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Abstract

In this paper we present a coalgebraic semantics for UML class diagrams and given some discussions on
the coalgebraic semantics for use cases. A loose semantics for class diagrams is defined. The semantics
of a class in UML class diagrams is given as the category of coalgebras of the corresponding class
specification. Associations among classes are interpreted as coalgebraic observers. The generalization
hierarchy of classes is specified by the inheritance morphism among them. Some examples on checking
the internal consistency for class diagrams by exploiting the coalgebraic semantics are introduced.
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Introduction 1

1 Introduction

Object-orientation has now become a popular approach in software industries [21, 43]. The Unified Mod-
eling Language (UML) [45, 53, 5], which is a graphical language for specifying, visualizing, constructing
and documenting object-oriented (OO) systems, has becatadartostandard for OO modeling. One

of the main advantages of UML is that it offers a set of different view models to describe specific aspects
of the system to be developed, such as the static structure of the system, the dynamic behavior of single
objects in the system, and the communication and coordination between different objects in the system,
etc. And these models together describe the system being designed. Moreover, the modeling languages
in UML can be used for different stages of development, including requirement capture and analysis, de-
sign and implementation [39, 40]. But this also causes the main drawback of the current UML standard:
the lack of a unifying formal semantics. Consequently, the definition of such a precise semantics has
become an active research area.

Although the syntax of UML has been precisely defined, its semantics is still described with informal
natural language in the specification. The lack of a formal semantics is now the main drawback of the
current UML standard. It has been recognized that informal semantics are usugalypleteor incon-
sistent(or even both), and may make the interpretation of the meaning of language elements ambiguous.
As a consequence, the confusion of the meaning of UML models may cause them to be used incorrectly.
Therefore, the high effort being spent on modeling does not always yield the intended systems.

The separation of different view models in UML prompts one of the key questions in UML, that is, the
consistencypetween diagrams representing the same information of a system. Since certain aspects of a
system may be specified by more than one view model, the consistency of the family of models has to be
checked to assure the correctness of the models. For example, sequence diagrams model the interaction
of objects in a system while statechart diagrams model the intra behavior of single objects. Therefore,
we need to check whether the objects specified by the statechart diagrams are able to satisfy the behavior
requirements stated in sequence diagrams. Since different models in UML are using (paradigmatically)
different languages, it will not be much helpful even we provide different formal semantics for different
single models which have different semantic domains, because the consistency between models is still
not obvious and the difference of semantic domains makes one can not request a common semantic
interpretation as the criterion of consistency of UML models. Unfortunately, most of the previous and
ongoing formalization work adopts such an approach and only focuses on individual aspects of UML
and thus gives up the advantages of having multiple views. This restriction is mainly caused by the
limited expressive power of the semantic domains in use. Therefore, a unifying semantics of UML is
needed which uses a common semantic domain and gives interpretation for different models so that the
consistency of a collection of models can be checked in the semantic domain.

Obviously, such a semantic domain musezpressivenough so that it can interpret different languages

for both static and dynamic aspects of systems. Moreover, it should suppodripositiorandrefine-
mentoperations. The composition operation is needed to support the decomposition of a complex system
into components and the connection of different components to compose them together into the whole
system. For example, the semantic units representing single objects need to be composed in the semantic
domain and the result should be consistent with the semantics of the systems consists of these objects.
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Introduction 2

Because UML can be used in different design stages, one model may refine the information provided
by other models. For example, statechart diagrams add the dynamic behavior property of objects into
class diagrams which only state their static structure. Such refinement also need to be supported in the
semantic domain to check the consistency between a concrete model and a more abstract model which
specify the same aspects of a system.

In order to use UML more effectively in software development, during our work on formalizing UML,

we found that coalgebraic structures [31, 54] provide a powerful semantic domain which is able to cover
different aspects of software system. Coalgebra theory, which is a relatively new research field, has
been recognized as a suitable framework for the description of state-based dynamic systems such as
automata, transition systems and classes in object-oriented languages, where observations and behavior
patterns are more relevant than data construction. In Peter Aczel’s foundational work on the theory
of “non well-founded sets” [2], a coalgebraic approach is used to describe non-deterministic transition
systems and construct a model for non well-founded sets. Later works by Bart Jacobs and others on
coalgebraic specification and coalgebraic semantics for object oriented programming (see e.g. [23, 24,
25, 28, 50, 48, 61]) has proved that coalgebras are suitable for modeling dynamic systems, especially,
for classes in object oriented programming languages. H. Tews makes an extension to the polynomial
functors used by Jacobs so that binary methods can also be represented by coalgebras [61]. [32] presents
the assertional and behavior refinement of coalgebraic specifications. A coalgebraic class specification
language CCSL is also developed recently [52]. In order to fully and natually capture both computational
and observational aspects of systems, The works on integrating algebraic and coalgebraic techniques in
specification of systems by taking a layered approach can be found in [9, 10].

By resorting the underlyingnvironment categorto a set based category enriched with some algebraic
structure, we can naturally get a more concrete semantics for UML specifications. In fact, just by varying
the environment category, coalgebras can describe different computation models as disc@ks€den [
obvious benefits of such a coalgebraic semantics are more straightforward notions of consistency and
refinement between different kinds of UML diagrams. In this paper we propose a method for specifying
and reasoning about UML models of software systems based on the coalgebraic semantics and first-order
logic. This is the first step towards such a unifying semantics of the UML. Since coalgebras support the
dynamic aspects quite naturally, we concentrate here on the static models represented by class diagrams.
Some form of familiarity with category theory and coalgebra theory are assumed for the reader, and we
will not explain all the notions in this paper in elementary terms.

In this paper, we define the coalgebraic semantics of UML class diagrams based on our earlier work on
the coalgebraic calculus for systems in [60] and give some discussion on the formalization of use cases
via coalgebraic specifications as the first step towards a unifying semantics for UML. The semantic do-
main is defined via a cofibred category of coalgebras. We give the semantics of UML elements based
on the theory of coalgebra and define the consistency relation between them in the coalgebraic interpre-
tation. The central idea of our coalgebraic semantics is that a set of UML diagrams denote coalgebraic
specifications as introduced by Jacobs [24, 25, 29]. More precisely, the presented coalgebraic semantics
translates the graphical symbols and annotations of the various UML diagrams into functors and proper-
ties of a coalgebraic specification. With this approach, standard definitions in coalgebraic contexts, like
bisimilarity and refinement [32] can be also applied to UML diagrams. Another obvious advantage of
our coalgebraic approach is that it covers both the static models and the dynamic models of UML, which
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A Cofibred Category of Coalgebras 3

makes the definition of consistency between different models natural in the semantic domain. Moreover,
it also provides the static models (e.g. class diagrams) a behavior semantics which is helpful for under-
standing of the evolution of system in the early phases of system development. The aim of our work is to
provide a coalgebraic semantic framework suitable for the notations in UML and which can form a basis

for rigorous object-oriented software development.

This paper is organized as follows: Section 2 is a brief introduction to the cofibred category of coalgebras
as the semantic domain. An informal syntax for class diagrams is presented in Section 3. In Section 4, a
coalgebraic semantics for class diagrams is defined, and some examples on checking the consistency of
class diagrams are given. We discuss the use cases in Section 5 by using the coalgebraic specifications
to describe use cases. Some related work are given in Section 6. Finally, Section 7 concludes and show
the future work.

2 A Cofibred Category of Coalgebras

In this section we briefly present our semantic domain. It is designed to unify the different semantic
aspects of UML. It turns out that a cofibred category of coalgebras is the most promissing candidate
for our endeavor. The relatively heavy mathematical machinery pays off in providing the necessary
concepts of abstraction, and thus in simplifying our semantic definitions. Advantages of such an approach
include: (1) The theory of universal coalgebras have been proven useful in modeling dynamic and static
aspects of object-oriented systems faithfully since we have the freedom to choose the signature functor
appropriately [54]. (2) The notion of functors in category theory provides a powerful theory of interfaces
and signatures. (3) Our cofibrated categ@y represents a category which contains the transition
structures corresponding to different functors and allows us to relate coalgebras of different functors
within just one category.

Let Set be the category of sets and functions. The functors considered in this pap&etép Set
(endofunctors on the categoBet), and together with the natural transformations between them form a
category[Set, Set]. These functors are used to describe the coalgebraic signaturés — FU that

map a state, : U to its possible observations(u) : FU. For every such an endofunctél, we can
obtain the categor¢ ¢ of all F-coalgebras.

The cofibred category based on a subcategoFy of [Set, Set| is defined as the “total” category

which encompasses the categon@s for all the possible functorg’ in F, which is a subcategory of

[Set, Set], and also admits natural transformations as morphisms between different functors. Conse-
quently, the semantic domain provides the mapping between different coalgebras, and thus between our
interpretations of different UML diagrams. The following construction defines the cofibred category of
coalgebras:

Proposition 2.1 LetF be a subcategory of the categdBet, Set| of endofunctors on the categdsgt.
Then for two endofunctorg and G in F, a natural transformatiom : FF — G allows us to view every
F-coalgebrac : U — F(U) as aG-coalgebran; oo : U — G(U). Take coalgebras for functors if
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Class Diagrams 4

as objects and for two coalgebrgs, o : U — F(U))and(V,5:V — G(V)), take(o,n) as an arrow
between them, wheteis function between their carrier angl: F' = G a natural transformation, such
that the following diagram commutes:

U 7 -V
aJ J6]
Py 1% ey C9 g

This defines a catego@r which is a cofibration over the categoR

Proof: The composition of two arrowg; = (o1,m1) : ¢ — dand fo = (02,1m2) : d — eis
fao fi = (02 001,m 0n2) : ¢ — e. Associativity of composition is inherited frolBet and Cat.
It is even easier to show that there is an identity morphism for any coalgebrél/, o : U — F(U))
which is defined by(idy, idr) whereidy is the identity function on the state spaldeandidy is the
identity natural transformation frorf to itself. ClearlyCg is a cofibration over the categoRywhere
we have a functop : Cg — F which maps every’-coalgebra to the functar and every arrowo, n)
ton.

Here we recall some standard terminology in category theory [4, 26]. For a total catégaapd the
base categor¥ of this cofibration, an objectof Cg and an arrowf : ¢ — d with pc = F andpf = n
are calledbver F' andovern respectively.

Note that all the functors we use in the sequel are in a particular collection of functors: the so-called
Kripke polynomial functorgKPFs). Such functors are the endo-functorsSes finitely built up from
the following syntax:

FX) == C 1 X | Fi(X) x Fp(X) | Fi(X) + Fo(X) | € — Fi(X)

whereC' is an arbitrary non-empty constant sgf, F» are two previously defined KPFs. Theoductof
two setsA, B is a setd x B in Set together with two projections; : Ax B — A,my: A x B — B.
The coproduct (sumpf A and B is an objectd + B together with two injections, : A — A+ B, 15 :
B — A+ B. TheexponentA? (or B — A) is used for the collection of functions from a deto A.

3 Class Diagrams

One of the main artifacts to produce in OO modelling are class diagrams. A class diagram shows the
static structure of a system, consisting of a set of classes and the relationships between them. A class is an
abstract description of a set of objects with similar structure, behavior and relationships. The description
of a class includes the common attributes and operations of the objects belonging to the class, whereas the
structural relationships between it and other classes are represented by generalizations and associations,
including aggregation and composition.
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Class Diagrams 5

3.1 Syntax of Class Diagram

The UML Specification [45] describes the UML abstract syntax as UML class diagrams depicting the
UML metamodel and well-formedness rules together with examples. There are descriptive informal text
associated with each diagram for describing the abstract syntax.

Here we give the brief description of the abstract syntax of UML class diagrams in a top-down fashion,
the detailed formal syntax and well-formedness rules for class diagrams defined by using RSL can be
found in [15]. A class diagram is formed by classes and relationships among them. A set of well-formed
rules is needed to assure that the class diagram is well-formed. Before we give the definition of class
diagram, we first introduce a set of nanMame as the name space of a class diagram, the elements in
which are the names of classes, attributes, operations and associations. ¥Vousiee family of data

types, every element in which corresponds to a set of data values. For exBuapleandInt are used

for boolean and integer types.

Definition 3.1 (Class Diagram)A class diagram is a tupleC' D = (C, A, <— , W F¢p) where

C is a nonempty finite set of classes;

A is afinite set of associations;

e <+— C C x Cisthe generalization relationship between classes;

W Fep is a set of well-formedness rules 61D.

A class is a description of a set of objects that share the same attributes, operations and relationships. In
UML class diagrams, a class consists of a name, a set of attributes, a set of operations and a multiplicity.
A list of properties may be listed in a class to show some class attributes or tagged values. A class can
be abstract, root or leaf in the generalization relationship. A template is a class with one or more formal
parameters which describes a family of classes, each class specified by binding the parameters to actual
values.

Definition 3.2 A classC consists of the following parts:

the name of the clagsume(C) € Name;

the set of its attributeslts(C);

the set of its operation®ps(C);

its multiplicity m(C) C Int which is optional;

the optionalisAbstract : Bool which specifies whether it can be directly instantiated;

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau



Class Diagrams 6

¢ the optionalis Root : Bool which specifies whether it has no ancestors;
e the optionalisLeaf : Bool which specifies whether it has no descendants;

o the optional parameter lisP provided to a parameterized class (template).

An attribute describes a range of values that instances of a class may hold. It has a visibility, a name, a
type, a multiplicity which is the possible number of data values for the attribute that may be held by one
object, a changeability to show whether the attribute value may be changed after the object is created, an
initial value specifying the attribute value upon initialization, and a target scope specifying whether the
targets are Instances or Classifiers.

Definition 3.3 An attribute At of classC consists of the following parts:

¢ the optional visibility of the attributeisibility(At) which may beublic, private or protected,
¢ the name of the attributeame(At);

¢ the type of the values of the attributgpe(At), which may be basic types or other classes in the
class diagram;

¢ the optional multiplicity of the attribute:(At) C Int;

e the optional changeability of the attributé.angeability(At) which may befrozen, addOnly
or changeable;

¢ the optional initial value of the attributé:(At) which has typeype(At);

the optional target scope of the attributeope(At) which may be:lassifier or instance.

The default syntax given in UML specification [45] is:

visibility name [multiplicity]: type-expression = initial-valufproperty-string
An operation is a service that can be requested from an object to effect behavior. It has a visibility, a
name, a signature which consists of a list of formal parameters and an optional result type. Each element

of the parameter list has a name and a type. Furthermore, an operation may have a scope and can be
abstract.

Definition 3.4 An operationOp of classC consists of the following parts:

¢ the optional visibility of the operationisibility(Op) which may beublic, private or protected,

e the name of the operatiamme(Op);
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Class Diagrams 7

o the list of its formal parameterBop,, the elements of which has the form
kind parameter_name : parameter _type = de fault_value,

wherekind includein, out andinout, the default value in. The type ofPop, type(Pop) is the
product of the typegarameter_type of its elements;

¢ the optional result typetypeop;

¢ the optional scope of the operatiaaope(Op) to show if its applicable to the instances of the
class or the class itself;

o the optionalisAbstract : Bool which specifies whether the implementation of the operation is
supplied in the class or by a descendant.

o the optionalisQuery : Bool states whether or not it will change the state of the object after
applying the method.

The default syntax of operation is:
visibility name (parameter-list): return-type-expressigroperty-string
Different classes in a class diagram are related by different kinds of relationships. Relationships in UML

class diagrams are separated into three categories: associations, generalizations and dependencies. Each
relationship should satisfy the well-formedness rules.

Definition 3.5 A relationship is an association, a generalization or a dependency among classes to-
gether with a set of well-formedness rules on it.

An association in a class diagram describes discrete connections among objects or other instances in a
system [53]. An association may have a name and two or more association ends, each of them specifies
a class being connected by the association and a set of optional properties that must be fulfilled for the
relationship to be valid [45], including a role name, a multiplicity, a navigability, an aggregation property,

a changeability, an ordering property, a target scope and a visibility.

Definition 3.6 An associatiomA consists of the following two parts:

¢ the name of the associatiemme(A);

e the set of association ends : End(A)}.

Definition 3.7 An association end : End(A ) of associationA consists of the following parts:
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Class Diagrams 8

e the class being connected at this etidss(e);

¢ the role name of the endame(e), which provides a name for traversing from a source instance
across the association to the target instance or set of target instances when it is put on a target
end;

o the multiplicity of the enan(e) C Int which specifies the number of target instances that may be
associated with a single source instance through the association when it is put on a target end;

e the navigabilityis Navigable(e) : Bool which specifies whether traversal from a source instance
to its associated target instances is possible when it is put on a target end;

¢ the aggregation propertylggregation Kind(e) specifies whether the end is an aggregation with
respect to another end, the possible values of it incluglg-egate, composite andnone;

e the changeabilityhangeability(e) which specifies whether an instance of the association may be
modified from another end, the possible values of it inclfidezen, addOnly or changeable;

e the orderingordering(e) which specifies whether the set of links from the source instance to the
target instance is ordered when it is put on a target end, the possible values of it ineludéered
andordered,

e atarget scopeacope(e) which specifies whether the target value is an instance or a classifier;

e visibility(e) specifying the visibility of the end from the viewpoint of the class on the other end,
possible values argublic, private andprotected.

A generalization is a relationship between a superclass and a subclass, in which objects of the subclass
are substitutable for objects of the superclass.

Definition 3.8 A generalizatiorC; <— C is a directed relationship between two classes: a subclass
Cs and its superclas€;.

A dependency is arelationship from a client to a supplier which states that the client requires the presence
and knowledge of the supplier. According to [5], all relationships, including association, generalization

are kinds of dependencies. Different stereotypes can be defined to represent shades of dependencies, and
each stereotype has its own semantics. Therefore, it is almost impossible to give a precise semantics to
such a relationship. Its semantics is decided by the kind of dependency being used by the users. In this
paper, we only focus on the other kinds of relationships and discuss their semantics in the following.

A well-formed class diagram should satisfy a set of well-formedness rules being given in [45]. A RSL
representation of the formal syntax and well-formedness rules of UML class diagrams can be found
in [15]. In the following, we always assume that the class diagrams are well-formed if not explicitly
specified.
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Coalgebraic Semantics of Class Diagrams 9

Student
Student —name: String
name: String —ID: Number
Student ID: Number +getname( ): String
transfer() +getID( ): Number

+transfer(Department): Student
—changename(String): Student
+student(String, Number): Studer

(1) (2) (3)

Figure 1: Different representations of a class in UML

4 Coalgebraic Semantics of Class Diagrams

4.1 Semantics of Classes

In UML, a class is a description of a set of objects that share the same attributes, methods and rela-
tionships. Every object of a classC in a system has an identifiéd, which is unique in the sys-

tem. We denote the set of identifiers &6 Therefore, an objeat : C is represented as a triple

o = (idy,Uc,ac : Uc — F(Uc)) whereUg is the state space of the cla€s and F' is a functor
encapsulating a signature of attributes and methods. During the lifetime of an object, its local state
may change over the state spdég, but its identifierid,, state spac&¢ and transition structurec

remain the same. Therefore, we can use a(pdiy, «) to present an objectat a particular state.

In different development phases, either or both of the attribute and operation compartments may be
shown when needed and omitted in other contexts. See Figure 1 as an example for a class with details
suppressed, details in analysis-level and in design-level.

For the most abstract form of class representation in which all the details are suppressed, a class is
interpreted as a set of objects, which assigns a type to the class. For example, the first class in Figure
1 defines a clasStudent as a setStudent. An object of this class : Student is interpreted as an
element of this set € Student. Such a set is called thabject typeof the class [1].

Using the form of semantic function, we can define the semantics of a class with only one name and
details suppressed.

s[c]2c

whereC' is a set of all the objects of the class. Every element ihas an identifier and a hidden state
space of possible states and will be instantiated by a coalgebra in later stages of development when the
attributes and methods of the class are specified.

At the analysis level of software development, the type of attributes and methods of a class may be shown
in the class diagram. See Figure 1 (2) as an example. From the object-oriented perspective, classes are
built around a hidden state space, so we have the following definition:
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Coalgebraic Semantics of Class Diagrams 10

Definition 4.1 (coalgebraic class signaturef coalgebraic class signatur® is a pair (X,a : X —
F(X)) whereX is a carrier set corresponding to the state space of the class,faila polynomial
functor which is a product of a finite set of functdrs= [ [, F;. o : X — F'(X) is used to represent the
types of the attributes and methods in the class. It is also sufficient to give theXpdit) to represent
the class signature as an abbreviation.

Consider Figure 1 (2), we can get its signature as a(gditdent, F') whereStudent is the carrier set,
andF(X) = String x Number x XPepartment 1 n this exampleX corresponds to the carrier set
Student. Thus the sequence of its methods (attributeg)yne, I D, transfer) can be identified with a
function Student — F(Student).

Therefore, a UML clas€ in this stage gives a class signatufé F') and can be interpreted as a category
of coalgebras of such a functét.

S[[C|at1:Al,...,atm:Am,opl:Bl—>C’><D1,...0pn:Bn—>C><Dn]]éCoalgFC

whereFc is an abbreviation for the functdfc : X — [],< <, Aj X [T1<icn(X x Di)P. Coalgp,
is the category of--coalgebras (as objects) af@d-homomorphisms (as arrows)

Note that here we do not distinguish between attributes and methods, like e.g. in Eiffel. [24] shows that
both attributes and methods can be represented by functors in a unified form. The difference between
them lies in the form of the functors being used. For the attributes, the associated functor is a constant
functor which does not change the state space. For methods, the associated functor does affect the state
space of the class. Moreover, we do neither give the visibility description of attributes and methods,
nor their implementation details. In fact, these should be given at a later phase of development, as the
third class in Figure 1 shows, or specified in other diagrams (such as statechart diagrams). The attributes
such aswame should be private and can not be used or modified outside the class (as shown in the third
class in Figure 1), that means, they are not same as the ordinary observers because they can only be
used inside the hidden state space. Therefore, we can get the intuition of separating the observers of a
class into external and internal parts to represent the public view and private view of the class separately.
Moreover, there will be another view from the perspective of generalization: protected view, which
includes the methods that can be accessed by the class and its subclasses. This separation is very useful
for the designer of a system, and will be discussed below.

Now we turn to such classes at the design level. UML provides three kinds of visibility for the attributes
and methods of a class at this phase: public(+), protected(#) and private(-).

The public view of a class describes its public methods by which the state space of the class can be
visited and modified from outside. Therefore, we can get the following definition of an external class
signature.

the exponentiaK'¥ represents the set of arrows frdmto X .

2Note that here we make a simplification and only use polynomial functors for signatures of the methods. For binary methods
or more generallyp-ary methods which takes both covariant and controvariant appearance of the object type of the class, a
framework is provided by Hendrik Tews which uses extended polynomial functors. Readers can use [61, 62] as references.
Another point is that the category is a subcategor@efin Section 2
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Student
name : String
changename(n:String) : Student - |-~ { P kit
Stult_j_(_e!”lnt(n:String,i:Number):Student -F---- post: Student(n,i).name = n and
Student(n,i).ID =i

Figure 2: Constraint

Definition 4.2 (external class signatureAn external class signature is a pdiX, F,,;) in which:

e X describes the carrier set of the class;

e F, is afunctor on the state spacg, being used to represent the public view of the class.

As an example, the external class signature of the third class in Figure 1 is thespadent, F,,;,)
whereF,,,(X) = String x Number x X Perartment The public methoditudent is used for creating

new objects of this class. It can not be used as a componéhi,pibecause it is not an observer but

a creator (usually being called constructor in OO method). Methods like this can be modeled by the
concept ofinitial statein the state space of the coalgebra which is used by Jacobs in the definition of the
semantics of objects and classes [23, 24].

A user of a class is not interested in the details of the class’s internal implementation, but only in the
behavior it can provide. In fact, this is why the coalgebraic description is appropriate for classes. In
coalgebraic approaches, the state space of a class is dealt with as a black box which can only be accessed
via specified operations which represent the functions of the class. However, from the developer’s per-
spective, what is inside the state space of a class also should be considered as well as the public part of
the class in order to implement (additional) methods of the class. Similarly as the definition of external
class signature, we can get the definition of signat(hsF,,;) and(X, Fy.,) whereF,,; andF,,, are

functors for private and protected views respectively.

Now we can get the definition of (internal) class signature which describes the internal structure and
behavior of classes as follows:

Definition 4.3 (internal class signature)An (internal) class signature is a paftX, F') where X is the
carrier set being used to specify the class state spaceraisch functor which is the product of functors

F = F,u, x Fyro x Fpr; being used to represent the types of all the attributes and methods provided in
the class.

In fact, a class signature is not enough for specifying a class in UML (especially in the later phases).
In a class diagram, the values of some attributes and the behavior of some methods may be specified
explicitly by constraints. The concept of constraint allows semantics of some modeling elements to be
specified linguistically. UML provides a constraint language OCL [45] to describe such constraints. The
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constraints in OCL are invariants and pre- and post-conditions which can be used to state conditions that
must be satisfied for any models.

The constraints on a class in UML can be represented as a set of fon8iase Moss [44] first realized

that the shape of a coalgebra (its interface functor) determines a logical modal language, a lot of work on
the connection of coalgebras and temporal logic followed [27, 51, 35, 36]. We can also use the associated
temporal operators in the formulasdnnaturally and thus every axiom can be a formula. However, first-
order logic is enough here. For example, the constraint for methadgename in Figure 2 can be
translated to the following axiom:

Vs : Student,n : String.(—(n = name(s)) = name(changename(s,n)) = n)

The constraint for metho8tudent in Figure 2 is used for specifying the initial attribute value of newly
created objects of this class. Such conditions for newly created objects also can be represented as a set
¥ of formulas. As an example, the constraint in Figure 2 is described as:

Vn : String, i : Number.(name(student(n,i)) = n A ID(student(n,i)) = 1)

In the semantic definition of such classes in UML class diagrams, we follow the classic work of Jacobs
and others [23, 24, 25, 50] on the coalgebraic semantics for classes. Every class in a UML class diagram
is taken as a coalgebraic specificatifpec.

Definition 4.4 (class specificationf class specification is a tuplé’, ®, ¥) in which:

e [is afunctor on a local state spac¥€, being used to represent all the attributes and methods of
the class;

e & is a set of axioms that gives the constraints to the functors for the attributes and methods to
characterize the properties of the class;

e U describes the properties that hold for newly created objects.

A model (class implementation) of a given class specificafipec = (F, ®, V) is a triplec = (U, « :
U — F(U),uq), whereU is a carrier set interpreting the state space of the clas$/ — F'(U) is the
transition structure which satisfies all the properties give®landug € U is an initial state satisfying
v,

The semantics of a concrete (not abstract) ctdds a UML class diagram is defined as the category
Coalg(Spec) of models of the corresponding coalgebraic class specific&jssc together with the
initial state preserving homomorphisms between them.

S[C] 2 Coalg(Fc,®c, ¥¢) if isAbstract(C) = False
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Student
Visitable
* 1
+getname( ): String Department
+needTransfer(Department): Boolean O
+transfer(Department): Student Transferable
7 <<use>>
<<interface>>
Transferable

+needTransfer(Department): Boolean
r+ransfer(Department): Student

Figure 3: Interface

where(F¢, ®c, ¥c) is the specification of clags and the boolean value functiéaAbstract specifies
whether the clas€ can be directly instantiated. This category is a subcategaBgadefined previously.
Its objects are

Obj(COalg(FC,CI)C, \I/C)) = {C = (Uc,ac :Uc — Fc(Uc),uQ S Uc) ‘
(c E®c) A (cu E Ye)}

wherec = & means that all the axioms ¢ are satisfied by coalgebraandc, uy = ¥ ¢ means that
the properties i ¢ are satisfied by the initial statg of ¢. Their formalization is immaterial for the pur-
poses of the present paper. The arrows in the category are initial state pregesirmgnomorphisms.

An interface in UML class diagrams is the description of the externally visible behavior of a class without
specifying the internal structure. Usually, each interface contains only a part of the operations of a class
and no attributes. Figure 3 is an example of an interface. The inteffacsferable specifies a part

of the behavior of clasStudent which can be viewed by clagdepartment. The following definition

shows the specification of a class interface.

Definition 4.5 (class interface specificationjA class interface specificatiddpec,,, of a class specifi-
cationSpec = (F, ®, V) is a pair (Feyt, Peye) In Which:

e [, is afunctor on the state space$pec, being used to represent an interface of the class;

e &, is a set of axioms that gives the constraints to the fungtgy to characterize the externally
observable properties of the class interface;

Given an interface specificati®@pec,,; = (Feyt, Pest) Of Spec, foramodek = (U, a0 : U — F(U))
of Spec, a corresponding interface i, = (U, aeyt : U — Fert(U)) Which is a restrictiornce,: =
¢ | F.;+ and satisfies all the properties given®y;.

We can find that Definition 4.5 is somewhat similar as Definition 4.4, but there is no conditions for newly
created objects. This is because “an interface is formally equivalent to an abstract class . .. "[45] and we
can not create an object from an abstract class.
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In the previous definitiond;,,; is used to represent an interface of a class, whitkescribes the structure

and behavior of the class which is useful for the designer and programmer of the class but may not be vis-
ited from outside. The following definition describes the relationship between these two specifications,
which also gives the interpretation of encapsulation.

Definition 4.6 (encapsulation)Let Spec = (F,®, V) andSpec,,; = (Feut, Pest) be a class speci-
fication and one interface specification of this class respectively, then an encapsulatioffranto
Spec,,, is a set of restrictiong’ = (id, 5) between each implementation $Hec and its restriction
underSpec,,,, where the natural transformatiofi : F' = F,,; is a projection fromF to F,; defined
as follows:

p= ] (m:F—F)

Hi Fi=Fexzt

such that for allp € ®.,; andc = (U, a, ug) being a model o8pec, ¢ | ¢.
From Definition 4.6 we can get the following proposition:

Proposition 4.1 If there is an encapsulation fro®pec = (F, ®, ¥) to Spec,,; = (Fext, Pest), then
Ceat = (Uyeqr : U — (B o F)(U)) is an interface for every model= (U, : U — F(U),ug) of
Spec.

The relationship of a clagsand its interface.,; can be expressed by the following commuting diagram.

U—S1 FU)

ak

Feact(U)

Bu

Intuitively, the transition structurer, o’ for two implementations = (U, : U — F(U),up) and
d = U, d :U — F(U'),uy) of the same class specificati®pec = (F, P, ¥) should be equal.
Therefore, we have A-homomorphisny between them:

U / U’
F(O) 75 ()

and f(ug) = uy.
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The identity function on 8pec-model is always &'-homomorphism preserving initial state, and the
composition of twoF-homomorphisms preserving initial state is stilFahomomorphism preserving
initial state. Thus the models of a specificatipec = (F, ®, ¥) (which areF-coalgebras satisfying
andV¥) together with theF'-homomorphisms preserving initial state forms a category, which is denoted
by Coalg(Spec). This is a subcategory of the categ@y- for the restriction ofb and¥ on the possible
state spaces.

Definition 4.7 (semantics of a clasdrvery class in a UML class diagram is a coalgebraic specification.
The semantics of a class in a UML class diagram is the cateGorylg(Spec) of models of the corre-
sponding coalgebraic class specificati®pec together with the initial state preserving homomorphisms
between them.

Remark. From Theorem 2.5 in [54], we know that the graph of the homomorplfidmetween any

two models of a same class specification is a bisimulation between them. Thus we can say that they are
bisimilar (observational equivalent). That means, we can have different implementations for one class
specification given by a UML class diagram and they are not distinguished from outside and one such
implementation can be used instead of another.

Now we can get the following semantic function for the items in UML clakses
For attributes, the default syntax is:
visibility name: type-expmultiplicity ordering = initial value{property-string
The semantic function of an attribut® in classC is defined as follows:
S[v At : T [m] = i{p}] 2 {At : Uc — Fat(Uc) | S[v] A S[At[m]] A S[At = i] A S[At{p}]} (1)

whereFy, is the functorF s, : Uc — P(S[T]) whereP is the powerset functor used for multiplicity of
the attribute (can be dropped whenever the multiplicity is exactly one)y édsed for visibility of the
attribute At:

b S[U:+]] éFAt g Fpub,
A
s S[[’U:#]] :FAt ngro;
A .
® S[[U: _]] :FAt - Fpria
The multiplicity part shows the multiplicity of the attribute, which can be omitted, in which case it is
exactly one [..1). The semantic function for multiplicity of an attributé in classC is:

S[At[m]] £ V(Uc, ac,uo € Ug) € Obj(S[C]), Yu € Ug.card(At(u)) = m

3We assume that for a data type S[77] 2 [T7, [T7] is the set which includes all the values of the type.
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and if the multiplicity is specified as a range

S[At[L..K]] £ ¥(Uc, ac, us € Uc) € Obj(S[C]), Yu € Uc.l < card(At(u)) < k

The additionabrdering property is meaningful if the multiplicity upper bound is greater than one. The
values may be unordered or ordered, the default value is unordered:

S[At[l..k ordered]] 21>1AVuE Uc.At(u) is an ordered set

The initial value is used for initializing the attribute of a newly created object, it can be omitted. Its
semantic function is:

S[At = i] 2V (Uc, ac,uo) € Obj(S[C]).At(uo) = i;

The optionalproperty stringindicates property values of the attribute, like changeability. We give the
semantics of the changeability and scope properties of attributes as follows:

o S[At{frozen}] = V(Uc, ac,up) € Obj(S[C]),Yu € Uc.At(u) = At(up);

[0}

o S[At[l..k[{addOnly}] & k > | A¥(Uc, ac,up) € Obj(S[C]),Yur,us € Uc.(uy °S us) =

At(ul) C At(UQ);

o S[At{changeable}] = V(Ug,ac,uy) € Obj(S[C]).Tui,us € Uc.ur # uz A At(uy) #
At(UQ);

o S[A¢] 2 V(Ug, ac,ug) € Obj(S[C]), Vo1, 02 be objects of clas€, (u1,us) is a state in the
state space af; X 02.S[At](u1) = S[At](u2);*

o If the scope of an operation is instance (the default), then the semantic function is as (1) shows:
V(Ugc,ac,ug) € Obj(S[C]),Yu € Uc.At(u) € S[T7].

For operation compartment of a class, the default syntax is:
visibility naméparameter-lis} : return-type-expfproperty-string
The parameter-list part is a list of formal parameters, each element is specified with the syntax:
kind name type-expression- default-value

wherekindis in, out or inout, with the defaulin if absent. The semantic function of an operatigmin
classC is defined as follows:

S[vOp(iy: I1,... iy : Iy,out 01 : O1,...,0ut oy, : Op,,inout by : By,...,inout by : By) : A{p}]

£ {Op : Uc — Fop(Uc) | S[vl A S[Op{p}]} (2)

“which is the UML notation used for representing that the scopétds the classifier and each value contains a reference to
the target Classifier itself but not to an Instance of the Classifier. A classifier scope attribute corresponds to the static attributes
in object oriented programming languages such as C++, which means that the value of this attribute is same for all the objects
of the class at the same time. In general, such attributes should be private, shared among a set of objects and with the guarantee
that no other objects can have access to that attribute.
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whereFy,, is the functorF, (Uc) = Bh(Uc x S[O x B x A])SI/*P representing the signature of the

methodOp, I =1I7"_, I;, O = II""., O;, B = HleBi are used for the types of the input, output and inout
parameters respectively is the type of the returned valu&h is the behavior monad presenting the
behavior pattern of the method, ands the visibility of the method, which is similar as in the semantics
of attributes:

b S[[v:—i_]]éFOngpub;
A .
b S[[U:#]]:FOngprw

A
b S[[U:_]]:FOngpri;

We now consider the semantics of the property-string which specifies the property of a method. In the
following, we give the semantics of the query and scope properties.

o S[Op{query}] £ ¥(Uc,ac.up) € Obj(S[C]),Yu € Uc,p : I x O x B,Op(u)(p) = (u,a)
wherea € S[O x B x AJ;

o If the scope of an operation is instance (the default), then the semantic function is as (2) shows;

e Ifthe scope of an operation is the classfjeéhen the corresponding function is not on any instance
of the class, but on the class, and does not need to be invoked for a particular object of the class.
Suppos&p is a classifier scope operation in cl&sthen it can only change the static attributes
of this class.

S[v Op(pl) : A{p}] 2 S[v Op(pl) : A{p}]

which satisfies that at any possible state Uc of an objecb of classC, pl be a list of parameters,
v’ = m1(Op(u, pl)) be the successor statewafter the execution of the classifier scope operation
Op, then for all instance scope attributie, At(u') = At(u).

Theorem 4.1 The execution of a static operation in claSskeeps the bisimulation relationship between
two objects of this class.

Proof: The proof of this theorem is easy. Suppose for two objectsndo, of classC, = is a bisim-
ulation relationship between them. Let, us be two states corresponds to the two objects separately,
w1 ~ ug, u, is the successor state @f for : = 1, 2 after the execution of a classifier operatiop, then

we have for all instance scope attributés, A;(u)) = Ar(u;),i = 1,2, soAr(u)) = Ar(uf) because
Ar(uy) = Ar(ug). From the semantics of classifier scope attributes, we can know that for any classifier
scope attributelc, Ac(u;) be same for all objects at the same time. Therefgorando, are equivalent

for all observations after the execution@p.

5Such an operation corresponds to a static method in C++.
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.Student , takecourse P« Course
name: String —————|name: String
studentID: Number | student course | coursel D : Number|

Figure 4: Association

This theorem simplifies the construction process of bisimulation between objects similar as that we
discussed for components in [59]. We only need to consider the instance scope operations of a class.
The result can be very useful, for example, it can reduce the complexity of verification of properties for
a system in the process of model checking and improve the efficiency of test case generation in testing.

The propertiessAbstract, isLeafandisRootwhich are related to inheritance of classes will be discussed
in section 4.3.

Finally, we will show the semantics for interfaces. From previous discussion we can know that an
interface is a collection of operations that specify a service provided by a class (in UML interfaces can
also be used for specifying services of components). Therefore, an interface must be attached to the class
that realizes the interface. So the semantic function for an inteffatelassC is:

S[<< Inter face >> 1] 2 {I:Uc — F1(Uc) | (Uc,a:Uc — Fc(Ug),up) € Obj(S[C])}

whereF1 C F¢ describes the operations to represent the behavior of the interface.

4.2 Semantics of Associations

An association in a class diagram describes the connections among objects in a system. It may have
two or more association ends. In this paper, we first take into account the binary association. The
interpretation for n-ary associations is given in section 4.2.8. Figure 4 shows an example of association.

SupposeSpecy and Specy are two class specifications of cladsandV in a class diagramaA is

a binary association between them.= (U,«) andd = (V,3) are objects inCoalg(Specy) and
Coalg(Specy) respectively, then associatigx which connects the two coalgebras (classes) can be
interpreted as a state spagg@ C P((Id x U) x (Id x V)). Identifiers in the sefd are necessary

to distinguish objects of the same class being in the same state. An eleraesty is a state of the
association which records a set of object pairs being linked by the association simultaneously at the state
s. Every pair of objects is called a link between them. The stattso provides a global view for the

whole system consists of the two classes associatéd by

Every association has three basic components: a name, the role and the multiplicity at each of its ends.
The semantic for an association is interpreted by the corresponding observers in each of the classes being
related by the association. We will give the semantic function for associations as follows:

For an associatioA between clast) andV in a class diagram (sometimes the association narse
omitted), Specy andSpecy are two class specifications corresponding to the two classes. The role
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names on the two ends aig andv4. The multiplicities on the two ends ane;; andmy, which are two
sets of non-negative integers. Then the semantics of an association is defined as a pair of the coalgebraic
observers:

(ug: (IdxV)—=PIdxU),vq:(IdxU)—PIdxV)) (3)

whereU andV are the statespaces of the coalgelildsy : U — Fy(U),up) and(V,8 : V —
Fy(V), v9) which are the objects in the categories corresponding to the semantics of tlaases.

In fact, for an association which is given as the pair of observers in (3), we can find that they are observers
on objects of the two involved classes and do not change their states. Therefore, they can be treated as
attributes in the corresponding classes. So the attributes of a class can be separated into two categories:
the value attributes which corresponds to the attributes inside the class amdf¢enceattributes for

the associations of the class.

In order to represent the association between two classes, the two coalgebraic observers must be related
as the following law:

Law 4.1 For all objectsoy;, oy of classed) andV, we have

ou € usloy) < oy € valoy).

So the semantic function of an association is given as the pair of observers in (3) which satiafying
4.1

S[UA—vaV] £ {(ua,va) | Lawd.1}

The UML specification [45] states that each association end has a multiplicity constraint (may be un-
specified in an incomplete model) which is "a subset of the open set of non-negative integers”.

The multiplicity property of an association end which specifies how many objects of a class at the given
end can be linked with a single object of another class can be described by the cardinality restriction of
the range sets of the corresponding coalgebraic observer. For example, the multigitiyeStudent

end in Figure 4 means that one course can be taken by any number of students and the multgalicity

the Course end means that one student can take any number of courses. There is no restriction on the
upper bound of the multiplicity. So we can represent these conditions as:

Ve : Course.card(student(c)) >
Vs : Student.card(course(s)) >

whereCourse and Student represent the set of courses and students at any systenmsstake;t and
course are the observers corresponding to the associtdkecourse
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If the multiplicity is presented as a pdir..ub wherelb andub correspond to the lower bound and upper
bound separately, then such an association will be interpreted as:

S[[U”AX e wVI 2 {(ua,va) | Law4.1 AVoy : Id x U.card(va(or)) > b A card(va(oy)) < ub}

wherev 4 is the role name on the association en¥aide.

In general, the multiplicity at an association end can be stated=adb,..ub1, lbs..ubo, . . ., lb,..uby,,
which is a sequence of pairs, then the association will be interpreted as:

S[U¥4 — vaV] é{(UAﬂ)A) | Law4.1A

s

Yoy : Id x U. \/ (card(va(oy)) > 1b; A card(va(oy)) < ub;)}

i=1,...,n

From the discussions above for Figure 4, we can find that once the multiplicity is given explicitly in the
diagram, the semantic function is:

S[U, o v, V1 S{(wa,va) | Lawa.1 A (Vou : 1d x U.(card(va(ov)) € my))A
(Voy : Id x V.(card(ua(oy)) € my))}

There are a number of properties can be used to model the details of a system, such as navigation,
qualification, and constraints on associations. We will discuss them in detail in the following separately.

4.2.1 Navigation

For a plain association such as that in Figure 4, it is possible to navigate from objects of any class
to objects of the other. In other words, navigation across the association is bidirectional. However,

sometimes the navigation is limited to just one direction. See Figure 5 as an example which describes
the services of an operation system. Givdiisr, the correspondin@assword objects can be found,

but given aPassword, the corresponding/ ser can not be identified.

User Password
owner key
{ ordered}

Figure 5: Navigation

For an associatioA between classdd andV in a class diagram, the navigation is represented as
V. The other conditions are the same as in the definition of general associations. Then the semantics of
navigation is given as:

S[U—7a, V] 2 {op: Idx U — P(Idx V) | Yoy : Id x U.card(va(oy)) € my}

my
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1 .
UserGroup = * User Passwor d
+user +owner —ke

Figure 6: Visibility

4.2.2 Ordering

Usually, an observer for an association yields an unordered set of objects. However, sometimes ordering
constraints are added to association ends to state whether the objects related to a single object at the
other end of this association have an order that should be preserved. In the example of Figure 5, the
Passwords associated with & ser object may be kept in a least-recently used order and be marked as
ordered.

In fact, the ordering constraint is “a performance optimization and is not an example of a logically
ordered association” [46]. The multiplicity must be greater thaw that the objects being connected

to one object at another side can form an order. The semantics of an ordered association is, that a total
order< must be considered on the set of observed objects (without duplicates):

S[Uta — va orderedys] é{(uAﬂ)A) | Law4.1 A (Voy : Id x U.(card(va(oy)) € my))A

my A Mo
(Voy : Id x V.(card(ua(ov)) € my)) AVn € my.n > 1A
3 <:V x V.isTotalOrder (<)}

where for an object;; of classU, v4(oy) is the set of objects of clasé that can form a sequence
according to a particular order. Note that this is a formal definition of the “is an ordered set” property
previously shown for attributes.

4.2.3 Visibility

The visibility of an association end can be specified as that of an attribute or method in a class by
appending a visibility symbol to the role name of the end. See Figure 6 as an example.

There are three levels of visibility in UML for association end. The default kind is public, which means
other classes may navigate the association and use the role name similar to the use of a public attribute.
Private visibility indicates that only the class at the other end may navigate the association and use the
role name, and objects at the end are not accessible to any objects outside the association. Protected
visibility means that only descendants of the class at the other end may access the association and use
the role name. Since the semantics of an association is given by attributes in the classes being related,
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the semantic functions for visibility of association end are similar as those of the visibility of attributes:

S[+ua] 2 up € Fpup
A
S[#UA]] =Uyg € Fpm

A
S[—UA]] =Uupg € Fpm'

4.2.4 Changeability

The changeability property of association ends is similar to that of attributes. The default changeability
is changeablén which the links can be added, deleted and moved and no indicator is needed to be given
in the diagram. If the changeability is markedfaen then no links may be added, deleted or removed
from an object since its creation and initialization. If the changeability is markad@®nly then links

may be added to an object, but may not be deleted or modified.

The semantic function of changeability for an association end is defined as follows:

SHUUAKUA frozenv]] é{(’UJA,'UA) ’ Law4.1A
Yoy = (idoy,,v) : Id x V.ri(ua(oy)) = m1(ua(idoy,,v0))}

wherev is any possible state of objest, vg is its initial state and
u VA n A
S[[UmAUKMAv Aoty S{(uy,v4) | Lawd.1 A (Voy : Id x U.(card(va(oy)) € my))A
(Voy : Id x V.(card(ua(oy)) € my)) A card(my) > 1A
Yoy = (idpy,,v) : Id x V.ri(ua(oy)) C m1(ua(idoy,,v"))
for any successor staté of v}

Here the operation; is the projection from a pair to its first component:(a, b) = a. The result of the
application ofr; to a set of pairs is the set of results by applyingo every element.

4.2.5 Association Classes

UML allows an association to have its own attributes, which is represented by an association class. An
association class is an association that is also a class. It defines a set of features to the association itself
but not to any of the classes. Generally, we can decompose an association class into a class and two
one-to-many associations to represent it. See Figure 7 as an example, we can describe the association
class by the clas3ob and the two associatiofmasandfor. And becauséasis one-to-many anébr is
one-to-one, we can get the result that the cardinality of the range spitsvider, ownerandjobof can
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Department |1 assignedto_1.* Professor
department ' professorg
Job
description
dateHired
slay
Department |1 assgnedto 1. Professor
department  professorg
provider 1 1_“owner
hes for
jobs 1. 1 ~"jobof
Job
description
dateHired
slay

Figure 7: Representation of an association class

only bel. Therefore, we can flatten the powersets in the ranges and get the observers equally as follows:

provider: Job — Department™;

jobs: Department — P(Job)*;

owner: Job — Professor™;

jobof: Professor — Job™ (4)

The result of the observers of associatimsignedtat a specified system statecan be got from (4) as
follows:

department(p, o) = provider(jobof(p,o),o)
professors(d,o) = {owner(j,o) | j € jobs(d,o)}

The semantic function of an association class is defined by the semantics of the class together with the
semantics of two one-to-many associations as follows:
A
S[[U}%‘;IA—C wo V]I ={(c,assoy, assoy) | c € S[AC]A
assoy € S[UTAY— U AC] A assoy € S[ACY — [ V]A

Yoy : Id x U,oy : Id x V.oy € vy(oy) < Fla: Aoy =vac(a) Aa=ay(oy)}

4.2.6 Qualification

An association can be qualified. A qualifier is an association attribute or a tuple of attributes whose
values partition the set of objects related to an object across an association. See Figure 8 as an example
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Product Product L
Catalog Code

Product

Figure 8: Qualification

of qualification where we model an association between two cldseductCatalog andProduct.

In the context oProductCatalog, we have £roductCode which identifies a particuldProduct.

In this senseProductCode is an attribute of the association. Given an objecdPobductCatalog

and given a particulaProductCode, we can navigate to zero or one objectfafoduct. Therefore,

we can interpret an association with a qualifier as an association class similar as the previous section and
interpret the qualifier as an attribute of the class.

Therefore the semantic function of qualification is defined as:

S[U(Q—V] = S[UGVI

4.2.7 Aggregation and Composition

A binary association may represent a whole-part relationship in UML, which is calledgnegation

Simple aggregation is a kind of association which is “entirely conceptual and does nothing more than
distinguish a ‘whole’ from a ‘part’.” [5] anddompositioris “a strong form of aggregation, which requires

that a part instance be included in at most one composite at a time and that the composite object has sole
responsibility for the disposition of its parts. ...” [46]. Figure 9 shows an example containing one
aggregation, two composition and one ordinary association which is taken from [17]. Every paper has
one or more authors, exactly one abstract and one or more sections, and can be associated with at most

one conference.

In fact, the definition of aggregation and composition via meta attributes instead of using two meta classes
specifying their own characteristics separately in [45] and the next version of UML in [46] is argued to
be unclear and dubious by many researchers [20, 8, 56]. Brian Henderson-8ellensave done a lot of
comprehensive work on analyzing the precise semantics of different kinds of WPRs (whole-part relation-
ship) [20, 8]. Contradiction in the definition of aggregation about whether the parts can be removed from
the whole before its death is noted explicitly in [8] and a revised metamodel of relationship is introduced
where the WPR is defined independently from associations, and aggregation and composition forms two
disjoint subclasses of WPR.

According to [8], a WPR must be asymmetry at instance level (an object can not be directly or indi-
rectly a part of itselfo # (0,—)). There is at least one property of a whole object is independent

of its parts’ properties and at least one property of the whole object whose value is determined by its
parts. The distinction between aggregation and composition is made clear by what are called “Secondary
Characteristics” in [8, 20], such as shareability, seperability/mutability, lifetime dependency, existential
dependency, and so on.
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Section 4| Paper Conference

Abstract

Figure 9: Aggregation and Composition

An object in an aggregation can be used as part of more than one objects. However, in a composition, an
object may be a part of only one composite at a time.

S[U% 06— ¥4 V] £{a|a € S[UY — %4 V] A (mp > 1=
Jv € V. 301,09 : Id x U.((u1,uz) is a state oby X oaA
ur = (v, =) Aug = (v, -)))}
S[U% 4— 4 V] 2{a|a € S[UY, 06— %A VA0 < my < 1A
Vo : Vi(Fuy,ug : Uy = (v,—) Aug = (v,—)) =
u1 = ug is the state of the same object of cléss}

4.2.8 N-ary Association

An n-ary association is an association among three or more classes. In this section, we establish an
approach to semantics for such associations which is a generalization of the binary case. An instance of
a n-ary association is an n-tuple of objects of the respective classes.

The multiplicity of an n-ary association is less obvious than binary multiplicity. The multiplicity on one
end represents “the potential number of instance tuples in the association when the other N-1 values are
fixed” [45].

In order to illustrate our approach, consider the ternary association in Figure 10 without the association
classRecord, which shows the record of a team in each season with a particular goalkeeper that may
be traded during the season and can be in different teams. This association is denoted by the following
observations wherEear, Player andTeam are the corresponding set of objects: :

team: Year x Player — P(Team);

season T'eam x Player — P(Year);

goalkeeper Year x Team — P(Player);
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season

* *

Team Player
team \/ goalkeeper

Record
goalsfor
goalsagainst
wins
losses
ties

Figure 10: An n-ary Association

and all of them must satisfy the multiplicity constraint given in the diagram.

Our approach is based on a decomposition of the association into three binary associations, as shown in
Figure 11. Each of the three new binary associations links one of the classes withrtesian product
class of the others.

Team Year-x-Player
team
Year Team-x—Player
season
*
Player Year-x-Team
goalkeeper

Figure 11: The ternary associati®ecord being decomposed

A Cartesian product clasf[, .., C; is an auxiliary class, whose objects arguples of objects of

its component classd8;. The semantics of such a tuple of objects is the parallel composition of the
corresponding coalgebrase S[C;]. More precisely, parallel composition is defined by the free product
operatorg (see [60] for its formal definition). Thus, formally we have

S H Ci] 2 Coalg

1<i<n

whereCoalg is a category with objects defined as free products of coalgehdasoted b@lgign Ciy
whose action is the parallel composition of the component coalgebras.

The multiplicity constraints on the observations are:

Yy : Year,p : Player.card(teamy,p)) > 0;
Vt : Team, p : Player.card(seasoft,p)) > 0;
Yy : Year,t : Team.card(goalkeepefy,t)) > 0;
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Y ear
season |1
1 * Record * 1
Team Player
team goalsfor goalkeeper Y
goalsagainst
wins
losses
ties

Figure 12: The decomposition of the ternary associdienordas an association class

If an n-ary association has its own attributes, such as the élassrd in Figure 10, we can decompose
it into three binary associations between the involuedasses and the association class as Figure 12
shows and get three pairs of observations.

4.3 Semantics of Generalization

Generalization in a class diagram describes the inheritance relationship between a general class (super-
class) and a more specialized class (subclass). The fact that &xlasieng a subclass & in a class

diagram is represented @5 <+— D. We also say thdD inherits fromC. If D inherits fromC, then all

the public and protected attributes and methods iten be found iD, either same as in the superclass

or being overloaded. Moreover, all the axioms and the creating proper¥gsiould be satisfied i,

and may be strengthened.

If there is such an inheritance relationship betw&emand C, a forgetful functorG : Coalg(D) —
Coalg(C) between the corresponding category of models can be derived as shown in [23].

One problem in generalization is the need of type coertions when invoking methods defined in a super-
class for subclass object. Methods defined in a superclass as public or protected can be invoked directly
in the inheritance hierarchy. If we use the carrier set of a class as the interpretation of its type, then the
carrier set of the subclass is the subset of that of its superclass. Therefore, we can use an injection map
between them to describe the reuse of a method defined in a supetg/pss the following diagram

shows:

mp
UyxB——U,xC
L X id L X id

U, x B2 U, x C

If a method in a superclass is overloaded in its subclass, we only need to define it as a new method
in the subclass with the same name as the method in the superclass being overloaded and appropriate
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type of parameters and result. In fact, overloaded methods are “more germane to implementation than to
specification” [12], so for simplicity, we will not discuss overloading in the following since class diagram
is mainly used in the analysis and design stages of system development.

Let (Fpubs Fpros Fpri) @and(F,, F,, Fy,.;) be the functor tuples representing the signature of the pub-
lic, protected and private parts of a supercl@sand its subclas€’ respectively. By definition of the
keywordspublic, protected andprivate in [46], itis obvious that al},,.;, (F}0;) can be found as com-
ponents oﬂflgub (F}.,) (that means, all the public and protected attributes and methods in the superclass
can be found in its subclass, with identical or overloaded definition. Moreover, subclasses may have
additional public and protected methods). Consequently, the two projegiions F;ub ~ Fuy and

Dpro * Flgm ~+ F,ro (s natural transformations) exist.

We useFpup,|cr and Fy,,| ¢ to represent the methods in classcorresponding to those i@, then we
can get the projections,,, : F , = Fpup andpp,, : Fzgm = Fpro

pub
Ppub = 11 (7 : Fzgub - Fpubi|C/)
H Fpubi:Fpub (5)
Ppro = H (7'('2' : F;/n"o - FPTOi’C’)
H Fproi:Fpro

Now we turn to the inheritance between classes. The following definition gives a special kind of mor-
phism, callednheritance morphisgrbetween a class and its superclass.

Definition 4.8 (inheritance morphism) Suppose class specificati®pec’ inherits fromSpec, and
consider two coalgebras and ¢’ as models oSpec and Spec’ respectively. Then an inheritance
morphism fromt’ to c is defined as a tuplé&, pyus, Ppro), SUCh that all states iV’ are mapped by to

the states i/, and G(u(,) = uo, whereG is the forgetful functor between the model categories of the
two class specifications,,,, andp,,, are the two projections, and the following diagram commutes.

Foro F, U
Fpro(U) — U P Fpub(U)
Byl )] | ()
Foro(U") G Foup(U")
Pprogy I IppubU/
F/ U/ . Ul _ / U/
Pro( ) F];TO Fzéub pub( )

Since a subclass does not inherit the private part of its superclass, we can derive the definition of class
morphism which is weaker than the notion of homomorphism of coalgebras.

Definition 4.9 (class morphism)Suppos€U,« : U — F(U),up) and (V.3 : V. — F(V),v,) are
two classes of specificati®@pec, then a functiornf : U — V is called a class morphism jf preserves
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initial state (f (uo) = vo) and the following diagram commutes:

Fpm(V) ‘Fpro v Fpuli pub(v)
Fprolf) f \Fmbm
F’I’O FU
Fpro(U) <22 U — 2% F,(U)

With this definition, we can get the following theorem which shows that a model of a subclass specifica-
tion is a subclass of any model of its superclass specification.

Theorem 4.2 Let classc andd be two classes of the same specificaigrec, classc’ inherit from class
¢, the inheritance morphism &7, ppus, Ppro)- If there is a class morphisrfi from ¢ to d, thenc” also
inherits from classl. The inheritance morphism {§ o G, ppus, Ppro)-

Proof: Immediate from the composition of the two commuting diagrams in Definition 4.8 and 4.9, as the
following diagram shows, where the commutability of the whole diagram comes from that of its upper
and lower components.

FyrolV) 22y L0 g 1)
Fpro(f) ! Foub(f)
FynolU) 420 U 20 ()
FyrolG) Fp ()
FyrolU) G Fu®)
Ppro Ppub
Frol ) g U~ Byl

In this framework, the semantics of the generalization relationship in UML class diagrams can be given
as all the possible inheritance morphisms between the models of the corresponding class specifications.

S[C <— D[ 2 {g:d— c|d e Coalg(D) Ac € Coalg(C)}

whereg is the inheritance morphism fromto c.
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Student , Tekecoursep « Course
name: String ————|name: String
studentI D: Number coursel D : Number,

GradStudent

tutor: Professor

Figure 13: Association being inherited

Substitutability is an important property of generalization. It asserts that any instance of a subclass can
be used wherever objects of the superclass are expected without changing the behavior pattern. More
precisely, the subclass can simulate the behavior of its superclass. The-p&ir,.», ppro) between the
signature functors of the two classes which is defined by projections ensures that the methods’ signature
of the superclass are consistent with that of the subclass.

Theorem 4.3 Let h = (g,p) be an inheritance morphism between cl&sand C, F’ is a method
functor in classC’ being inherited from clas€, then for all objects of C’, p(F”)(g(0)) = h(F’(0)).

Proof: Consider the diagram given in the proof of Theorem 4.2. Supga$e U’ be the state ob,
then

Associations are inherited by subclasses. See Figure 13 as an example. An associatiorstiddamts

must be applicable when objects of cl&adentare substituted by objects of claSsadStudent. The
representation of associatidakecoursehas been given by a pair of coalgebraic functistiglent and

course, here we define another pair of functions to represent the inherited association between class
GradStudent andCourse

studentys : Course — P(GradStudent),

coursegs : GradStudent — P(Course)

The semantics of the functions above are constrained by the functions of the corresponding association
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of the superclasStudent:

studentys(c) = student(c)|cradstudent

coursegs(gs) = course(g(gs))

Here student(c)|cradstudent Means the restriction of the set of students taking coursethe subset
in which all the elements are graduate students taking this course; @nithe inheritance morphism
between clasStudent andGradStudent.

The semantic function is given as:

S[BY,—5C <— D] £{((b,¢), g, (t/,d)) | (b,¢) € S[BY,— 5 C]A
g€ S[C <—D]A(V,d) e S[BY, — LD]A

m' Cm A (Voy = (id,u) : DV (oy) = b((id, g(u))))A
(Voy : B,oy = (id,u) : D.oy € d(oy) =
(id, g(u)) € c(ov))}

whereg is the corresponding inheritance morphism for the generalization bet@esD. The pred-
icatem’ C m specifies the restriction on the number of objects of cRBd®eing linked to an object of
classD and clas<C respectively. Furthermore, the substitutability property is also satisfied.

4.3.1 Abstract Classes

Generalization relationships organize classes in a lattice, with the most generalized class at the top of
the hierarchy (eventually an abstract class). The meet and join operators are defined as the superclass
and subclass (for multiple inheritance) of classes r espectively. An abstract class may not have direct
instances. Therefore, we can not interpret it in the same way as concrete classes. However, from the
generalization relationship between an abstract class and its subclasses, we can get its semantics as the
smallest superclass of all its subclasses (or the least upper bound in the lattice of classes). Translated
to category theory this means that the semantics of an abstract class with respect to its subclasses is the
colimit of the subclass coalgebras.

Definition 4.10 (semantics of abstract classyhe semantics of an abstract class is the colimit of its

subclasses in the category of classes with the inheritance morphisms as arrows for the colimit.
S[C{Abstract} <+ *{Cy,Ca,...,Cn}] 2 Colimitcoaig(c1, s, .-, cn)

wherec; are the coalgebras i[C;] respectively.

An abstract class may have several subclasses and can only be instantiated by one of them. (such as
classPerson(P) in Figure 14). If the direct subclasses form a partition of the abstract class, that means,
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Person
{ Absrtact}

Student Employee

T | 7

Teaching Assistant

Figure 14: Multiple inheritance with common ancestor

the subclasses have no common subclass, then we can use a coproduct of the subclasses in the category
of classes to represent the abstract class and the coprojections of the coproduct are the inheritance mor-
phisms. Otherwise, the subclasses of a common abstract class may be not disjoint, such as in Figure
14, classStudent (S) andEmployee (E) have a common subcla3gsachingAssistant(T'A). In this

situation, the interpretation can be generalized to the colimit of the subclasses. The arrows describing
the inheritance relationships in this example gfe:S — P,g: F — P,r: TA — S,s: TA — E,

thenP is the colimit of the subclassés E, andT A, the corresponding colimit arrows afeg, h, where

h = for = gos. Itis natural that the commuting property of colimit holds, as the following diagram
shows:

Two less common but useful notions a&ootandisLeafwhich specifies whether a class may have no
parents or children. Especially when we have multiple, independent inheritance lattices, it is useful to
designate the top and bottom of each hierarchy via the root and leaf classes.

The semantics of root and leaf classes are given as follows:
S[C{root}] 2 S[C] A (YD.S[D <— C] ={})
S[C{leaf}] 2 S[C] A (VD.S[C <— D] ={})

which are same as semantics of other classes, plus the condition that no superclass of a @@acldss
subclass for leaf class, respectively) is permitted to appear in the class dfagram.

®Here we abuse the operatar The precise meaning &[C] A p is a subcategory of[C] where all objects in the
subcategory satisfy.
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Array S

elements[k] : Element

apply (index : Int) : Element
assign (e: Element, i : Int) : Array
N

<<bind>> (Int,3)

Array <Person, 24> Arrint

Figure 15: Template classes and instantiated classes

4.3.2 Multiple Inheritance

A class may have more than one parent in a UML class diagram, a fact knovwaltisle inheritancelt

means that the subclass has all the attributes, methods and associations of all the superclasses. We assume
that the multiple inheritance being concerned is well-formed, that is, an attribute or method with the same
signature can not be declared independently by several superclasses that do not inherit it from a common
ancestor. Then the semantics for a class that multiplicitly inherits from superclasses are their lower bound
coalgebras. Thus, the semantics of a cl@ssultiply inherits from a set of classd<;, C,,...,C,},

is given by the cones afj, c9, . . ., ¢, Wherec; are the coalgebras ifi[C;] respectively, in which the

arrows for the cone are the corresponding inheritance morphism.

S[C —> {C4,Cs...,C,}] 2 Conecoalg(c1, 2, - - -5 Cn)

In the semantics of multiple inheritance, we can get the linif the superclass sdty, ¢, ..., ¢}
which is the terminal object in the category of all the possible condg0fs, ..., c,}, that meansd
has no more attributes or methods than those appedisjin., ,, and for allc € Ob;S[C], cis a
subclass ofl. 7

4.4 Templates

UML allows the use ofemplateor parameterized classef template has one or more unbound formal
parameters. It describes a family of classes, each of which is specified by binding the parameters to
actual values.

A template can not be used directly because it has a free parameter that is not meaningful outside of
a scope that declares the parameter. A template must be instantiated first before it is used, i.e. the
template’s parameters must be bound to actual values.
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As shown in Figure 15, a template can be instantiated in two ways: Either implicitly by declaring a class
whose name provides the binding or explicitly usidgjrad relationship specifying the source instantiates
the target template using the actual parameters.

Since a template can not have instances of itself, it can only have one direction associations from itself
to other classes. Maoreover, it can not be a superclass of other classes, but its instances can.

Let C:P: be a template class whekeis the list of parameters. Then
S[C:P:c—ID] 2 False
S[C:Pi*—ID] £ False
S[C:P! <— D] 2 False

Here theBool value Flalse is used to denote the empty e}, i.e., the diagram can not be implemented.

An instantiation of a template is a class specification which is decided by one elemgfP]n Its
semantics is:
p € S[P] = S[Cp/P]]

A
S[C<p>] =
[[ p>] {else = False

which also gives the semantics of binding relationship in a class diagram.

4.5 Semantics of Class Diagrams

Up to now, the discussion has been on the class level including the relationship between classes. Finally,
the semantics of class diagrams can be given. A class diagram represents a system composed by objects
of specified classes. Its semantics can be defined coalgebraically via object diagrams.

An object diagram is a snapshot of a corresponding class diagram. It exhibits a set of objects and their
relationships existing in a system at a point of time. An example of an object diagram is given in Figure
16. The objects and their relationships in an object diagram are defined by the semantics above. Thus,
denoting the system state spaceXyan object diagram represents a system state > and can be

seen as an instance of the corresponding class diagram. It can be used to describe the existence of
certain objects together with the relationships between them in the system at a certain time. Therefore,
an elementr € X is interpreted as the product of states of different objects at the same point of time.
Consequently, the semantics of an object diagram is an element which describes a state of the
system, and the system being modeled can be described as a co@lgebra> — F(X)), wherec
describes all the possible transitions between system states.

Now we can get the following definition of class diagram semantics:

Definition 4.11 (class diagram semanticsyhe semantics of a class diagrdd is defined as a cate-
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Sm: Student
takecourse takecourse
takecourse|
Algebra: Course Geometry: Course Analysis: Course

name = algebra
coursel D = 0100201

name = geometry
coursel D = 0100301

name = analysis
coursel D = 0100101

Figure 16: Object diagram

A B
al Al Db
H{C1}
2 A2 b2
! ! 1
! {c2}
| ! b3
A3 1

Figure 17: Inconsistency of a class diagram

gory denoted a€oalg(CD). The objects in this category are the coalgebf&sc : ¥ — F(X)) where

3 is the system state space of all the possible system sfateshe tensor product composed by the sig-
nature functors of the component classes and associations in the class diagram, which describes the pos-
sible system state transitions and observations to the system states. The arrdWh@remorphisms
between them.

Remark. Generally, the state space of a system may be different at different time. For example, objects
may be created or deleted. Thus, the system may be initiated in assitatibe state spacg, but we

permit operations of the system that change the state space, so that the system state may be in another
state spacé’ later. However, in this situation, we can takeJ I" as the system state space. Then the
change of state space, like creating new objects or deleting old objects, also becomes a state transition.

4.6 Examples in Checking Consistency of Class Diagrams

In this section we use some simple examples to illustrate the approach for checking the consistency of
class diagrams via the coalgebraic semantics defined previously.

Take Figure 17 as an examglewhereC1 is a constraint which states that every linkAd is either in
A2 or in A3. The constrainC2 states thaA2 andA3 are equal. This diagram seems to be consistent,

"This example is taken from [3].
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Student Book
name: String borrower loans [rame: Stri ng
student!D: Number | o 1 0.5

loans | 0..10
GradStudent
tutor: Professor borrower

0.1

Figure 18: An inconsistent class diagram for a library system

but it is not. We first give the semantics of the two constraints explicitly as follows:
S[C1] Bvu: Av: B.(b1(u) C b2(u) Ub3(u)) Aal(v) C a2(v) U a3(v))
S[C2] Bvu: A B.(u € a2(v) & u € a3(v)) A (v € b2(u) < v € b3(u))

For an object of classA, from the semantics d€1 andC2 we have
S[C1] A S[C2]
=Vu: A,v: B.(bl(u) C b2(u) Ub3(u)) Aal(v) C a2(v)Uald(v) Aa2(v) = a3(v) A b2(u) = b3(u))
=Vu: A, v:B.(bl(u) Cb2(u) = b3(u) A al(v) C a2(v) = a3(v))
=Vu: A, v: B.(card(bl(u)) < card(b2(u)) = card(b3(u)) A card(al(v)) < card(a2(v)) = card(a3(v)))
From the semantics of associations, we have
Vu : A,v: B.card(bl(u)) = 2 A card(b2(u)) = 1 A card(b3(u)) =1
Therefore, we have
S[A1] A S[A2] A S[A3] AS[CI] AS[C2] = 2 < 1= False

So the diagram is inconsistent. It can not be implemented correctly.

Now take Figure 18 as another example for a library system. There are two Gasebsnt andBook

and an association which shows the relationship between students and books. Every student can borrow
at most 5 books at the same time. Later another €fassdStudent is added to the diagram which is
desired to be the subclass of cl&sident. And every graduate student can borrow at most 10 books

at the same time. From the semantics definition for inheritance of associations, we can easily derive that

S[Booklyws — borrover§tydent <+— GradStudent] = 0..10 C 0..5 = False

Therefore the diagram is inconsistent. To solve the problem, we can defin&tladent as an abstract

class and adinderGraduate as another subclass of cl&sudent, and then change the association
betweerBook andStudent in Figure 18 to an association between this subclasBaruk, as Figure

19 shows. Moreover, because every book can be borrowed by at most one student at any time point, a
constraint{xzor} is added to state that the two associations can not exist at the same time for one object
of classBook.
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Student Book

ﬁl loans | 0.5 loans | 0..10

borrower {xor}
GradStudent UnderGraduate | 0.1

borrower | 0..1

Figure 19: A consistent class diagram

TG

Reader ' <<include>> .
i Librarian

Return Book

' <<include>>

Figure 20: Use Case Diagram

5 Use Cases

Use Cases, first introduced by Jacobson [33, 34] and widely used in object-oriented analysis and design
methods, are popular models for capturing requirements, primarily functional requirements and business
requirements [55]. They help to identify the primary requirements of the system and form the units of
work in an incremental, use case driven, object-oriented software development process like the Rational
Unified Process [21, 37] which is relatively widely used.

A use case is defined as “a sequence of transactions in a system, whose task is to yield a measurable
value to an individual actor of the system” [33]. Use cases are very useful in decomposing and capturing
the requirements, gaining an understanding of the problem domain and identifying the different goals for
individual actors and the system. Use cases are specified informally, which makes them successful in
capturing requirement.

Use cases are text documents, not diagrams. However, the UML defines the use case diagram to illustrate
the name of use cases, actors and the relationships among them. See Figure 20 as an example of use case
diagrams where thBorrow Book use case includes thieturn Book use case, which includes another

Pay Feeuse case. These use cases are written in Figure 21, 22 and 23 as flows of events with pre- and
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Use Case Borrow Book
Actors | Reader, Librarian
Precondition| The book can be borrowed.

Flow of Events| 1. The use case begins when the reader chooses a book that is not already lent;
2. The librarian checks whether the reader could borrow any more books;
3. If the number of books borrowed by the reader arrived the upper bound

Include Return Book;
4. The librarian assigns the reader as the borrower of the book and states a deadline
for returning the book.
Postcondition| The reader has successfully borrowed the book.

Figure 21: Borrow Book use case

Use Casg Return Book
Actors | Reader, Librarian
Precondition| The reader has borrowed the book and it is not returned back by the reader.
Flow of Events| 1. The use case begins when the reader chooses a book to return;
2. The book is returned and the reader is no more the borrower of the book;
3. The librarian checks whether the reader should pay for his/her debts;
4. If the reader should pay fine for debts
Include Pay Fee.
Postcondition| The reader has successfully returned the book.

Figure 22: Return Book use case

post-conditions together indicating what states the system must be in at the beginning and end of a use
case.

Such use cases can be considered as contracts between the system and actors specifying the conditions
that the behaviors of the system should satisfy, which may be formalized by coalgebraic specifications
[29]. A use case can be interpreted coalgebraically as a sequence of actions followed by some observa-
tions. To measure the effect of the actions we relate the observations in a coalgebraic definition. This
means that use cases can be defined coinductively. Then single actions regieaenise casesvhich

change the system from one state to another.

The signature of an atomic use cdS€ is defined by a functoF'. Let Y. be the system state space,

as defined in the semantics of class diagrams. Then a use case is interpreted as a coalgebraic partial
function of typeuc : ¥ — F(X). This function is meaningful when the possible system states before the
action satisfy the given pre-condition. An example should demonstrate the coinductive formalization of
use cases.

Consider a use cad®B of borrowing a book in our previous library example (Figure 18). Ldie the
state space of the system. Then the behavi@Bfcan be defined by a coalgebraic functign: > —
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Use Caseg Pay Fee
Actors | Reader, Librarian
Precondition| The reader has a debt to the system;
Flow of Events| 1. The use case begins when the reader has a debt to the system;
2. The reader chooses an amount of the debt and pays it;
3. The librarian subtracts the sum from the reader’s debt.
Postcondition| The reader has successfully payed the debt.

Figure 23: Pay Fee use case

Y ReaderxBook |f 3 readers, borrows book, then the observable effects can be specified coinductively:

pre i loans(sy(bb(a, so,b0))) = loans(sy(a)) U {bo}
pre = borrower(bj(bb(a, so,bo))) = si(o)

wheresy, b, are observers oR for obtaining the objectsy, by ando € X. Here, the preconditiopre
guarantees the multiplicity constraints in the class diagram.

To express th8orrow Book use case model completely, in the following, the RSL specifications for the

use cases are given. First, two schemes are defined for the classes involved as shown in Figure 24 and
25, which are essentially needed within our system. Then the specification for the use cases are defined
as in Figure 26, which describes all the three use cases by the axioms.

5.1 Discussions on Advanced Techniques

When the flow of events is refined, we may find similarity in the various use cases that we want to
abstract into a common place, extend a use case without changing the original description, or find a lot
of similarities in some of the actors. To take the advantage of these similarities in the system, some
techniques may be applied.

We may have something generic that can be reused. The common behavior can be abstracted with an
includerelationship. Defining an included use case Starts by identifying the steps that we want to use in
many places and put the steps in a use case and give them a name. A use case can include any number
of other use cases. We can have as many levels of including as we desire. An include relationship of use
cases means that the base use case incorporate the behavior of the target use cases. The behaviors in the
target use case is included at one point of the base use case.

A use case can be specialized into one or more child use cases, each of the child use cases contains
all the observations and behaviors in the super use case, and may add more behaviors into the behavior
sequences. This is a use cgemeralizatiorrelationship.

An extendrelationship means that a use case can be defined as an incremental extension to another use
case. The base use case may not depend on the extending use case. The extend relationship contains
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schemeBOOK =
class

type
Book,
Person,
Date= Nat,
Status== free]| lent

value
status : Book— Status,
returnDate : Book> Date,
borrower : Book™ Person,
book : Book,
setLoan : Bookx Personx Date= Book,
resetLoan : Book> Book,

today : Date,
payFee : Book- Int
axiom

status(bookk free,

vV b : Book, p: Person, d : Date
status(setLoan(b,p,d¥ lent
pre status(bj-free,

V b : Book, p : Person, d : Date
borrower(setLoan(b,p,d¥ p
pre status(bjfree,

vV b : Book, p: Person, d : Date
returnDate(setLoan(b,p,d® d + 30
pre status(bj-free,

vV b : Booke
status(resetLoan(b} free
pre status(b¥lent,

vV b : Booke
payFee(bx

let rd = returnDate(b)n
if rd < todaythen O
elserd — today
end
end
end

Figure 24: RSL specification for BOOK
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context: BOOK
schemeREADER =

class

object

B : BOOK

type

Reader,
Book = B.Book,
Loan= Book-set

value

fine : Reader- Int,

borrowBook : Readex Book = Reader,
returnBook : Readex Book = Reader,
loans : Reader- Loan,

payFine : Readex Int = Reader,
reader : Reader

axiom

end

fine(readerk 0,

loans(readers {},

vV r: Reader, b : Book
loans(borrowBook(r,b)¥E loans(r)u {b}
pre B.status(b}B.free,

vV r: Reader, b : Book
fine(borrowBook(r,b))= fine(r)
pre B.status(byB.free,

vV r: Reader, b : Book
loans(returnBook(r,b)ke loans(r)\ {b}
pre b € loans(r),

vV r: Reader, b : Book
fine(returnBook(r,b)x fine(r) + B.payFee(b)
pre b € loans(r),

Vr: Reader,iint ¢
fine(payFine(r,i))=

if i<fine(r) then fine(r)—i
else0
end

pre fine(r) > i,

Vr: Reader,int ¢
loans(payFine(r,i)¥ loans(r)

Figure 25: RSL specification for READER
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context: BOOK,READER
schemelLIBRARY =

class
object
R : READER
type
Book = R.Book,
Reader= R.Reader
channel
reader : Reader,
book : Book,
fee :Int
value

borrowBook :Unit — in reader,boolout reader,boolUnit, --The Borrow Book Use Case
returnBook :Unit — in reader,boolout reader,booknit, --The Return Book Use Case
payFee Unit — in reader,fe@ut readerUnit --The Pay Fee Use Case
axiom
vV bl: R.Booke
borrowBook()=
let (b,r)=(book?,readeran
if R.B.status(b}R.B.freethen
if (card(R.loans(r)¥:R.limit A bl € R.loans(r))then
reader!(R.return(r,b1));
book!(R.B.resetLoan(bl));
if R.fine(r)>0then
reader!(R.payFine(r,R.fine(r)))
end
end;
book!(R.B.setLoan(b,r,R.B.today));
reader!(R.borrow(r,b))
end
end,
returnBook()=
let (b,r)=(book?,readerdn
if (R.B.status(b3R.B.lentA R.B.borrower(b)r) then
reader!(R.return(r,b));
book!(R.B.resetLoan(b));
if R.fine(r>>0 then
reader!(R.payFine(r,R.fine(r)))
end
end
end,
payFee()=
let(f,r)=(fee?,readerdn
reader!(R.payFine(r,f))
end
end

Figure 26: RSL specification for the use cases
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a condition which should be satisfied if the extension is to happen and a sequence of extension points
which defines the location in the base use case where the extension is to take place. This is the same
situation as the generalization relationship of use cases, but the extending use case is inserted into the
base use case at the extension point conditionally, while in the generalization relationship, the parent use
case is replaced by the child use case conditionally.

A family of operations has been defined in [60], including sequential compositidmice+, paral-

lel compositionX and ®, etc., which can be used to build more complex use cases from atomic use
cases. So that the semantics for the relationships among use casesllile, extendssociations and
generalizations of use cases can be given by these operations. For example, the BEeisadined

as a sequential of the atomic actions corresponding to evetsanother use case for returning book
corresponding to eveltwhen the condition isrue and eventt.

6 Related Work

A lot of works on specifying the formal semantics of UML can be found in the literature (see e.g.

[6, 7,11, 12, 13, 14, 19, 22]). However, most of them do not give a semantics for the whole language,
but only concentrate on part of it, such as class diagrams or statechart diagrams, and there is a lack of
research on checking the consistency between different UML models, which is a central issue in multi-
view modeling languages such as UML.

The meta-model approach adopted by the UML Semantics [45] use a UML class diagram together with
constraints as a meta model and define the semantics of the language via it. However, a problem in this
approach is that it defines the semantics of elements in terms of those elements whose semantics are not
precisely defined. In fact, the well-formedness rules are descriptions at the syntactic level, but not the
semantics definition.

From a logical perspective, a set of models are consistent means that they are free from contradictions. In
other words, they have a common semantic interpretation. So a natural idea is to define an independent
semantic domain in which all models can be interpreted. [6] sketches a general scenario for several

UML diagrams but no technical details are provided. Recently, some researchers also try to combine the

formalization of different UML models, see e.g. [18, 42].

An alternative approach is to translate UML into another formal language that is well understood. In
[7] a translation from UML models to Z specifications is provided. [58] studies UML class diagrams
by means of using Object-Z. [49] discusses active classes. [15] provides a translation from UML class
diagrams to RSL [63] specifications. A translation from UML class diagrams to O-Slang is provided in
[57]. Unfortunately, most of them also only focus on part of UML models.

The inspiration for our own coalgebraic semantic domain came from the work of Jacobs on object-
oriented systems [24, 25, 29] and that of Tews on the relationship between CCSL and UML [62]. We
use their concept of coalgebraic specifications to give UML diagrams a semantics. However, in contrast
to their work on the coalgebraic specification language CCSL we take a rather pragmatic approach and
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aim to use UML diagrams to denote coalgebraic specifications. A further difference to previous work
and to very recent work on UML class diagram semantics [38, 41] is that we take a categorical rather
than a set-theoretic approach. The motivation is to be more general and flexible and, thus to be able to
cover a broader subset of UML. Already, the presented work on class diagrams shows the advantages of
having categorical tools, like morphism, functors, natural transformations etc., available. One advantage
of the cofibred approach is that it provides us with a single category which contains models (coalgebras)
corresponding to different specifications (UML classes) and allows us to relate coalgebras corresponding
to different specifications within one category. Another benefit of the categorical approach is that we can
construct the final coalgebra in the semantics for a given UML class which can be used as the minimal
implementation as shown in [59]. Our future work on the dynamic aspects of UML, like statechart
diagrams, will make these benefits even more obvious.

In UML statechart diagrams describe the dynamic behaviour of systems. Several formal semantics for
statechart diagrams have been proposed previously. For example, in [16] input-output labeled transition
systems (LTS) are used as the semantic domain. From these previous results it can be deduced that
statecharts diagrams can be straightforwardly interpreted in a coalgebraic framework. For examples
of LTSs defined as coalgebras we refer to [54]. Thus, the semantics of a statechart diagram will be a
coalgebra. Then, consistency checks between class diagrams and statechart diagrams are proofs that
the coalgebra (statechart) is a model of the corresponding coalgebraic specification (class diagram).
Similarly, refinement (implementation) relations can be defined ranging over different view models.

Compared to others’ approach, directly defining the coalgebraic semantics can make us model the system
more faithfully since we have the freedom to choose the signature functor appropriately. Concerning
verification of system, the coalgebraic approach often allows for a smaller state space of the model than
encoding the system as a Kripke structure and make the verification time of the system property shorter
(as shown by D. Pattinson in [47] ). Furthermore, by resorting the underlying environment category from
Set to a set based category enriched with some algebraic structure, we naturally get a data refinement of
the state space representation.

It is already evident from our ongoing work that we will be able to stay in the domain of coalgebras for
defining semantics of other UML diagrams, like statecharts and interaction diagrams. Generally, it can
be said that our attempt of having one semantic domain for different UML diagrams contrasts us from
most of the previous works on this topic.

7 Conclusion and Discussion

In this paper, essential parts of a coalgebraic semantics for UML class diagrams have been presented.
It has been shown in detail how Classes, their Associations and Generalizations in a UML diagram can

be interpreted as coalgebraic specifications. Furthermore an outlook on the formalization of use-case
diagrams (and statechart diagrams) has been given. Although, no more technical discussion of other
diagrams is provided, the reader should by now get an idea how a coalgebraic semantics facilitate the
integration of static and dynamic aspects of UML.
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This paper is only a starting point for the formalization of UML. The next steps include to define the
coalgebraic semantics of other UML models, such as statechart diagrams, to give a precise meaning for
the consistency of models, to do research on the refinement of different kinds of models which involves

a transformation of functors for different steps. However, having a formal semantics is not enough. The
next step will involve research on applications of the semantics: A use-case driven development method
for UML diagrams, supported by algebraic laws and coalgebraic proof methods, will be designed. Based
on the semantics and method, tools are planned, including a model checker and a test-case generator for
UML diagrams. Moreover, the work of Jacobs and Poll on coalgebraic semantics of Java [30] shows the
possiblity of a semantic-based approach for code generation from UML models.

Currently, the opinions on UML in the research community are twofold. Some see the disadvantages
of UML and reject the language completely. Others think that it is our duty to improve this de-facto
standard and help software engineers in the application of UML. We belong to the second group and
hope that our work will contribute to the improvement of UML and its associated methods.
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