEND message TO mailbox
RECEIVE message FROM mailbox

6.4 Channels in Pascal-FC

In this chapter, we use a model for synchronous message passing which resembles that found in Occam (IMMOS,
1984) originally proposed in CSP (Hoare, 1985).

Processes communicate with each other via named channels. A channel is an abstraction of a physical commu-
nication network; it provides a communication path between processes. With message passing, processes share
channels. Channels are accessed by means of two kinds of primitives:

ch ! e (*SEND the value of the expression e*)
(*to the channel ch*)

ch ? x (*RECEIVE from channel, ch, a value*)
(*and assign it to variable x*)

Operations on the channel are synchronized: whichever process arrives at the channel operation first will be
blocked until the other process arrives. When both processes are ready, a rendezvous is said to take place, with
data passing from the expressione to the variablex. Thus, a synchronous message passing can be understood a
distributed assignment:

x:=e

wherex is in one process (receiver) ande is in another (the sender), with the expression evaluated by the sender
and assigned to a variable in the receiver.

We will call the two channel operationsch?x andch!e on thesamechannelco-operations. ch?x is also called a
channel read operation, whilech!e a channel write operation.

In this model, each channel can only be used by a single sender and a single receiver; communication is point-to-
point. Moreover, a channel can only pass information in one direction.

6.5 The types of channels

To discuss the type of a channel, we should first know the termmessage. In concurrent programming, a message
can be a data of any structure, such as a structured data type. Therefore, a message could be complex or simple

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 97

(such as a 16-bit word). Therefore, a message is always of some data type.

The type of a channel must indicate what type of messages it can carry. Thus, the type of the message of a channel
is thebase typeof the channel. In Pascal-FC, we may have the following declarations;

TYPE chan = CHANNEL OF integer;
chans = ARRAY[1..n] OF chan;

VAR
pipeline: chans;
link: CHANNEL OF integer;

TYPE packet= RECORD
(*some suitable structure*)

END;
VAR

network: CHANNEL OF packet;

Channels must be declared at the beginning of the program because they are shared among processes.

Graphical representation of programs

A graphical representation for concurrent programs with message passing is quite helpful in the design of programs.
In general, a concurrent program consists of a number of processes which are connected by channels that represents
the messages flows between processes. Therefore, a concurrent program can be represented as alabelled directed
graphcalled theconfiguration graphof the program in which

• a process is represented as anodelabelled with the name of the process;

• a channel is represented as a directed line labelled with the name of the channel and the line directs from
the sending process to the receiving process.

An example of a configuration graph is as follows:

P1

P2 P3

ch12

ch23

ch32

ch13
ch31

d13

This graph represents a concurrent program of the following sketch:

PROGRAM sketch; TYPE CH = CHANNEL
OF sometype; VAR ch, d: ARRAY[1..3,1..3] OF CH; PROCESS P1; VAR x,
.., :sometype; BEGIN

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 98

.....
ch[1,2] ! e;
......
d[1,3] ! e;
......
ch[1,3] ! e;
.......
ch[3,1] ? x
........

END;
PROCESS P2;
VAR x, y, z...: sometype;
BEGIN

.....
ch[1,2] ? x;
......
ch[2,3] ! e;
.......
ch[3,2] ? y;
.......

END;

PROCESS P3;
VAR x,y, ..: sometype;
BEGIN

.....
ch[1,3] ? x;
......
ch[2,3] ? y;
......
ch[3,2] ! e;
......
ch[3,1] ! e;
d[1,3] ? z;
......

END;
BEGIN

COBEGIN
P1;P2;P3

COEND
END.

6.6 A classification of distributed processes

Before getting into a full example, let us first make a classification on the processes in distributed programs.

There are three basic kinds of processes in a distributed program:filters, clients, and servers. A filter is a data
transformer. It receives streams of data values from its input channels, performs some computation on those values,
and sends streams of results to its output channels. Because of these attributes, we can design a filter independent of

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 99

other processes. Moreover, we can readily connect filters into networks that perform larger computations. All that
required is that each filter produces output that meets the input assumptions of the filter(s) that consume that output.
Many of the user-level commands in the UNIX operating system are filers, e.g., the text formatting programstbl,
eqn, andtroff .

A client is a triggering process; aserveris a reactive process. Clients make requests that trigger reactions from
servers. A client thus initiates activity, at times of its choosing; it often then delays until request has been served.
A server waits for requests to be made, then reacts to them. The specific actions a server takes can depend on the
kind of the requests, parameters in the request messages, and the server’s state; the server might be able to respond
to a request immediately, or it might have to save the request and respond later. A server is often a non-terminating
process and often provides service to more than one client. For example, a file server in a distributed systems
typically manages a collection of files and services requests from any client that wants to access those files.

6.6.1 An network of filters – Prime number generation

The sieve of Eratosthenes - named after the Greek mathematician who developed it - is a classic algorithm for
determining which numbers in a given range are prime. Suppose we want to generate all the primes between 2 and
n:

1. First, write down a list with all the numbers:

2, 3, 4, 5, 6, . . . , n

2. Starting with the first uncrossed-out number in the list, 2, go through the list and cross out multiples of that
number. Ifn is odd, this yields the list:

2, 3, 6 4, 5, 6 6, . . . , n

At this point, crossed-out numbers are not prime; uncrossed-out numbers are still candidates for being
prime.

3. Now moving to the next uncrossed-out number in the list, 3, and repeat the above process by crossing out
multiples of 3.

4. Continue this process until every number has been considered, the uncrossed-out numbers in the final list
will be all the primes between 2 andn.

The essence of this algorithm is that the primes form a sieve that prevents their multiples from falling through.

You can easily write a sequential program for this algorithm. Now consider how we might parallelize this algo-
rithm. One possibility is to assign a different process to each possible primep and to have each in parallel cross
out multiples ofp. However, if we can know eachp is prime, we do not have to solve this problem anymore.

Now we employ apipelineof filter processes as shown in the following configuration graph:

filter 1 filter 2 filter 3 filter 4 filter 5 filter N

• The first filter process,filter[1], sends the stream of integers starting at 2 (i.e. 2, 3, 4, 5, 6, . . .).

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 100

• Every other filter process receives a stream of numbers from its left neighbour.

• The first numberp that processfilter[i] (i > 1) receives is the(i− 1)th prime.

• Eachfilter[i] subsequently passes on all other numbers it receives that arenot multiples of its primep
(discards all the multiples ofp).

• TheseN filters generates the firstN − 1 primes.

We can now write a program as follows:

PROGRAMM sieve1; CONST N= ... (*N-1 = number of primes to
generate*) TYPE chan = CHANNEL Of integer; VAR pipeline :
ARRAY[1..N] OF chan;

ploop:integer
PROCESS filter[1];
VAR i: integer;
BEGIN

i:=2;
REPEAT

ch[1] ! i;
i:=i+1

FOREVER
END;
PROCESS TYPE filters(i:integer);
VAR p,next: integer;
BEGIN

ch[i-1] ? p;
REPEAT

ch[i-1] ? next;
IF (next MOD p) <> 0 THEN ch[i] ! next

FOREVER
END;
VAR

filter: ARRAY[2..N] OF filter;
BEGIN

COBEGIN
filter[1]; FOR ploop:=2 TO N DO filterploop

COEND
END.

The above program terminates in deadlock. Thefilter[N] will be blocked onch[N]!next since no process is
ready to consume its output; this in turn will block filter[N-1]. The blocked filter[N-1] will block filter[N-2],
and so on. The program does not print out the primes generated either. To solve these two problems, we add
two processes,consumer which consumes the integers passing through filter[N], andoutproc which receives the
prime from each filter and print it out:

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 101

filter 1 filter 2 filter 3 filter 4 filter 5 filter N

consumer

outproc

PROGRAM sieve; CONST N= ... (*N-1 = number
of primes to generate*) TYPE chan = CHANNEL Of integer; VAR
pipeline : ARRAY[1..N] OF chan;

output: ARRAY[1..N] OF chan; (*added*)
ploop:integer

PROCESS filter[1];
VAR i: integer;
BEGIN

i:=2;
REPEAT

ch[1] ! i;
i:=i+1

FOREVER
END;
PROCESS TYPE filters(i:integer);
VAR p,next: integer;
BEGIN

ch[i-1] ? p;
output[i] ! p; (*added: send p to outproc*)
REPEAT

ch[i-1] ? next;
IF (next MOD p) <> 0 THEN ch[i] ! next

FOREVER
END;
PROCESS consumer;
VAR local: integer;
BEGIN

REPEAT ch[N] ? local FOREVER
END;
PROCESS outproc;
VAR I, Num: integer;
BEGIN

FOR I:=2 TO N DO
BEGIN

output[I] ? num;
writeln(num)

END
END;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 102

VAR
filter: ARRAY[2..N] OF filter;

BEGIN
COBEGIN

filter[1]; consumer; outproc;
FOR ploop:=2 TO N DO filterploop

COEND
END.

Then above program will not deadlock. However, it will not terminate. It is certainly desirable that the pro-
gram should terminate normally after all N-1 primes have been printed. We will come back later to discuss the
termination problem in general.

6.7 Synchronous channels

As mentioned earlier, with message passing processes synchronize while communicating. The sending process
and receiving process synchronize at the communication point. Exchange of message and synchronization are
carried out by the sending and receiving operations which are executed simultaneously. However, sometimes two
processes need to synchronize without the need of exchange of a message. In this case a dummy piece of data
would have to be communicated. This can lead to confusion for someone reading the program at a later date.
Pascal-FC allows the intension of the programmer to be clearly expressed by introducing a special base type for
suchcontentlesscommunication.

The typesynchronousis predefined. There are no values associated with this type. A variable calledany, of type
synchronous, is automatically declared by the compiler for every program. The following sketch code illustrates
how one process (starter) can be used to delay and then release two (worker) processes.

PROGRAM starters;
TYPE syn = CHANNEL OF synchronous;

barriers = ARRAY[1..2] OF syn;
VAR barrier: barriers;
PROCESS starter;
VAR I: integer;
BEGIN
....

FOR I:=1 TO 2 DO
barrier[I] ! any;

...
END;
PROCESS TYPE worker(num:integer);
BEGIN

....
barrier[num] ? any;
...

END;
VAR workers: ARRAY[1..2] of worker;
...

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 103

Each worker will be delayed at the barrier until the starter releases it (by sendingany).

6.8 Selective waiting construct

In this section we introduce the importantselective waitconstruct. A message passing language without aselect
construct can be compared to a sequential language withoutif statement. We shall illustrate the need for this
construct by considering one solution to the Ornamental Gardens Problem.

In the message passing passing modelboth active and passiveobjects must be represented by processes. Thus,
the visitor-counting variable must be embodied in a process that serializes accesses to it. The following program
represents a solution to the problem. It is correctin the sensethat the value ofcount is always correct. There is,
however, a serious problem in the system design.

PROGRAM
gardens5a; (*5 here is for chapter 5*) VAR path: ARRAY[1..2] OF
CHANNEL OF integer; PROCESS TYPE turnstile(i:integer); VAR
loop:integer; BEGIN

FOR loop:=1 TO 20 DO path[i] ! 1
END; (*turnstile*)
VAR

turnstiles: ARRAY[1..2] OF turnstile;
PROCESS counter;
VAR count: integer;

I, temp:integer;
BEGIN

count:=0;
FOR I:=1 TO 20 DO

BEGIN
path[1] ? temp;
count:=count + temp;
path[2] ? temp;
count:=count+temp

END;
writeln(’Total admitted:’, count)

END;
BEGIN

COBEGIN counter; turnstile[1]; turnstil[2] COEND
END.

Problem of this program: The controller process (counter) insists that visitors enter at the same rate through
the two turnstiles. Once a ticket has been sold at turnstile[1] another cannot be issued until someone has bought
a ticket at turnstile[2]. Also, the first ticket has to be sold at turnstile[1]. This is clearly, in general practice, an
unacceptable solution.

The requirement should be such that the controller interact with the other processes ‘ as required’, not in an order
predefined and embodied in the controller. If more people come to turnstile[1] then more tickets should be sold

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 104

there. The controller needs to react dynamically to the incoming calls (from its environment). To do this, a
non-deterministic selective waiting construct is needed.

In general, for one processP in a concurrent program, itsenvironmentconsists of the rest of the processes in the
program. It often that a processP has to interact with its environment and its environment in general behaves
no-deterministically (if it has more than one process). The problem here then becomes: how can we programP
such that it will not restrict the non-determinism of its environment?

The basic selective waiting construct

To deal with nondeterminism, we introduce the select construct to Pascal-FC. We first look at the basic select
construct which is simpler and needs to be extended later to increase its expressiveness.

A basic select construct is of the following form:

SELECT
alternative;

OR
alternative;

OR
alternative;

.........
OR

alternative
END;

where SELECT and OR are reserved words. Each alternative is a statement sequencestarting with a channel
operation, (i.e. ch ? x or ch ! e).

Let us explain the semantics of the basic select construct by using the Ornamental gardens problem. Now we
rewrite the processcounter as follows:

PROCESS counter;
VAR count: integer;

I,J, temp: integer;
BEGIN

count:=0;
FOR I:=1 TO 40 DO
BEGIN

SELECT
paths[1] ? temp;

OR
paths[2] ? temp

END;
count:=count+temp

END;
writeln(’Total admitted:’,count)

END.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 105

The semantics can be explained as follows:

• When a process,counter for example, attempts the SELECT, an alternative, saypaths[1]?temp, is said to
bereadyif the environment of the process is ready to execute theco-operationof the first channel operation
of the alternative, (paths[1]!1 in this case). In this case, this co-operation is executed by processturnstile[1]
of the environment ofcounter.

• If there are some alternatives ready when the process attempts SELECT, then one of the ready alternative
will be nondeterministically chosen to execute.

• If there is no ready alternative when the process executing SELECT, the process is suspended until one of
the alternatives becomes ready.

Thus, thecounter will respond to whichever process wishes to call it. If there is more than one outstanding call
then one will be chosen. Pascal-FC uses a random algorithm to choose. However, the point about randomversus
non-deterministic behaviour made before must be borne in mind.

After a channel operation that distinguishes the alternative, any number of further statements can be given. For
example, theselectstatement above could have been written as:

SELECT
paths[1] ? temp; count:=count+temp;

OR
paths[2] ? temp; count:=count+temp

END;

Where the selection is between elements from an array of channels, an shorthand can be used. For example,

SELECT
ch[1] ? v[1];

OR
ch[2] ? v[2];

OR
ch[3] ? v[3];

OR
ch[4] ? v[4];

OR
ch[5] ? v[5];

OR
another ! e

END;

can be written as:

SELECT
FOR i:=1 TO 5 REPLICATE

ch[i] ? v[i];

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 106

OR
another ! e

END;

6.9 Guarded alternatives

Now let us look at how we can deal with condition synchronization in the massage passing model. Condition
synchronization requires that a process must be delayed until some condition holds (or occurs). We can express a
condition by a boolean expression which will be used as theguardof an alternative in theselectconstruct. The
syntax of aguard is as follows:

WHEN boolean_expression =>

Thus, the basic select construct is extended to the following form which is calledguarded selectconstruct:

SELECT
WHEN boolean_expression => alternative;

OR
WHEN boolean_expression => alternative;

OR
WHEN boolean_expression => alternative;

.........
OR

WHEN boolean_expression => alternative
END;

The semantics of the guardedselectstatement is as follows:

• The guards are evaluated at the start of the execution of theselectstatement.

• An alternative is said to be open if its guard is evaluated to TRUE; otherwise it is said to beclosed.

• Closed alternatives are ignored for the remainder ofthatexecution of theselectstatement.

• An openandready alternative is non-deterministically chosen for execution.

• If there is no one ready among the open alternatives, the process is suspended until some of them becomes
ready.

• The guards are evaluated only once per execution of theselect(at the beginning). They are not re-evaluated
when a call comes in.

• It must be the case that at least one alternative is open in every execution of theselect, otherwise the process
would be blocked forever.

An alternative whose guard is always true is equivalent to an alternative without a guard:

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 107

WHEN TRUE => alternative

is semantically the same as

alternative

Thus, an alternative without a guard is always open. And the basic select construct is a special case of the guarded
select construct.

We take the producer-consumer problem with a bounded buffer as an example. Since the buffer is a passive object,
we should represent it as a process in the message passing model. The configuration graph of the program is shown
as follows:

producer consumerbuffer

The producer process and the consumer process are the clients processes which call the buffer process to receive
and send messages respectively. They are trivial to program. We only give the solution to the buffer process below:

PROCESS buffer(var put,get: channel of
integer); VAR BUFF: ARRAY[0..N] OF integer; (*buffer size is
N+1*)

NextIn, NextOut, CONTENTS: integer;
BEGIN

NextIn:=0; NextOut:=0; CONTENTS:=0;
REPEAT

SELECT
WHEN CONTENTS < N+1 => put ? BUFF[NextIn];

NextIn := (NextIn+1) MOD (N+1);
CONTENTS:=CONTENTS + 1;

OR
WHEN CONTENTS > 0 => get ! BUFF[NextOut];

NextOut: NextOut:= (NextOut+1) MOD (N+1);
CONTENTS:=CONTENTS-1

END;
FOREVER

END;

6.10 The terminate alternative

Recall that a concurrent program contains active and passive objects. With message passing, both active and
passive objects are encoded as processes - generally as client processes and server processes respectively.

Active processes control their own execution and hence terminate when their internal states require them to do so.
For example, the producer can stop if it does not want to produce anymore, and the consumer can stop if it does not

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 108

want to consume anymore. But the issue is more problematic with passive processes, such as the buffer process.
Ideally they should terminate when “no longer needed by any active process” – a server should close down his/her
business if he/she has no client to serve. If this must be programmed, then each passive process must keep track of
which other processes are using it and then must be told by each of them that they guarantee never to call again.

As an example, consider thecounter process in the Ornamental Gardens program. Previously, we had to know
how many times it must loop round before terminating. This is not practical and thus represents poor language
structure. But to allowcounter to know it is no longer needed, each process has to inform the counter that it had
finished:

PROCESS TYPE
turnstile(name, num: integer); VAR loop:integer; BEGIN

FOR loop:=1 TO num DO
paths[name] ! 1;
closedown[name] ! any

END;

PROCESS counter;
VAR count, I, J, temp:integer;

continue: ARRAY[1..2] OF boolean;
BEGIN

count:=0; continue[1]:=true; continue[2]:=true;
WHILE continue[1] OR continue[2] DO

SELECT
paths[1] ? temp; count:=count+temp;

OR
paths[2] ? temp; count:=count+temp;

OR
closedown[1] ? any; continue[1]:=false;

OR
closedown[2] ? any; continue[2]:=false

END; (*select*)
WRITELN(’Total admitted:’,count)

END;

With a complicated program, this is certainly difficult to achieve. It would be much nicer to programmers if the
system can look after this issue. For this purpose, Pascal-FC introduces theterminate alternative to theselect
construct. Hence, rather than the simple channel operation:

in ? SomeVariable

the following code can be used:

SELECT
in ? SomeVariable;

OR
TERMINATE

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 109

The semantics ofterminate alternativedoes notimply that the ‘owner’ task will terminate if there is no out
standing call. The ‘owner’ task only terminate when there will never be a call to come. More precisely:

The process executing the select with theterminate alternative will terminate if, and only if, there are no outstand-
ing calls and all the other processes that call are either already terminated or are waiting on aselectstatement
with a terminate alternative.

To understand this semantics, let us look at the possible cases when thereno process executablein a program:

1. all processes have terminated;

2. some processes are blocked on channel operators orselectswithout theterminate alternative;

3. all non-terminated processes are suspended onselectstatements withterminate alternatives.

Condition 1 is normal termination and should be accepted. Condition 2 implies system deadlock - the program
must be abandoned with error messages. The third condition is not an error; all the suspended processes can be
terminated.

Let us use theterminate alternative to rewrite the buffer process:

PROCESS buffer(var put,get: channel of integer);
VAR BUFF: ARRAY[0..N] OF integer; (*buffer size is N+1*)

NextIn, NextOut, CONTENTS: integer;
BEGIN

NextIn:=0; NextOut:=0; CONTENS:=0;
REPEAT

SELECT
WHEN CONTENTS < N+1 => put ? BUFF[NextIn];

NextIn := (NextIn+1) MOD (N+1);
CONTENTS:=CONTENTS + 1;

OR
WHEN CONTENTS > 0 => get ! BUFF[NextOut];

NextOut: NextOut:= (NextOut+1) MOD (N+1);
CONTENTS:=CONTENTS-1

OR
TERMINATE

END;
FOREVER

END;

If the producer and consumer both terminate, the buffer process will terminate even if there are still data in BUFF.
At least this means that if the consumer has terminated too early, this error is not exacerbated by a deadlock
ensuring.

With the terminate alternative, the code for thecounter process becomes much more straightforward and less
error-prone:

PROCESS TYPE turnstile(name, num:

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 110

integer); VAR loop:integer; BEGIN
FOR loop:=1 TO num DO

paths[name] ! 1
END;

PROCESS counter;
VAR count, temp:integer;
BEGIN

count:=0;
REPEAT

SELECT
paths[1] ? temp; count:=count+temp;

OR
paths[2] ? temp; count:=count+temp;

OR
TERMINATE

END; (*select*)
FOREVER

WRITELN(’Total admitted:’,count)
END;

However, there is a serious problem with the abovecounter process. Although it terminates normally it does not
produce any results at all. This is because the WRITELN statement is never reached. There is not, unfortunately,
any opportunity for a process to execute any statement after theselectstatement if the process terminates by
executing thatselect. When a server process must produce a result just before terminating, Pascal-FC requires the
use of avar parameter to process. By makingcount avar parameter its result will be returned to the main program
after termination. There it can be output:

..... PROCESS counter(var count: integer);
VAR temp:integer; BEGIN

REPEAT
SELECT

paths[1]?temp; count:=count+temp;
OR

paths[2]?temp; count:=count+temp;
OR

TERMINATE
END

FOREVER
END;
BEGIN

number:=0;
COBEGIN

turnstiles[1](1,20);
turnstiles[2](2,20);
counter(number)

COEND;
WRITELN(’Total admitted:’,number)

END.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 111

Note thatnumber is now a global variable. This trick does no apply to distributed systems which do not have
global variables.

6.11 Else and timeout alternatives

The above discussion has focussed on the main uses and semantics of the selective waiting construct. There are,
however, two other features that are useful in certain situations. In particular, there are applications for which a
process willing to make a rendezvous on a channel may not wish to commit itself to waiting indefinitely for the
partner in the communication. Two alternatives to such indefinite waiting are:

• if a rendezvous isnot immediatelypossible (i.e. there is no pending call on any eligible channel), then abort
the call and do something else instead;

• wait for a specified maximum period for a rendezvous, but abort the call and do something else if the period
expires before such a rendezvous begins.

Theelsealternative caters for the first of these; thetimeout alternative caters for the second. The form of aselect
with anelsealternative is as follows:

SELECT
inp ? SomeVariable;

OR
out! SomeValue;

ELSE
(*arbitrary sequence of statements*)

END

The semantics of it can be explained as:

• Theelsepart can play the role of the default alternative.

• It is not guarded and is taken immediately if none of the other open alternatives is ready.

• A selectstatement with anelsepart can never lead to the executing process being blocked: it either takes
one of the normal alternatives or it starts executing theelsecode.

Thetimeout alternative is of the following form:

SELECT
inp ? SomeVariable;

OR
out! SomeValue;

OR
TIMEOUT 3; (*arbitrary sequence of statements*)

END

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SYNCHRONOUS MESSAGE PASSINGS 112

The semantics is as follows:

• If no other open alternative is ready within three seconds (in general TIMEOUT n, where n is an integer),
thetimeout alternative is chosen.

• The alternative TIMEOUT 0 is the same as ELSE.

Final remarks on SELECT

• A terminate is only of use to passive processes.

• An elseis only of use to processes that are hybrids of passive and active entities. They must respond to
calls, but have actions of their own to undertake if no calls is available.

• A timeout is useful to real-time programs. For example, if a message has not arrived within three seconds
an error message must be produced.

• It is not allowed to have mixing of these three alternatives in a singleselect.

6.12 Exercises

1. Process controlling a drinks machine accepts coins followed by a user’s request; it then dispenses the drink
and any change before waiting a short time and then repeating the behaviour. Assume a user can only
choose tea or coffee which cost 25p and 35p respectively; and the machine only accepts 5p, 10p and 20p
coins. Write the program of this controlling process which should not cause deadlock to the system.

2. In order to speed up the service of the drinks machine in the previous exercise, the process is decomposed
into two concurrent processes; one dealing with the user’s inputs, the other controlling the dispensing of
drink and change. Write these two processes which use the synchronous message passing for communica-
tion.

3. Complete the the prime generating programsieve so that the entire program terminates correctly. First use
selectwithout theterminate. Then, separately, program termination using the full Pascal-FC facilities.

4. Write a simulation of a semaphore in the synchronous message passing model. Then, use the simulation to
write a program for the mutual exclusion problem.

5. Solve the Readers-Writers problem in the synchronous message passing model which has the readers have
preference over writers.

6. Develop a deadlock free solution to the dining philosophers problem by using message passing. In this
solution, a server process should be used to record whether or not a chopstick is being used. With this
approach a philosopher would need to send to the server process two messages to request for his chopsticks
and two messages to release his chopsticks.

7. Develop a deadlock free solution to the dining philosophers problem. In this solution, a server process
should be used to record whether or not each philosopher is eating. With this approach, a philosopher needs
to send one message to request or release both chopsticks.

8. Although the message-passing primitives described in this chapter is one-to-one, it is sometimes necessary
to broadcast a value to a number of other processes. Write a server process that will enable a single client
process to broadcast an integer value to a number of other clients. The server process should not dictate the
order in which the receiving processes get their data. Moreover, the broadcasting process should be delayed
if it wishes to send a another broadcast before all receivers have got the previous one.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 113

7 REMOTE INVOCATION

The goals of the chapter

• Motivation for remote invocation

• Understand message passing and synchronization with remote invocation

• Understand the client-server paradigm of process interaction

• Understand non-determinism with remote invocation

• Programming techniques using remote invocation

7.1 Introduction

The synchronous message passing model studied in the previous chapter is powerful enough to program all kinds
of processes: filters, clients and servers. That model can be characterized by:

• point-to-point communication – aSEND operation can only pass a message from a single sending process
to a single receiving process,

• one-direction data flow – the taking place of a rendezvous only passes a message in one direction, i.e. from
the sender to the receiver, and if a reply message (a result from the receiver) is required by the sender,
another rendezvous is needed and carried out by another pair of send and receive operations.

Both of these are ideally suited to programming filters. However, the communication between a client and a
server is in nature a two-way information flow between them: a client sends a message to request for a service
and expecting the service to be delivered by the server. In the synchronous message passing model, this has to
be programmed with two explicit message exchanges using two different message channels. Moreover, different
clients may request for the same service from the same server. Then the different clients have to have rendezvous
with different RECEIVE operations via different channels, and the server has to deliver the same service via
different channels and by differentSEND operations. All these lead to a large number of channels and message
passing operations.

In this chapter, we consider a different language model, which is used in the Ada programming language. It has
the following characters which differ from those of the synchronous message passing in the followin aspects:

• two-way data flow communication – the taking place of a rendezvous may pass data in both directions, i.e.
message sent from the sender (or client) to the receiver (or server) and reply sent from receiver to sender.

• many-to-one communication - differentSEND operations from different clients only have to have ren-
dezvous with a singleRECEIVE operation from a server if they request for the same service.

Therefore, this model is ideally suited to the client-server paradigm of process interaction. The remote invocation
model combines the aspects of monitors and synchronous message passing. As with monitors, a process (usually a
server) exports (owns) operations, and the operations are invoked bycall statements from other processes (usually
clients). As with the synchronous message passing, execution of SENDing acall delays the sender (caller) until the

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 114

call is accepted (RECEIVED). When a rendezvous takes place, a two-way communication is carried out from the
caller to the process that services the called operation and then back to the caller (with the result of the operation).

7.2 The message passing primitives in the remote invocation model

The remote invocation model is still a message passing model and suited to programming distributed systems.
Therefore, both active and passive objects are represented as processes. And typically, processes only share the
network but not variables. This is also where the remote invocation differs from monitors. Here “remote invoca-
tion” means an operation of one process can be called by a “remote” process. The called operation can be executed
only when the owner allows it to be executed and is executed by the owner. The result of the operation will be sent
to the caller by the owner.

As said in Chapter 5, the first thing in writing a program for a network is to define the network interface, i.e.the
SEND andRECEIVE primitives.

Entry definitions

To minimize confusion with the procedures in monitors, in the remote invocation model, a process that is prepared
to accept calls defines one or more namedentries. In Pascal-FC entries are defined or declared with the process
type, as in the following two examples:

PROCESS P; PROCESS
TYPE Q;

ENTRY E1; ENTRY E1;
ENTRY E2; ENTRY E2;

.....
ENTRY En; ENTRY En;

VAR "local declaration"; VAR "local declaration";
BEGIN BEGIN
"statement sequence" "statement sequence"
END; (*P*) END; (*Q*)

We can view theentries as channels in the synchronous message passing model, except for that channels there
must be of some types, andentries hereare identifiers. Also a channel can have at most one process waiting on it
but an entry can have a number of calls outstanding.

We can also viewentrieshere as theexport list in the monitors, except for that the export list there includes several
procedure names.

Communication

When procedures and procedure calls are used, a procedure call can involve information passing into, or out of
the procedure through the procedure parameters. This is said that data is communicated between procedures via

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 115

the parameters. This parameter-passing model used for procedure calls is reused in our entry definition. Hence
an entry can have any number of (formal) parameters; each parameter has a type and is either passed by value
(value parameter) or is defined to be a variable (variable parameter). Value parameters are used to allow data to be
communicated to the owner of the entry, and variable parameters are used to allow data to be communicated back
to the calling process. The following are example declarations:

ENTRY place(c: char); (*value parameter*)
ENTRY take(var c: char); (*variable parameter*); ENTRY
count(i:integer); ENTRY exchange(Indata: integer; var:
OutData:integer); ENTRY lost(A,B:integer; var C,D:integer; E:
boolean);

Entry call- the SEND operation

When two process P and Q communicate with each through an entry, the receiving process is the process, say P,
which owns (defines) the entry and the sending process is the caller of the entry. TheSEND operation in Q, i.e.
the call of an entry ENTRY E[formal-part] by Q, is of the form

P.E[actual-part]

An entry must be declared before called, i.e. the entry must be declared before the calling processes are declared.

Forward declaration

As we have just said that an entry must be declared before the calling processes are declared. However, there are
applications in which two process call each other. For this Pascal-FC supportsforward declarations:

PROCESS P
PROVIDES

ENTRY E;
END;
PROCESS Q;

ENTRY F;
BEGIN

....
P.E;
....

END;
PROCESS P;

ENTRY E;
BEGIN

....
Q.F;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 116

....
END;

A common use of this facility is when we have an array (or pipeline) of processes that wish to call each other, e.g.
a processi needs to call processi + 1. The following code gives the structure of this type of program:

PROCESS TYPE ELEM(NUM:integer) PROVIDES
ENTRY CALL;

END;

VAR
ELEMENTS : ARRAY[1..PIPELINE] OF ELEM;

PROCESS TYPE ELEM(NUM:integer);
ENTRY CALL;

BEGIN
....
IF NUM<> PIPELINE THEN

ELEMENTS[NUM+1].CALL;
....

END;

Accept operation – RECEIVE operation

For eachentry defined, the process must embodyat leastoneacceptstatement that corresponds to that entry and
which defines the code to be executed when an entry call is accepted (received). Anacceptstatement corresponding
an entry must have the same name and same parameter profile of that entry:

ACCEPT entry_name[formal-part] DO
statement

The typical function of anacceptstatement is to save the value of any input data passed from the caller and to
undertake whatever actions are needed to generate any defined data. For example:

PROCESS P;
ENTRY exchange(Indata: integer; var OutData: integer);

VAR D1,D2; integer;
BEGIN

........
D2:=SomeValue;
ACCEPT exchange(InData: integer; var OutData:integer) DO
BEGIN

D1:=InData;
OutData:=D2

END;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 117

......
END;

Note that anacceptfor an entry E1 may be nested inside anacceptfor an entry E2, but not within anacceptfor
E1 itself (either directly or indirectly).

Synchronization

Two communicating processes are synchronized at theentry call and the correspondingacceptstatement:

• A process that attempts anacceptfor an entry will be “suspended” if there is no pending calls.

• A process blocked at anacceptmay become executable when another process makes a call on that entry.

• A process that attempts anacceptfor which there is pending call will start to execute the statement in the
acceptstatement.

• A process that makes a call on an entry will be “suspended” on that entry if there no pendingaccept.

• If there are more than one process calling an entry at the same time, one of thecalls will be non-deterministically
chosen to be accepted by the pendingacceptand the other callers are suspended.

• A process that makes a call on an entry for which there is a pendingacceptbecomes “suspended” on that
entry following the transfer of parameters to the called process and then unblocking of the process suspended
at theaccept

• A process suspended at an entry call may become executable following the completion of anacceptstate-
ment for that entry. (including the transfer ofvar parameters back to the caller.

It is called extended rendezvous message passing because that the caller is blocked until the reply is sent by the
called process. This semantics is illustrated by the following figure:

Q.E

Statement in ACCEPT E

ACCEPT E

Owner Q
Caller P

wher the squiggly lines indicate when a process is executing.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 118

Example - Ornamental gardens

As a first example, consider the Ornamental Gardens program. With remote invocation, aselectconstruct is not
needed, as all the turnstiles can call in on the same entry:

PROGRAM gardens6; PROCESS counter;
ENTRY path(temp: integer);

VAR count,I: integer;
BEGIN

count:=0
FOR I:=1 TO 40 DO

ACCEPT path(temp:integer) DO (*one accept each iteration*)
count:=count+temp;

WRITELN(’Total admitted:’,count)
END;
PROCESS TYPE turnstil(name,num:integer);
VAR loop:integer;
BEGIN

FOR loop:=1 TO num DO
counter.path(1)

END;
VAR turnstiles: ARRAY[1..2] OF turnstile;
BEGIN

COBEGIN
counter; turnstiles[1](1,20); turnstiles[2](2,20)

COEND
END.

It is important to note that the code in anacceptstatement can be arbitrarily complex. Indeed it can involve an
entry call to another process:

PROGRAM complex; PROCESS
P;

ENTRY E(var I: integer);
VAR T: integer;
BEGIN

T:=42;
ACCEPT E(var I:integer) DO

I:=T
END;
PROCESS Q;

ENTRY E(var I: integer); (*same name can be *)
(*used in different processes*)

VAR T: integer;
BEGIN

ACCEPT E(var I: integer) DO
BEGIN

P.E(T); (*while accepting E, a call to P.E is made*)

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 119

I:=T (*42 is now passed to I from from P via T*)
END;

PROCESS S;
VAR T: integer;
BEGIN

Q.E(T) (*42 is passed to T of S*)
END;

BEGIN
COBEGIN P;Q;S COEND

END.

At the other extreme, anacceptcan be entirely empty,being used for synchronization only:

ACCEPT START DO NULL;
.......

It is necessary to consider the behaviour ofvar parameters as they are used in data communication. Consider the
following calling relationship:

PROCESS Q;
ENTRY GET(var I: integer);

VAR
Store: integer;

BEGIN
....
ACCEPT GET(var I: integer) DO

I:= Store;
.....

END;
PROCESS P;
VAR Local: integer;
BEGIN

...
Q.GET(Local);
...

END;

Note that when process P calls process Q, the effect is for information to flow from Q to P, i.e. the direction of
the communication is the opposite of the direction of call. This can be confusing when using terms like ‘message
passing’, ‘sender’ and ‘receiver’. Hence, the term ‘remote invocation’ is preferred.

7.3 Selective waiting with remote invocation

There is always a need for a selective wait construct with message-passing semantics. This is certainly true for
remote invocation as well. Consider the case that a process P defines two entries which can be called by the

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 120

environment, i.e. other processes, non-deterministically. P should accept whichever call that comes first.

Theselectivewait construct in the remote invocation model takes the form of a (possibly guarded)acceptalterna-
tive to aselectstatement. This behaves in an equivalent way to the channel alternatives described in the previous
chapter. As an example, consider a passive process, the role of which is to protect access to a single shared variable.
This variable can be written to or read from (by other processes):

PROCESS share;
ENTRY read(var I: integer);
ENTRY write(I: integer);

VAR value: integer;
BEGIN

ACCEPT write(I:integer) DO
value:=I;

REPEAT
SELECT

ACCEPT write(I:integer) DO
value:=I;

OR
ACCEPT read(var I: integer) DO

I:=value
END

FOREVER
END;

There are two important points that even this simple example illustrates:

• First, the body of a process can have more than oneacceptstatement for an entry. In the particular code
above, the firstacceptfor write ensures that an initial value is assigned to the variable. After this is done
the process loops around and accepts (in any order) calls toread or write. In general an entry can have
any number ofaccepts associated with it. Moreover, the codes executed theaccepts need not be the same.
This becomes easier to understand if we relate anacceptfor an entry to areceiveoperation for a channel in
Chapter 5: a process can have any number ofreceiveoperations on the same channel and the code executed
following onereceiveoperation on the channel need not to be the same as the code folloing anotherreceive
operation on the same channel.

• The second point is the reversal of direction of call associated with theread operation. As data can flow in
the opposite direction of the call, theread request is also programmed as a ‘call-in’. This has a number of
advantages:

– an asymmetricselectis adequate (i.e. selecting betweenacceptsonly rather than between bothac-
cepts and entry calls);

– it is more in keeping with the abstraction of a passive entity. (a server process never calls out, it just
accepts incoming calls.)

To illustrate these two points, it is better to compare the above example program with a version by using the
synchronous message-passing model:

PROCESS ShareSM;
VAR read, write: CHANNEL OF integer;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 121

value, I: integer;
BEGIN

write ? In;
value:=In;
REPEAT

SELECT
write ? In; value:=In; (*receive In from *)

OR (*a writer then write*)
read ! value (*send value to a reader*)

END
FOREVER

END;

The basic guarded form of aselectstatement is thus:

SELECT
WHEN B1 => ACCEPT E1 DO S1;

OR
WHEN B2 => ACCEPT E2 DO S2;
............

OR
WHEN Bn => ACCEPT En DO Sn

END

In addition to theseacceptalternatives,timeout, elseandterminate alternatives are all valid.

The semantics of this statement is the same as the select statement in the previous chapter.

7.4 Examples

7.4.1 Resource allocation problem

Consider a resource controller that allocates a collection of 16 objects. Clients obtain one of these objects by calling
ALLOCATE; the object is returned by callingREPLACE. The following gives an outline to the structure of
theCONTROLLER. Omitted from the code are the details of how the objects are passed out to the client (and
returned). Rather, a simple integer is returned that indicates which object number has been allocated:

PROGRAM control; PROCESS CONTROLLER;
ENTRY ALLOCATE(var num: integer);
ENTRY REPLACE(num: integer);

CONST size = 16;
VAR objectfree: ARRAY[1..size] Of boolean;

I: integer;
freecount: integer; (*number of free objects*)

PROCEDURE GetObj(var ob:integer); (*find the first free object*)

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 122

VAR j:integer; success: boolean;
BEGIN

j:=1; success := false;
WHILE j<= size DO

IF objectfree[j] and not success THEN
BEGIN

objectfree[j]:=false;
ob:=j;
success:=true (*terminate search*)

END else j:=j+1;
IF j= size+1 THEN (*no free object found*)

writeln(’Error on GetObj’)
END;

BEGIN (*process controller*)
FOR I:= 1 TO size DO

objectfree[I]:=true;
freecount:=size;
REPEAT

SELECT
WHEN freecount>0 =>
ACCEPT ALLOCATE(var num:integer) DO
BEGIN

GetObj(num);
freecount:=freecount-1

END;
OR

ACCEPT REPLACE(num:integer) DO
BEGIN

freecount:=freecount+1;
objectfree[num]:=true

END;
OR

TERMINATE
END (*select*)

FOREVER
END; (*CONTROLLER*)
PROCESS TYPE CLIENT; (*example client structure*)
VAR

ob: integer;
I: integer;

BEGIN
FOR I:=1 TO 10 DO
BEGIN

CONTROLLER.ALLOCATE(ob);
sleep(random(5)); (*use resource*)
CONTROLLER.REPLACE(ob)

END
END;
VAR

CLIENTS : ARRAY[1..20] OF CLIENT;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 123

ploop: integer;
BEGIN (*main program*)

COBEGIN
CONTROLLER;
FOR ploop:=1 TO 20 DO

CLIENTS[ploop]
COEND

END.

With this number of clients, thefreecount variable soon drops to zero (which can be illustrated by adding awrite
statement to the CONTROLLER).

A point of useful detail can be observed in this code by considering theacceptstatement for theALLOCATE
entry. In general the code inside theacceptshould be the minimum required for rendezvous, so that the potential
for concurrency can be fully exploited. The assignment tofreecount is therefore inappropriately placed; it should
be done after the rendezvous, as it only affects a local variable:

WHEN freecount>0 =>
ACCEPT ALLOCATE(var num:integer) DO GetObj(num);
freecount:=freecount-1

Question:

How can we change this code so that each client can request a number of objects?

7.4.2 Dining philosophers problem

Next, we are going to solve the dining philosophers problem in the remote invocation model. The solution avoid
deadlock by allowing at mostN − 1 philosophers sitting at the table. Recalling the corresponding semaphore
solution in Chapter 3, the following program should be easy to understand:

PROGRAM pilada; CONST N=5; VAR I: integer; PROCESS TYPE chopstick;
ENTRY pickup; ENTRY putdown;

BEGIN
REPEAT

SELECT
ACCEPT pickup DO NULL;

OR ACCEPT putdown DO NULL;
OR TERMINATE

END
FOREVER

END;
VAR chopsticks: ARRAY[1..N] OF chopstick;
PROCESS chairs;

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 124

ENTRY getchair; ENTRY replacechair;
VAR freechairs: integer;
BEGIN

freechairs:=N-1;
REPEAT

SELECT
WHEN freechairs>0 => ACCEPT getchair DO null;

freechairs:=freechairs-1;
OR ACCEPT replacechair DO null; freechairs:=freechairs+1;
OR TERMINATE

END
FOREVER

END;
PROCESS TYPE philosopher(name:integer);
VAR I:integer;

chop1, chop2: integer;
BEGIN

chop1:=name;
IF name =N THEN chop2:=1 ELSE chop2:=name+1;
FOR I:=1 TO 10 DO
BEGIN

sleep(random(5)); (*thinking*)
chairs.getchair;
chopsticks[chop1].pickup;
chopsticks[chop2].pickup;
sleep(random(5));
chopsticks[chop1].putdown;
chopsticks[chop2].putdown;
chairs.replacechair

END
END;
VAR phils: ARRAY[1..N} of philosopher;
BEGIN

COBEGIN
FOR I:=1 TO N DO
BEGIN chopsticks[I}; philsI END;
chairs

COEND
END.

7.4.3 Process idioms

An important distinction has been made in this book between active and passive processes. In general, passive
processes can be classified into a number of process idioms. A partial list is as follows:

1. buffer

2. stack

3. mailbox

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 125

4. forwarder.

Buffer processes have already been considered. A stack process merely implement LIFO (Last In First Out)
data store. The other two idioms introduce processes that act on behalf of the other entities. Each will now be
considered.

Mailbox

A mailbox is a process that acts as a temporary buffer between two other processes. It allows the active processes
to pass data asynchronously (via the mailbox). The mailbox type simply has two entries for capturing and releasing
the message (which is of typeinteger in the following example):

PROCESS TYPE MAILBOX;
ENTRY PUT(Mess:integer);
ENTRY GET(VAR Mess: integer);

VAR
temp:integer;

BEGIN
REPEAT

SELECT
ACCEPT PUT(Mess: integer) DO
temp:=Mess;
ACCEPT GET(var Mess: integer) DO Mess:=temp;

OR
TERMINATE

END
FOREVER

END;

The users of this process simply call the appropriate entry. Note that if a message is still ‘in’ the mail box, then a
subsequent call of PUT will block. This program is illustrated in the following figure:

Sender ReceiverMailbox
put get

where the dashed arrowed lines represent the directions of the data flows, while the solid arrowed line represent
the directions of entry calls.

Forwarder

A forwarder acts as a direct intermediary between two processes. Consider a program in which processP calls
ENTRY F in processQ, and deposits an integer. IfP callsQ directly it will be blocked ifQ is not able to accept

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 126

the call immediately. This synchronous communication can be altered byP using an agent that callsQ on its
behalf, so thatP andQ become less tightly coupled. The following code outline illustrates this:

PROGRAM USEFORWARDER; PROCESS Q;
ENTRY E(mess: integer);

BEGIN
....

END;
PROCESS TYPE FORWARDER;

ENTRY PUT(Mess:integer);
VAR

temp:integer;
BEGIN

REPEAT
SELECT

ACCEPT PUT(Mess:integer) DO
temp:=Mess;

Q.E(tem);
OR

TERMINATE
END

FOREVER
END;
VAR F, ...: FORWARDER;
PROCESS P;
VAR V: integer;
......
BEGIN

....
F.PUT(V);
.....

END;

This program is illustrated in the following figure:

P QF
put E

7.4.4 A reactive example - a controlling system

Many concurrent systems are driven by the arrival of data at the system’s interface. These systems are often called
reactive. In the following example an output value (usually a controlling instruction) is produced in response to a
new input value. There are three sources of input which are intended to be three alternative measures of the same
environmental quantity: for example, they might come from three different devices (usually calledsensors) that

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 127

estimate (or sensing) altitude in an aeroplane. As each of the sensors might give different data representations, the
program uses three distinct processes for input (i.e. sensors) even though only integers are passed in the example.
Whenever a new input value is registered, the output process can run, get a new weighted average of the inputs and
produce an appropriate output. However, it is important that if a number of new input arrive before the outputting
process (controller) gets around to reading the input values, then it is given an up-to-date average; some data may
be lost but the average always uses the latest values from the three sensors.

One way to accommodate the freshness requirement (and to minimizing the number of times the averaging activity
is performed) is to call theaverage procedure only when a request for a data is made. This requires the procedure
to be called from within theacceptstatement, thus illustrating why it is often useful to be able to execute code
within an accept body:

PROGRAM control; PROCESS server;
ENTRY A(I:integer);
ENTRY B(I:integer);
ENTRY C(I:integer);
ENTRY GET(var I: integer);

VAR newvalue: boolean;
tempA, tempB, tempC:integer;

PROCEDURE average(X,Y,Z:integer; var result:integer);
BEGIN

(*form a weighed average of the input values*)
END;
BEGIN

newvalue:=false;
REPEAT

SELECT
ACCEPT A(I:integer) DO tempA:=I;
newvalue:=true;

OR
ACCEPT B(I:integer) DO tempB:=I;
new value:=true;

OR
ACCEPT C(I:integer) DO tempC:=I;
newvalue:=true;

OR
WHEN newvalue => ACCEPT GET(var I: integer) DO

average(tempA,tempB,tempC, I);
newvalue:=false;

OR
TERMINATE

END
FOREVER

END;
PROCESS inputA;
VAR V: integer;
BEGIN

REPEAT
(*wait for input*)
(*obtain input value V*)

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 128

server.A(V) (*send V to server*)
FOREVER

END;
PROCESS inputB;
VAR V: integer;
BEGIN

REPEAT
(*wait for input*)
(*obtain input value V*)
server.B(V) (*send V to server*)

FOREVER
END;
PROCESS inputC;
VAR V: integer;
BEGIN

REPEAT
(*wait for input*)
(*obtain input value V*)
server.C(V) (*send V to server*)

FOREVER
END;
PROCESS output; (*controller*)
VAR V: integer;
BEGIN

REPEAT
server.GET(V); (*get the average*)
(*Use V to produce output controlling command*)

FOREVER
END;
BEGIN (*main*)

COBEGIN
inputA;
inputB;
inputC;
output;
server

COEND
END.

This program can be illustrated by the following figure:

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 129

server

inputA

inputB

inputC

output
control signal

obtain input
call to send data

GET

A

B

C

7.5 The limitation of the Pascal-FC select construct

Earlier in this chapter a program was given that show hows a resourceCONTROLLER process can control a
set of objects that are needed by a group of competing clients. The program restricted each client to obtaining only
one object at a time and theALLOCATE operation was thus programmed as a single entry. If we now extend the
problem to allow each client to ask for avariablenumber of objects, the guarded select structure (as described so
far) is inadequate. Let us now show this limitation step-by-step.

First we have to extend theGetObj procedure used in theCONTROLLER process to find the first number of
free objects that are requested by a client; and add aReturnObjs procedure to replace the objects returned by a
client:

PROGRAM control; CONST size=16; TYPE
OBjectFlags=ARRAY[1..size] OF boolean; PROCESS CONTROLLER;
.......; PROCEDURE GetObjs(number: integer; var: ObF:ObjectFlags);

(*find the first number free objects*)
VAR J, found:integer;
BEGIN

j:=1; found:=0;
WHILE j<= size DO

BEGIN
IF objectfree[j] THEN

BEGIN
objectfree[j]:=false;
ObF[j]:=true; (* jth object is allocated*)
found:=found+1;
IF found = number THEN

j:=size+1 (*terminate search*)
END;

j:=j+1
END;

IF j=size+1 THEN WRITELN(’Error on GetObjs’)
END;
PROCEDURE ReturnObjs(VAR ObF:ObjectFlags);
VAR j:integer;
BEGIN

FOR j:=1 TO size DO

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 130

IF ObF[j] THEN
BEGIN

ObF[j]:=false;
objectfree[j]:=true

END
END;
.......

After the extension with these two procedures, we might be thinking the body of theCONTROLLER process
should be similar to that of the earlier solution:

BEGIN (*body of CONTROLLER*)
FOR i:=1 to size DO

objectfree[i]:=true;
freecount:=size;

REPEAT
SELECT

WHEN freecount >= number =>
ACCEPT ALLOCATE(number: integer; var ObF: ObjectFlags) DO
BEGIN

GetObjs(number,ObF);
freecount:=freecount-number

END;
OR

ACCEPT REPLACE(number:integer; var ObF:ObjectFlag) DO
BEGIN

ReturnObjs(ObF);
freecount:=freecount+number

END;
OR

TERMINATE
END

FOREVER
END;

This certainly will not work except for the case whennumber in theALLOCATE entry is a constant and each
clients can request for onlynumber objects at a time. To allow a client to obtain a variablenumber of objects,
theCONTROLLER must accept the call toALLOCATE first and then check whether there are enough free
objects. Therefore, it is better to have the select statement in the body ofCONTROLLER as follows:

SELECT
ACCEPT ALLOCATE(number: integer; var ObF: ObjectFlags)
WHEN freecount >= number DO
BEGIN

GetObjs(number,ObF);
freecount:=freecount-number

END;
OR

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

REMOTE INVOCATION 131

ACCEPT REPLACE(number:integer; var ObF:ObjectFlag) DO
BEGIN

ReturnObjs(ObF);
freecount:=freecount+number

END;
OR

TERMINATE
END;

The semantics of the guarded alternative should be such that the calling process will be locked if the guard does not
hold; and the guard should be re-evaluated each time a call is made on the process with theselect. This, of course
increases the run-time complexity. This is supported in the language SR (Andrews, 1981) but not in Pascal-FC.

Section 5.9 in the text book presents a solution to this problem which uses the current Pascal-FC model.

7.6 Exercises

1. Simulate the operations on a channel by ACCEPT and CALL on an entry (or entries). And simulate AC-
CEPT and CALL on an entry by channel operations.

2. Program the readers and writers problem using the remote invocation model.

3. Write a Pascal-FC program that emulates a simple terminal handler. One process should read characters
from‘input’. Lower case characters are the normal ones; upper case letters represent control characters.
Each normal character must be passed onto a buffer process before another is read. Four control characters
should be recognized and acted upon (others should be ignored):

B - erase last character from the buffer

L - put end-of-line marker into buffer

U - remove current incomplete line from buffer

C - remove content of buffer

A third process should be coded to read lines of characters from the buffer. This process should then ‘output’
these lines. The buffer process should only allow the reader process to access complete lines of characters.
You can assume a line will have a maximum of 20 characters.

4. Write a program that implements a lift (elevator) control system. A server process accepts calls on floor
buttons and moves the lift to the requesting floor. The lift is very small and so can only take a single person
at a time. In the lift are buttons that allow the passenger to choose the destination floor. The program should
contain a number of passenger processes that make calls on the lift.

5. Modify the previous example so that thee are nowm lifts (each only carrying a single person).

6. Consider a collection ofn processes. Each has a unique identity and an arbitrary integer value (in the range
1 to 5, say), By communicating with every other process, each process is able to find out how many other
processes have the same integer value. Construct a program that implements these communication (without
deadlock!).

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SUMMING UP 132

8 SUMMING UP

8.1 The course

This is a course on basicconcepts, problems, principles, techniques and toolsin concurrent programming.

8.1.1 Concepts

Concepts includes:parallel computation, parallel computing systems, concurrent computer systems, distributed
computing systems, concurrent programming, non-determinism, interleaving, concurrency, synchronization, com-
munication (interaction), safety property, liveness property, deadlock, livelock, starvation, blocking waiting (or
blocking primitives).

8.1.2 Problems an Priciples

We have considered the problems ofmultiple updating, critical section and mutual exclusion, producer and con-
sumer, readers and writers, the dining philosophers, resource allocation, and automatic control system.

These problems and their various solutions are abstractions of real application problems in operating systems,
concurrent computation applications, and application of automatic control engineering. They provide general
patterns and principles in solving classes of concurrent program problems. Students should learn to use these
abstract problems and solutions to solve concrete application problems.

The principles also include how to represent active and passive entities, especially passive entities, in different pro-
gramming models; how to program mutual exclusion synchronization and condition synchronization in different
models.

8.1.3 Techniques and tools

We discussed 6 basic tools and the techniques of using these tools in concurrent programming:

• Busy waiting techniques. These are the old-fashioned techniques in solving synchronization problems.

• Semaphores: These are the first and most fundamental abstract primitives for synchronization used in shared
memory based systems. They are very easy to implement efficiently. And they are still widely used in the
design of operating systems.

• CCRs and Monitors: They are more abstract than semaphores and easier and safer to use as well. They are
popular in the design of operating system and of concurrent programs for client/server paradigm of process
interactions on shared memory based systems.

• Synchronous message passing: This is a popular model for theoretical study of concurrent and distributed
system (Hoare’s CSP, 1985, Milner’s CCS, 1989). The model is simple since both active and passive entities

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SUMMING UP 133

are modelled as processes. Practically, it is a good model for programming networks of filter processes
(pipelined systems). Occam (INMOS, 1984) uses this model. Thus, students who have taken this course
should have no problem in writing occam programs after reading the language manual.

• Remote invocation: This is a message passing model which is ideally suited to programming the client/server
paradigm of process interaction for distributed systems. Ada uses this model. Therefore, the students who
have taken this course should have no problem in writing Ada programs after reading the language manual.

We have discussed the language notations and their semantics for each of these models, the techniques in program-
ming mutual exclusion and condition synchronization in these five models, and the ways in which passive entities
are represented.

8.2 Possible application of the course

• Programming parallel computation and distributed computation.

• Design and use multitasking operating systems: Many of the problems and solution of these course were
from the design of operating systems.

• Design automatic control system – reactive system.

• Design programming language constructs (primitives) for concurrent programming, even a full concurrent
programming language. When we introduced a new language facility, we first discussed its motivations,
then introduced its notation (syntax), then defined its semantics, and finally discussed how the semantics is
implemented. This is the general routine followed by a language designer when he/she designs (or extends)
a language.

• Evaluate concurrent programming languages, parallel algorithms, and concurrent programs. Most aspects
of a language these are about the expressiveness, semantics, implementation, easy-to-use, and safe to use,
and the trade-off between these aspects. Concurrent algorithms and programs are main concerned with their
properties (correctness, efficiency, etc.).

8.3 Furthermore ...

This course also provides the backgrounds for the study of real-time and fault-tolerant systems, distributed (com-
municating) networks.

8.4 What cannot we do?

This course has covered little on reasoning about concurrent programs. We have gained the feeling that this will
not be a trivial task. Also, the techniques or methods used here in developing a concurrent program are ratherad
hoc. So we have the following questions:

• How can we obtain systematic guidelines for the development of a provably correct concurrent program?

• How can we systematically reason about the correctness of a concurrent program?

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

SUMMING UP 134

Answering to these two questions has formed a field called formal methods in concurrent and distributed systems,
which is currently one of most exciting research areas in computer science, and which has produced and is still
producing many big names in the computer science community.

Comments and corrections on the lecture notes are and will be very much appreciated.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau

