
UNU/IIST
International Institute for
Software Technology

UNU/IIST Report No. 272 R

Towards a Coalgebraic Semantics of UML:
Class Diagrams and Use Cases

Sun Meng and Bernhard K. Aichernig

January, 2003

UNU/IIST and UNU/IIST Reports

UNU/IIST (United Nations University International Institute for Software Technology) is a Research and Training
Centre of the United Nations University (UNU). It is based in Macau, and was founded in 1991. It started oper-
ations in July 1992.UNU/IIST is jointly funded by the Governor of Macau and the governments of the People’s
Republic of China and Portugal through a contribution to the UNU Endownment Fund. As well as providing two-
thirds of the endownment fund, the Macau authorities also supplyUNU/IIST with its office premises and furniture
and subsidise fellow accommodation.

The mission ofUNU/IIST is to assist developing countries in the application and development of software tech-
nology.

UNU/IIST contributes through its programmatic activities:

1. Advanced development projects, in which software techniques supported by tools are applied,

2. Research projects, in which new techniques for software development are investigated,

3. Curriculum development projects, in which courses of software technology for universities in developing
countries are developed,

4. University development projects, which complement the curriculum development projects by aiming to
strengthen all aspects of computer science teaching in universities in developing countries,

5. Schools and Courses, which typically teach advanced software development techniques,

6. Events, in which conferences and workshops are organised or supported byUNU/IIST, and

7. Dissemination, in which UNU/IIST regularly distributes to developing countries information on interna-
tional progress of software technology.

Fellows, who are young scientists and engineers from developing countries, are invited to actively participate in
all these projects. By doing the projects they are trained.

At present, the technical focus ofUNU/IIST is on formal methods for software development.UNU/IIST is an
internationally recognised center in the area of formal methods. However, no software technique is universally
applicable. We are prepared to choose complementary techniques for our projects, if necessary.

UNU/IIST produces a report series. Reports are either ResearchR , Technical T , CompendiaC or Adminis-

trative A . They are records ofUNU/IIST activities and research and development achievements. Many of the
reports are also published in conference proceedings and journals.

Please write toUNU/IIST at P.O. Box 3058, Macau or visitUNU/IIST’s home page:http://www.iist.unu.edu, if
you would like to know more aboutUNU/IIST and its report series.

Chris George, Acting Director

UNU/IIST
International Institute for
Software Technology

P.O. Box 3058

Macau

Towards a Coalgebraic Semantics of UML:
Class Diagrams and Use Cases

Sun Meng and Bernhard K. Aichernig

Abstract

In this paper we present a coalgebraic semantics for UML class diagrams and given some discussions on
the coalgebraic semantics for use cases. A loose semantics for class diagrams is defined. The semantics
of a class in UML class diagrams is given as the category of coalgebras of the corresponding class
specification. Associations among classes are interpreted as coalgebraic observers. The generalization
hierarchy of classes is specified by the inheritance morphism among them. Some examples on checking
the internal consistency for class diagrams by exploiting the coalgebraic semantics are introduced.

Sun Meng is a Fellow at UNU/IIST on leave from the School of Mathematical Science of Beijing Uni-
versity, China, where he is a Ph.D candidate. His research interest include category theory, coalgebra
theory, Object-Oriented method, formal method in software development, and formal semantics for mod-
eling languages. His email address issm@iist.unu.edu.

Bernhard K. Aichernig is a Research Fellow at UNU/IIST. He is also an assistant professor at the
Institute for software Technology at the Graz University of Technology in Austria. His research interests
include the synergies of testing and formal development methods, techniques of refinement, and require-
ments engineering supported by formal specification languages. His email address isbka@iist.unu.edu.

Copyright c© 2003by UNU/IIST, Sun Meng and Bernhard K. Aichernig

Contents i

Contents

List of Figures iii

1 Introduction 1

2 A Cofibred Category of Coalgebras 3

3 Class Diagrams 4
3.1 Syntax of Class Diagram . 5

4 Coalgebraic Semantics of Class Diagrams 9
4.1 Semantics of Classes . 9
4.2 Semantics of Associations . 18

4.2.1 Navigation . 20
4.2.2 Ordering . 21
4.2.3 Visibility . 21
4.2.4 Changeability . 22
4.2.5 Association Classes . 22
4.2.6 Qualification . 23
4.2.7 Aggregation and Composition . 24
4.2.8 N-ary Association . 25

4.3 Semantics of Generalization . 27
4.3.1 Abstract Classes . 31
4.3.2 Multiple Inheritance . 33

4.4 Templates . 33
4.5 Semantics of Class Diagrams . 34
4.6 Examples in Checking Consistency of Class Diagrams 35

5 Use Cases 37
5.1 Discussions on Advanced Techniques . 39

6 Related Work 43

7 Conclusion and Discussion 44

Acknowledgments 45

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

List of Figures iii

List of Figures

1 Different representations of a class in UML . 9

2 Constraint . 11

3 Interface . 13

4 Association . 18

5 Navigation . 20

6 Visibility . 21

7 Representation of an association class . 23

8 Qualification . 24

9 Aggregation and Composition . 25

10 An n-ary Association . 26

11 The ternary associationRecordbeing decomposed . 26

12 The decomposition of the ternary associationRecordas an association class 27

13 Association being inherited . 30

14 Multiple inheritance with common ancestor . 32

15 Template classes and instantiated classes . 33

16 Object diagram . 35

17 Inconsistency of a class diagram . 35

18 An inconsistent class diagram for a library system . 36

19 A consistent class diagram . 37

20 Use Case Diagram . 37

21 Borrow Book use case . 38

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

List of Figures iv

22 Return Book use case . 38

23 Pay Fee use case . 39

24 RSL specification for BOOK . 40

25 RSL specification for READER . 41

26 RSL specification for the use cases . 42

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Introduction 1

1 Introduction

Object-orientation has now become a popular approach in software industries [21, 43]. The Unified Mod-
eling Language (UML) [45, 53, 5], which is a graphical language for specifying, visualizing, constructing
and documenting object-oriented (OO) systems, has become ade factostandard for OO modeling. One
of the main advantages of UML is that it offers a set of different view models to describe specific aspects
of the system to be developed, such as the static structure of the system, the dynamic behavior of single
objects in the system, and the communication and coordination between different objects in the system,
etc. And these models together describe the system being designed. Moreover, the modeling languages
in UML can be used for different stages of development, including requirement capture and analysis, de-
sign and implementation [39, 40]. But this also causes the main drawback of the current UML standard:
the lack of a unifying formal semantics. Consequently, the definition of such a precise semantics has
become an active research area.

Although the syntax of UML has been precisely defined, its semantics is still described with informal
natural language in the specification. The lack of a formal semantics is now the main drawback of the
current UML standard. It has been recognized that informal semantics are usuallyincompleteor incon-
sistent(or even both), and may make the interpretation of the meaning of language elements ambiguous.
As a consequence, the confusion of the meaning of UML models may cause them to be used incorrectly.
Therefore, the high effort being spent on modeling does not always yield the intended systems.

The separation of different view models in UML prompts one of the key questions in UML, that is, the
consistencybetween diagrams representing the same information of a system. Since certain aspects of a
system may be specified by more than one view model, the consistency of the family of models has to be
checked to assure the correctness of the models. For example, sequence diagrams model the interaction
of objects in a system while statechart diagrams model the intra behavior of single objects. Therefore,
we need to check whether the objects specified by the statechart diagrams are able to satisfy the behavior
requirements stated in sequence diagrams. Since different models in UML are using (paradigmatically)
different languages, it will not be much helpful even we provide different formal semantics for different
single models which have different semantic domains, because the consistency between models is still
not obvious and the difference of semantic domains makes one can not request a common semantic
interpretation as the criterion of consistency of UML models. Unfortunately, most of the previous and
ongoing formalization work adopts such an approach and only focuses on individual aspects of UML
and thus gives up the advantages of having multiple views. This restriction is mainly caused by the
limited expressive power of the semantic domains in use. Therefore, a unifying semantics of UML is
needed which uses a common semantic domain and gives interpretation for different models so that the
consistency of a collection of models can be checked in the semantic domain.

Obviously, such a semantic domain must beexpressiveenough so that it can interpret different languages
for both static and dynamic aspects of systems. Moreover, it should support thecompositionandrefine-
mentoperations. The composition operation is needed to support the decomposition of a complex system
into components and the connection of different components to compose them together into the whole
system. For example, the semantic units representing single objects need to be composed in the semantic
domain and the result should be consistent with the semantics of the systems consists of these objects.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Introduction 2

Because UML can be used in different design stages, one model may refine the information provided
by other models. For example, statechart diagrams add the dynamic behavior property of objects into
class diagrams which only state their static structure. Such refinement also need to be supported in the
semantic domain to check the consistency between a concrete model and a more abstract model which
specify the same aspects of a system.

In order to use UML more effectively in software development, during our work on formalizing UML,
we found that coalgebraic structures [31, 54] provide a powerful semantic domain which is able to cover
different aspects of software system. Coalgebra theory, which is a relatively new research field, has
been recognized as a suitable framework for the description of state-based dynamic systems such as
automata, transition systems and classes in object-oriented languages, where observations and behavior
patterns are more relevant than data construction. In Peter Aczel’s foundational work on the theory
of “non well-founded sets” [2], a coalgebraic approach is used to describe non-deterministic transition
systems and construct a model for non well-founded sets. Later works by Bart Jacobs and others on
coalgebraic specification and coalgebraic semantics for object oriented programming (see e.g. [23, 24,
25, 28, 50, 48, 61]) has proved that coalgebras are suitable for modeling dynamic systems, especially,
for classes in object oriented programming languages. H. Tews makes an extension to the polynomial
functors used by Jacobs so that binary methods can also be represented by coalgebras [61]. [32] presents
the assertional and behavior refinement of coalgebraic specifications. A coalgebraic class specification
language CCSL is also developed recently [52]. In order to fully and natually capture both computational
and observational aspects of systems, The works on integrating algebraic and coalgebraic techniques in
specification of systems by taking a layered approach can be found in [9, 10].

By resorting the underlyingenvironment categoryto a set based category enriched with some algebraic
structure, we can naturally get a more concrete semantics for UML specifications. In fact, just by varying
the environment category, coalgebras can describe different computation models as discussed in [?]. The
obvious benefits of such a coalgebraic semantics are more straightforward notions of consistency and
refinement between different kinds of UML diagrams. In this paper we propose a method for specifying
and reasoning about UML models of software systems based on the coalgebraic semantics and first-order
logic. This is the first step towards such a unifying semantics of the UML. Since coalgebras support the
dynamic aspects quite naturally, we concentrate here on the static models represented by class diagrams.
Some form of familiarity with category theory and coalgebra theory are assumed for the reader, and we
will not explain all the notions in this paper in elementary terms.

In this paper, we define the coalgebraic semantics of UML class diagrams based on our earlier work on
the coalgebraic calculus for systems in [60] and give some discussion on the formalization of use cases
via coalgebraic specifications as the first step towards a unifying semantics for UML. The semantic do-
main is defined via a cofibred category of coalgebras. We give the semantics of UML elements based
on the theory of coalgebra and define the consistency relation between them in the coalgebraic interpre-
tation. The central idea of our coalgebraic semantics is that a set of UML diagrams denote coalgebraic
specifications as introduced by Jacobs [24, 25, 29]. More precisely, the presented coalgebraic semantics
translates the graphical symbols and annotations of the various UML diagrams into functors and proper-
ties of a coalgebraic specification. With this approach, standard definitions in coalgebraic contexts, like
bisimilarity and refinement [32] can be also applied to UML diagrams. Another obvious advantage of
our coalgebraic approach is that it covers both the static models and the dynamic models of UML, which

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

A Cofibred Category of Coalgebras 3

makes the definition of consistency between different models natural in the semantic domain. Moreover,
it also provides the static models (e.g. class diagrams) a behavior semantics which is helpful for under-
standing of the evolution of system in the early phases of system development. The aim of our work is to
provide a coalgebraic semantic framework suitable for the notations in UML and which can form a basis
for rigorous object-oriented software development.

This paper is organized as follows: Section 2 is a brief introduction to the cofibred category of coalgebras
as the semantic domain. An informal syntax for class diagrams is presented in Section 3. In Section 4, a
coalgebraic semantics for class diagrams is defined, and some examples on checking the consistency of
class diagrams are given. We discuss the use cases in Section 5 by using the coalgebraic specifications
to describe use cases. Some related work are given in Section 6. Finally, Section 7 concludes and show
the future work.

2 A Cofibred Category of Coalgebras

In this section we briefly present our semantic domain. It is designed to unify the different semantic
aspects of UML. It turns out that a cofibred category of coalgebras is the most promissing candidate
for our endeavor. The relatively heavy mathematical machinery pays off in providing the necessary
concepts of abstraction, and thus in simplifying our semantic definitions. Advantages of such an approach
include: (1) The theory of universal coalgebras have been proven useful in modeling dynamic and static
aspects of object-oriented systems faithfully since we have the freedom to choose the signature functor
appropriately [54]. (2) The notion of functors in category theory provides a powerful theory of interfaces
and signatures. (3) Our cofibrated categoryCF represents a category which contains the transition
structures corresponding to different functors and allows us to relate coalgebras of different functors
within just one category.

Let Set be the category of sets and functions. The functors considered in this paper mapSet to Set
(endofunctors on the categorySet), and together with the natural transformations between them form a
category[Set,Set]. These functors are used to describe the coalgebraic signaturesα : U → FU that
map a stateu : U to its possible observationsα(u) : FU . For every such an endofunctorF , we can
obtain the categoryCF of all F -coalgebras.

The cofibred categoryCF based on a subcategoryF of [Set,Set] is defined as the “total” category
which encompasses the categoriesCF for all the possible functorsF in F, which is a subcategory of
[Set,Set], and also admits natural transformations as morphisms between different functors. Conse-
quently, the semantic domain provides the mapping between different coalgebras, and thus between our
interpretations of different UML diagrams. The following construction defines the cofibred category of
coalgebras:

Proposition 2.1 LetF be a subcategory of the category[Set,Set] of endofunctors on the categorySet.
Then for two endofunctorsF andG in F, a natural transformationη : F → G allows us to view every
F -coalgebraα : U → F (U) as aG-coalgebraηU ◦ α : U → G(U). Take coalgebras for functors inF

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Class Diagrams 4

as objects and for two coalgebras(U,α : U → F (U)) and(V, β : V → G(V)), take(σ, η) as an arrow
between them, whereσ is function between their carrier andη : F ⇒ G a natural transformation, such
that the following diagram commutes:

U
σ - V

F (U)

α
? ηU- G(U)

G(σ)- G(V)

β
?

This defines a categoryCF which is a cofibration over the categoryF.

Proof: The composition of two arrowsf1 = (σ1, η1) : c → d and f2 = (σ2, η2) : d → e is
f2 ◦ f1 = (σ2 ◦ σ1, η1 ◦ η2) : c → e. Associativity of composition is inherited fromSet andCat.
It is even easier to show that there is an identity morphism for any coalgebrac = (U,α : U → F (U))
which is defined by(idU , idF) whereidU is the identity function on the state spaceU andidF is the
identity natural transformation fromF to itself. ClearlyCF is a cofibration over the categoryF where
we have a functorp : CF → F which maps everyF -coalgebra to the functorF and every arrow(σ, η)
to η.

Here we recall some standard terminology in category theory [4, 26]. For a total categoryCF and the
base categoryF of this cofibration, an objectc of CF and an arrowf : c → d with pc = F andpf = η
are calledoverF andoverη respectively.

Note that all the functors we use in the sequel are in a particular collection of functors: the so-called
Kripke polynomial functors(KPFs). Such functors are the endo-functors onSet finitely built up from
the following syntax:

F (X) ::= C | X | F1(X)× F2(X) | F1(X) + F2(X) | C → F1(X)

whereC is an arbitrary non-empty constant set,F1, F2 are two previously defined KPFs. Theproductof
two setsA,B is a setA× B in Set together with two projectionsπ1 : A× B → A, π2 : A× B → B.
Thecoproduct (sum)of A andB is an objectA + B together with two injectionsι1 : A → A + B, ι2 :
B → A + B. TheexponentAB (or B → A) is used for the collection of functions from a setB to A.

3 Class Diagrams

One of the main artifacts to produce in OO modelling are class diagrams. A class diagram shows the
static structure of a system, consisting of a set of classes and the relationships between them. A class is an
abstract description of a set of objects with similar structure, behavior and relationships. The description
of a class includes the common attributes and operations of the objects belonging to the class, whereas the
structural relationships between it and other classes are represented by generalizations and associations,
including aggregation and composition.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Class Diagrams 5

3.1 Syntax of Class Diagram

The UML Specification [45] describes the UML abstract syntax as UML class diagrams depicting the
UML metamodel and well-formedness rules together with examples. There are descriptive informal text
associated with each diagram for describing the abstract syntax.

Here we give the brief description of the abstract syntax of UML class diagrams in a top-down fashion,
the detailed formal syntax and well-formedness rules for class diagrams defined by using RSL can be
found in [15]. A class diagram is formed by classes and relationships among them. A set of well-formed
rules is needed to assure that the class diagram is well-formed. Before we give the definition of class
diagram, we first introduce a set of namesName as the name space of a class diagram, the elements in
which are the names of classes, attributes, operations and associations. We useT for the family of data
types, every element in which corresponds to a set of data values. For example,Bool andInt are used
for boolean and integer types.

Definition 3.1 (Class Diagram)A class diagram is a tuple:CD = 〈C,A, C−−− ,WFCD〉 where

• C is a nonempty finite set of classes;

• A is a finite set of associations;

• C−−− ⊆ C× C is the generalization relationship between classes;

• WFCD is a set of well-formedness rules onCD.

A class is a description of a set of objects that share the same attributes, operations and relationships. In
UML class diagrams, a class consists of a name, a set of attributes, a set of operations and a multiplicity.
A list of properties may be listed in a class to show some class attributes or tagged values. A class can
be abstract, root or leaf in the generalization relationship. A template is a class with one or more formal
parameters which describes a family of classes, each class specified by binding the parameters to actual
values.

Definition 3.2 A classC consists of the following parts:

• the name of the classname(C) ∈ Name;

• the set of its attributesAts(C);

• the set of its operationsOps(C);

• its multiplicitym(C) ⊆ Int which is optional;

• the optionalisAbstract : Bool which specifies whether it can be directly instantiated;

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Class Diagrams 6

• the optionalisRoot : Bool which specifies whether it has no ancestors;

• the optionalisLeaf : Bool which specifies whether it has no descendants;

• the optional parameter listP provided to a parameterized class (template).

An attribute describes a range of values that instances of a class may hold. It has a visibility, a name, a
type, a multiplicity which is the possible number of data values for the attribute that may be held by one
object, a changeability to show whether the attribute value may be changed after the object is created, an
initial value specifying the attribute value upon initialization, and a target scope specifying whether the
targets are Instances or Classifiers.

Definition 3.3 An attributeAt of classC consists of the following parts:

• the optional visibility of the attributevisibility(At) which may bepublic, private or protected;

• the name of the attributename(At);

• the type of the values of the attributetype(At), which may be basic types or other classes in the
class diagram;

• the optional multiplicity of the attributem(At) ⊆ Int;

• the optional changeability of the attributechangeability(At) which may befrozen, addOnly
or changeable;

• the optional initial value of the attributein(At) which has typetype(At);

• the optional target scope of the attributescope(At) which may beclassifier or instance.

The default syntax given in UML specification [45] is:

visibility name [multiplicity]: type-expression = initial-value{property-string}

An operation is a service that can be requested from an object to effect behavior. It has a visibility, a
name, a signature which consists of a list of formal parameters and an optional result type. Each element
of the parameter list has a name and a type. Furthermore, an operation may have a scope and can be
abstract.

Definition 3.4 An operationOp of classC consists of the following parts:

• the optional visibility of the operationvisibility(Op) which may bepublic, private or protected;

• the name of the operationname(Op);

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Class Diagrams 7

• the list of its formal parametersPOp, the elements of which has the form

kind parameter name : parameter type = default value,

wherekind includein, out and inout, the default value isin. The type ofPOp type(POp) is the
product of the typesparameter type of its elements;

• the optional result typertypeOp;

• the optional scope of the operationscope(Op) to show if its applicable to the instances of the
class or the class itself;

• the optionalisAbstract : Bool which specifies whether the implementation of the operation is
supplied in the class or by a descendant.

• the optionalisQuery : Bool states whether or not it will change the state of the object after
applying the method.

The default syntax of operation is:

visibility name (parameter-list): return-type-expression{property-string}

Different classes in a class diagram are related by different kinds of relationships. Relationships in UML
class diagrams are separated into three categories: associations, generalizations and dependencies. Each
relationship should satisfy the well-formedness rules.

Definition 3.5 A relationship is an association, a generalization or a dependency among classes to-
gether with a set of well-formedness rules on it.

An association in a class diagram describes discrete connections among objects or other instances in a
system [53]. An association may have a name and two or more association ends, each of them specifies
a class being connected by the association and a set of optional properties that must be fulfilled for the
relationship to be valid [45], including a role name, a multiplicity, a navigability, an aggregation property,
a changeability, an ordering property, a target scope and a visibility.

Definition 3.6 An associationA consists of the following two parts:

• the name of the associationname(A);

• the set of association ends{e : End(A)}.

Definition 3.7 An association ende : End(A) of associationA consists of the following parts:

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Class Diagrams 8

• the class being connected at this endclass(e);

• the role name of the endname(e), which provides a name for traversing from a source instance
across the association to the target instance or set of target instances when it is put on a target
end;

• the multiplicity of the endm(e) ⊆ Int which specifies the number of target instances that may be
associated with a single source instance through the association when it is put on a target end;

• the navigabilityisNavigable(e) : Bool which specifies whether traversal from a source instance
to its associated target instances is possible when it is put on a target end;

• the aggregation propertyAggregationKind(e) specifies whether the end is an aggregation with
respect to another end, the possible values of it includeaggregate, composite andnone;

• the changeabilitychangeability(e) which specifies whether an instance of the association may be
modified from another end, the possible values of it includefrozen, addOnly or changeable;

• the orderingordering(e) which specifies whether the set of links from the source instance to the
target instance is ordered when it is put on a target end, the possible values of it includeunordered
andordered;

• a target scopescope(e) which specifies whether the target value is an instance or a classifier;

• visibility(e) specifying the visibility of the end from the viewpoint of the class on the other end,
possible values arepublic, private andprotected.

A generalization is a relationship between a superclass and a subclass, in which objects of the subclass
are substitutable for objects of the superclass.

Definition 3.8 A generalizationC1 C−−−C2 is a directed relationship between two classes: a subclass
C2 and its superclassC1.

A dependency is a relationship from a client to a supplier which states that the client requires the presence
and knowledge of the supplier. According to [5], all relationships, including association, generalization
are kinds of dependencies. Different stereotypes can be defined to represent shades of dependencies, and
each stereotype has its own semantics. Therefore, it is almost impossible to give a precise semantics to
such a relationship. Its semantics is decided by the kind of dependency being used by the users. In this
paper, we only focus on the other kinds of relationships and discuss their semantics in the following.

A well-formed class diagram should satisfy a set of well-formedness rules being given in [45]. A RSL
representation of the formal syntax and well-formedness rules of UML class diagrams can be found
in [15]. In the following, we always assume that the class diagrams are well-formed if not explicitly
specified.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 9

Student
name: String
ID: Number
transfer()

Student −name: String
−ID: Number
+getname(): String

Student

+student(String, Number): Student
−changename(String): Student
+transfer(Department): Student
+getID(): Number

(2) (3)(1)

Figure 1: Different representations of a class in UML

4 Coalgebraic Semantics of Class Diagrams

4.1 Semantics of Classes

In UML, a class is a description of a set of objects that share the same attributes, methods and rela-
tionships. Every objecto of a classC in a system has an identifierido which is unique in the sys-
tem. We denote the set of identifiers asId. Therefore, an objecto : C is represented as a triple
o = (ido, UC, αC : UC → F (UC)) whereUC is the state space of the classC, andF is a functor
encapsulating a signature of attributes and methods. During the lifetime of an object, its local stateu
may change over the state spaceUC, but its identifierido, state spaceUC and transition structureαC

remain the same. Therefore, we can use a pair(ido, u) to present an objecto at a particular stateu.

In different development phases, either or both of the attribute and operation compartments may be
shown when needed and omitted in other contexts. See Figure 1 as an example for a class with details
suppressed, details in analysis-level and in design-level.

For the most abstract form of class representation in which all the details are suppressed, a class is
interpreted as a set of objects, which assigns a type to the class. For example, the first class in Figure
1 defines a classStudent as a setStudent. An object of this classs : Student is interpreted as an
element of this sets ∈ Student. Such a set is called theobject typeof the class [1].

Using the form of semantic function, we can define the semantics of a class with only one name and
details suppressed.

S[[C]] ∆= C

whereC is a set of all the objects of the class. Every element inC has an identifier and a hidden state
space of possible states and will be instantiated by a coalgebra in later stages of development when the
attributes and methods of the class are specified.

At the analysis level of software development, the type of attributes and methods of a class may be shown
in the class diagram. See Figure 1 (2) as an example. From the object-oriented perspective, classes are
built around a hidden state space, so we have the following definition:

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 10

Definition 4.1 (coalgebraic class signature)A coalgebraic class signatureΣ is a pair (X, α : X →
F (X)) whereX is a carrier set corresponding to the state space of the class, andF is a polynomial
functor which is a product of a finite set of functorsF =

∏
i Fi. α : X → F (X) is used to represent the

types of the attributes and methods in the class. It is also sufficient to give the pair(X, F) to represent
the class signature as an abbreviation.

Consider Figure 1 (2), we can get its signature as a pair(Student, F) whereStudent is the carrier set,
andF (X) = String × Number × XDepartment. 1 In this exampleX corresponds to the carrier set
Student. Thus the sequence of its methods (attributes)〈name, ID, transfer〉 can be identified with a
functionStudent → F (Student).

Therefore, a UML classC in this stage gives a class signature(C,F) and can be interpreted as a category
of coalgebras of such a functorF .

S[[C | at1 : A1, . . . , atm : Am, op1 : B1 → C ×D1, . . . opn : Bn → C ×Dn]] ∆= CoalgFC

whereFC is an abbreviation for the functorFC : X → ∏
1≤j≤m Aj ×

∏
1≤i≤n(X ×Di)Bi . CoalgFC

is the category ofFC-coalgebras (as objects) andFC-homomorphisms (as arrows)2.

Note that here we do not distinguish between attributes and methods, like e.g. in Eiffel. [24] shows that
both attributes and methods can be represented by functors in a unified form. The difference between
them lies in the form of the functors being used. For the attributes, the associated functor is a constant
functor which does not change the state space. For methods, the associated functor does affect the state
space of the class. Moreover, we do neither give the visibility description of attributes and methods,
nor their implementation details. In fact, these should be given at a later phase of development, as the
third class in Figure 1 shows, or specified in other diagrams (such as statechart diagrams). The attributes
such asname should be private and can not be used or modified outside the class (as shown in the third
class in Figure 1), that means, they are not same as the ordinary observers because they can only be
used inside the hidden state space. Therefore, we can get the intuition of separating the observers of a
class into external and internal parts to represent the public view and private view of the class separately.
Moreover, there will be another view from the perspective of generalization: protected view, which
includes the methods that can be accessed by the class and its subclasses. This separation is very useful
for the designer of a system, and will be discussed below.

Now we turn to such classes at the design level. UML provides three kinds of visibility for the attributes
and methods of a class at this phase: public(+), protected(#) and private(-).

The public view of a class describes its public methods by which the state space of the class can be
visited and modified from outside. Therefore, we can get the following definition of an external class
signature.

1the exponentialXY represents the set of arrows fromY to X.
2Note that here we make a simplification and only use polynomial functors for signatures of the methods. For binary methods

or more generally,n-ary methods which takes both covariant and controvariant appearance of the object type of the class, a
framework is provided by Hendrik Tews which uses extended polynomial functors. Readers can use [61, 62] as references.
Another point is that the category is a subcategory ofCF in Section 2

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 11

Student
name : String
ID : Number

changename(n:String) : Student

......
Student(n:String,i:Number):Student

pre: n <> self.name
post: self.name = n

post: Student(n,i).name = n and
Student(n,i).ID = i

Figure 2: Constraint

Definition 4.2 (external class signature)An external class signature is a pair(X,Fpub) in which:

• X describes the carrier set of the class;

• Fpub is a functor on the state spaceX, being used to represent the public view of the class.

As an example, the external class signature of the third class in Figure 1 is the pair(Student, Fpub)
whereFpub(X) = String ×Number ×XDepartment The public methodstudent is used for creating
new objects of this class. It can not be used as a component ofFpub because it is not an observer but
a creator (usually being called constructor in OO method). Methods like this can be modeled by the
concept ofinitial state in the state space of the coalgebra which is used by Jacobs in the definition of the
semantics of objects and classes [23, 24].

A user of a class is not interested in the details of the class’s internal implementation, but only in the
behavior it can provide. In fact, this is why the coalgebraic description is appropriate for classes. In
coalgebraic approaches, the state space of a class is dealt with as a black box which can only be accessed
via specified operations which represent the functions of the class. However, from the developer’s per-
spective, what is inside the state space of a class also should be considered as well as the public part of
the class in order to implement (additional) methods of the class. Similarly as the definition of external
class signature, we can get the definition of signatures(X, Fpri) and(X, Fpro) whereFpri andFpro are
functors for private and protected views respectively.

Now we can get the definition of (internal) class signature which describes the internal structure and
behavior of classes as follows:

Definition 4.3 (internal class signature)An (internal) class signature is a pair(X,F) whereX is the
carrier set being used to specify the class state space andF is a functor which is the product of functors
F = Fpub × Fpro × Fpri being used to represent the types of all the attributes and methods provided in
the class.

In fact, a class signature is not enough for specifying a class in UML (especially in the later phases).
In a class diagram, the values of some attributes and the behavior of some methods may be specified
explicitly by constraints. The concept of constraint allows semantics of some modeling elements to be
specified linguistically. UML provides a constraint language OCL [45] to describe such constraints. The

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 12

constraints in OCL are invariants and pre- and post-conditions which can be used to state conditions that
must be satisfied for any models.

The constraints on a class in UML can be represented as a set of formulasΦ.Since Moss [44] first realized
that the shape of a coalgebra (its interface functor) determines a logical modal language, a lot of work on
the connection of coalgebras and temporal logic followed [27, 51, 35, 36]. We can also use the associated
temporal operators in the formulas inΦ naturally and thus every axiom can be a formula. However, first-
order logic is enough here. For example, the constraint for methodchangename in Figure 2 can be
translated to the following axiom:

∀s : Student, n : String.(¬(n = name(s)) ⇒ name(changename(s, n)) = n)

The constraint for methodStudent in Figure 2 is used for specifying the initial attribute value of newly
created objects of this class. Such conditions for newly created objects also can be represented as a set
Ψ of formulas. As an example, the constraint in Figure 2 is described as:

∀n : String, i : Number.(name(student(n, i)) = n ∧ ID(student(n, i)) = i)

In the semantic definition of such classes in UML class diagrams, we follow the classic work of Jacobs
and others [23, 24, 25, 50] on the coalgebraic semantics for classes. Every class in a UML class diagram
is taken as a coalgebraic specificationSpec.

Definition 4.4 (class specification)A class specification is a tuple(F, Φ,Ψ) in which:

• F is a functor on a local state spaceX, being used to represent all the attributes and methods of
the class;

• Φ is a set of axioms that gives the constraints to the functors for the attributes and methods to
characterize the properties of the class;

• Ψ describes the properties that hold for newly created objects.

A model (class implementation) of a given class specificationSpec = (F, Φ, Ψ) is a triplec = (U,α :
U → F (U), u0), whereU is a carrier set interpreting the state space of the class,α : U → F (U) is the
transition structure which satisfies all the properties given byΦ andu0 ∈ U is an initial state satisfying
Ψ.

The semantics of a concrete (not abstract) classC in a UML class diagram is defined as the category
Coalg(Spec) of models of the corresponding coalgebraic class specificationSpec together with the
initial state preserving homomorphisms between them.

S[[C]] ∆= Coalg(FC,ΦC,ΨC) if isAbstract(C) = False

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 13

<<interface>>
Transferable

+needTransfer(Department): Boolean
+transfer(Department): Student

Visitable

Transferable

Student

. . .

+getname(): String

+transfer(Department): Student
+needTransfer(Department): Boolean

Department

<<use>>

*

. . .

1

Figure 3: Interface

where(FC,ΦC,ΨC) is the specification of classC and the boolean value functionisAbstract specifies
whether the classC can be directly instantiated. This category is a subcategory ofCF defined previously.
Its objects are

Obj(Coalg(FC, ΦC, ΨC)) = {c = (UC, αC : UC → FC(UC), u0 ∈ UC) |
(c |= ΦC) ∧ (c, u0 |= ΨC)}

wherec |= ΦC means that all the axioms inΦC are satisfied by coalgebrac andc, u0 |= ΨC means that
the properties inΨC are satisfied by the initial stateu0 of c. Their formalization is immaterial for the pur-
poses of the present paper. The arrows in the category are initial state preservingFC-homomorphisms.

An interface in UML class diagrams is the description of the externally visible behavior of a class without
specifying the internal structure. Usually, each interface contains only a part of the operations of a class
and no attributes. Figure 3 is an example of an interface. The interfaceTransferable specifies a part
of the behavior of classStudent which can be viewed by classDepartment. The following definition
shows the specification of a class interface.

Definition 4.5 (class interface specification)A class interface specificationSpecext of a class specifi-
cationSpec = (F, Φ, Ψ) is a pair (Fext, Φext) in which:

• Fext is a functor on the state space ofSpec, being used to represent an interface of the class;

• Φext is a set of axioms that gives the constraints to the functorFext to characterize the externally
observable properties of the class interface;

Given an interface specificationSpecext = (Fext, Φext) of Spec, for a modelc = (U,α : U → F (U))
of Spec, a corresponding interface iscext = (U,αext : U → Fext(U)) which is a restrictioncext =
c ¹ Fext and satisfies all the properties given byΦext.

We can find that Definition 4.5 is somewhat similar as Definition 4.4, but there is no conditions for newly
created objects. This is because “an interface is formally equivalent to an abstract class . . . ”[45] and we
can not create an object from an abstract class.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 14

In the previous definitions,Fext is used to represent an interface of a class, whileF describes the structure
and behavior of the class which is useful for the designer and programmer of the class but may not be vis-
ited from outside. The following definition describes the relationship between these two specifications,
which also gives the interpretation of encapsulation.

Definition 4.6 (encapsulation)Let Spec = (F, Φ,Ψ) andSpecext = (Fext, Φext) be a class speci-
fication and one interface specification of this class respectively, then an encapsulation fromSpec to
Specext is a set of restrictionsf = (id, β) between each implementation ofSpec and its restriction
underSpecext, where the natural transformationβ : F ⇒ Fext is a projection fromF to Fext defined
as follows:

β =
∏Q

i Fi=Fext

(πi : F → Fi)

such that for allφ ∈ Φext andc = (U,α, u0) being a model ofSpec, c |= φ.

From Definition 4.6 we can get the following proposition:

Proposition 4.1 If there is an encapsulation fromSpec = (F, Φ,Ψ) to Specext = (Fext, Φext), then
cext = (U,αext : U → (β ◦ F)(U)) is an interface for every modelc = (U,α : U → F (U), u0) of
Spec.

The relationship of a classc and its interfacecext can be expressed by the following commuting diagram.

U
c- F (U)

@
@

@
@cext R
Fext(U)

βU

?

Intuitively, the transition structureα, α′ for two implementationsc = (U,α : U → F (U), u0) and
c′ = (U ′, α′ : U ′ → F (U ′), u′0) of the same class specificationSpec = (F, Φ,Ψ) should be equal.
Therefore, we have aF -homomorphismf between them:

U
f - U ′

F (U)

α

?

F (f)
- F (U ′)

α′

?

andf(u0) = u′0.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 15

The identity function on aSpec-model is always aF -homomorphism preserving initial state, and the
composition of twoF -homomorphisms preserving initial state is still aF -homomorphism preserving
initial state. Thus the models of a specificationSpec = (F, Φ,Ψ) (which areF -coalgebras satisfyingΦ
andΨ) together with theF -homomorphisms preserving initial state forms a category, which is denoted
byCoalg(Spec). This is a subcategory of the categoryCF for the restriction ofΦ andΨ on the possible
state spaces.

Definition 4.7 (semantics of a class)Every class in a UML class diagram is a coalgebraic specification.
The semantics of a class in a UML class diagram is the categoryCoalg(Spec) of models of the corre-
sponding coalgebraic class specificationSpec together with the initial state preserving homomorphisms
between them.

Remark. From Theorem 2.5 in [54], we know that the graph of the homomorphismf between any
two models of a same class specification is a bisimulation between them. Thus we can say that they are
bisimilar (observational equivalent). That means, we can have different implementations for one class
specification given by a UML class diagram and they are not distinguished from outside and one such
implementation can be used instead of another.

Now we can get the following semantic function for the items in UML classes3:

For attributes, the default syntax is:

visibility name: type-expr[multiplicity ordering] = initial value{property-string}

The semantic function of an attributeAt in classC is defined as follows:

S[[v At : T [m] = i{p}]] ∆= {At : UC → FAt(UC) | S[[v]] ∧ S[[At[m]]] ∧ S[[At = i]] ∧ S[[At{p}]]} (1)

whereFAt is the functorFAt : UC → P(S[[T]]) whereP is the powerset functor used for multiplicity of
the attribute (can be dropped whenever the multiplicity is exactly one), andv is used for visibility of the
attributeAt:

• S[[v = +]] ∆= FAt ⊆ Fpub;

• S[[v = #]] ∆= FAt ⊆ Fpro;

• S[[v = −]] ∆= FAt ⊆ Fpri;

The multiplicity part shows the multiplicity of the attribute, which can be omitted, in which case it is
exactly one (1..1). The semantic function for multiplicity of an attributeAt in classC is:

S[[At[m]]] ∆= ∀(UC, αC, u0 ∈ UC) ∈ Obj(S[[C]]), ∀u ∈ UC.card(At(u)) = m

3We assume that for a data typeT , S[[T]]
∆
= [[T]], [[T]] is the set which includes all the values of the type.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 16

and if the multiplicity is specified as a range

S[[At[l..k]]] ∆= ∀(UC, αC, u0 ∈ UC) ∈ Obj(S[[C]]), ∀u ∈ UC.l ≤ card(At(u)) ≤ k

The additionalorderingproperty is meaningful if the multiplicity upper bound is greater than one. The
values may be unordered or ordered, the default value is unordered:

S[[At[l..k ordered]]] ∆= l > 1 ∧ ∀u ∈ UC.At(u) is an ordered set

The initial value is used for initializing the attribute of a newly created object, it can be omitted. Its
semantic function is:

S[[At = i]] ∆= ∀(UC, αC, u0) ∈ Obj(S[[C]]).At(u0) = i;

The optionalproperty stringindicates property values of the attribute, like changeability. We give the
semantics of the changeability and scope properties of attributes as follows:

• S[[At{frozen}]] ∆= ∀(UC, αC, u0) ∈ Obj(S[[C]]), ∀u ∈ UC.At(u) = At(u0);

• S[[At[l..k]{addOnly}]] ∆= k > l ∧ ∀(UC, αC, u0) ∈ Obj(S[[C]]),∀u1, u2 ∈ UC.(u1
αC→ u2) ⇒

At(u1) ⊆ At(u2);

• S[[At{changeable}]] ∆= ∀(UC, αC, u0) ∈ Obj(S[[C]]).∃u1, u2 ∈ UC.u1 6= u2 ∧ At(u1) 6=
At(u2);

• S[[At]] ∆= ∀(UC, αC, u0) ∈ Obj(S[[C]]), ∀o1, o2 be objects of classC, (u1, u2) is a state in the
state space ofo1 £ o2.S[[At]](u1) = S[[At]](u2);4

• If the scope of an operation is instance (the default), then the semantic function is as (1) shows:
∀(UC, αC, u0) ∈ Obj(S[[C]]), ∀u ∈ UC.At(u) ∈ S[[T]].

For operation compartment of a class, the default syntax is:

visibility name(parameter-list) : return-type-expr{property-string}
The parameter-list part is a list of formal parameters, each element is specified with the syntax:

kind name: type-expression= default-value

wherekind is in, out or inout, with the defaultin if absent. The semantic function of an operationOp in
classC is defined as follows:

S[[v Op(i1 : I1, . . . , in : In,out o1 : O1, . . . ,out om : Om, inout b1 : B1, . . . , inout bk : Bk) : A{p}]]
∆= {Op : UC → FOp(UC) | S[[v]] ∧ S[[Op{p}]]} (2)

4which is the UML notation used for representing that the scope ofAt is the classifier and each value contains a reference to
the target Classifier itself but not to an Instance of the Classifier. A classifier scope attribute corresponds to the static attributes
in object oriented programming languages such as C++, which means that the value of this attribute is same for all the objects
of the class at the same time. In general, such attributes should be private, shared among a set of objects and with the guarantee
that no other objects can have access to that attribute.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 17

whereFOp is the functorFOp(UC) = Bh(UC×S[[O×B×A]])S[[I×B]] representing the signature of the
methodOp, I = Πn

i=1Ii, O = Πm
i=1Oi, B = Πk

i=1Bi are used for the types of the input, output and inout
parameters respectively.A is the type of the returned value.Bh is the behavior monad presenting the
behavior pattern of the method, andv is the visibility of the method, which is similar as in the semantics
of attributes:

• S[[v = +]] ∆= FOp ⊆ Fpub;

• S[[v = #]] ∆= FOp ⊆ Fpro;

• S[[v = −]] ∆= FOp ⊆ Fpri;

We now consider the semantics of the property-string which specifies the property of a method. In the
following, we give the semantics of the query and scope properties.

• S[[Op{query}]] ∆= ∀(UC, αC, u0) ∈ Obj(S[[C]]), ∀u ∈ UC, p : I × O × B, Op(u)(p) = (u, a)
wherea ∈ S[[O ×B ×A]];

• If the scope of an operation is instance (the default), then the semantic function is as (2) shows;

• If the scope of an operation is the classifier5, then the corresponding function is not on any instance
of the class, but on the class, and does not need to be invoked for a particular object of the class.
SupposeOp is a classifier scope operation in classC, then it can only change the static attributes
of this class.

S[[v Op(pl) : A{p}]] ∆= S[[v Op(pl) : A{p}]]
which satisfies that at any possible stateu ∈ UC of an objecto of classC, pl be a list of parameters,
u′ = π1(Op(u, pl)) be the successor state ofu after the execution of the classifier scope operation
Op, then for all instance scope attributeAt, At(u′) = At(u).

Theorem 4.1 The execution of a static operation in classC keeps the bisimulation relationship between
two objects of this class.

Proof: The proof of this theorem is easy. Suppose for two objectso1 ando2 of classC, ≈ is a bisim-
ulation relationship between them. Letu1, u2 be two states corresponds to the two objects separately,
u1 ≈ u2, u′i is the successor state ofui for i = 1, 2 after the execution of a classifier operationOp, then
we have for all instance scope attributesAI , AI(u′i) = AI(ui), i = 1, 2, soAI(u′1) = AI(u′2) because
AI(u1) = AI(u2). From the semantics of classifier scope attributes, we can know that for any classifier
scope attributeAC, AC(ui) be same for all objects at the same time. Thereforeo1 ando2 are equivalent
for all observations after the execution ofOp.

5Such an operation corresponds to a static method in C++.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 18

coursestudent courseID : Number
name: String

CourseStudent
name: String *
studentID: Number

*takecourse

Figure 4: Association

This theorem simplifies the construction process of bisimulation between objects similar as that we
discussed for components in [59]. We only need to consider the instance scope operations of a class.
The result can be very useful, for example, it can reduce the complexity of verification of properties for
a system in the process of model checking and improve the efficiency of test case generation in testing.

The propertiesisAbstract, isLeafandisRootwhich are related to inheritance of classes will be discussed
in section 4.3.

Finally, we will show the semantics for interfaces. From previous discussion we can know that an
interface is a collection of operations that specify a service provided by a class (in UML interfaces can
also be used for specifying services of components). Therefore, an interface must be attached to the class
that realizes the interface. So the semantic function for an interfaceI of classC is:

S[[<< Interface >> I]] ∆= {I : UC → FI(UC) | (UC, α : UC → FC(UC), u0) ∈ Obj(S[[C]])}
whereFI ⊆ FC describes the operations to represent the behavior of the interface.

4.2 Semantics of Associations

An association in a class diagram describes the connections among objects in a system. It may have
two or more association ends. In this paper, we first take into account the binary association. The
interpretation for n-ary associations is given in section 4.2.8. Figure 4 shows an example of association.

SupposeSpecU andSpecV are two class specifications of classU andV in a class diagram.A is
a binary association between them.c = (U,α) andd = (V, β) are objects inCoalg(SpecU) and
Coalg(SpecV) respectively, then associationA which connects the two coalgebras (classes) can be
interpreted as a state spaceSA ⊆ P((Id × U) × (Id × V)). Identifiers in the setId are necessary
to distinguish objects of the same class being in the same state. An elements ∈ SA is a state of the
association which records a set of object pairs being linked by the association simultaneously at the state
s. Every pair of objects is called a link between them. The states also provides a global view for the
whole system consists of the two classes associated byA.

Every association has three basic components: a name, the role and the multiplicity at each of its ends.
The semantic for an association is interpreted by the corresponding observers in each of the classes being
related by the association. We will give the semantic function for associations as follows:

For an associationA between classU andV in a class diagram (sometimes the association nameA is
omitted),SpecU andSpecV are two class specifications corresponding to the two classes. The role

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 19

names on the two ends areuA andvA. The multiplicities on the two ends aremU andmV , which are two
sets of non-negative integers. Then the semantics of an association is defined as a pair of the coalgebraic
observers:

(uA : (Id× V) → P(Id× U), vA : (Id× U) → P(Id× V)) (3)

whereU and V are the statespaces of the coalgebras(U,α : U → FU (U), u0) and (V, β : V →
FV (V), v0) which are the objects in the categories corresponding to the semantics of classesU andV.

In fact, for an association which is given as the pair of observers in (3), we can find that they are observers
on objects of the two involved classes and do not change their states. Therefore, they can be treated as
attributes in the corresponding classes. So the attributes of a class can be separated into two categories:
the valueattributes which corresponds to the attributes inside the class and thereferenceattributes for
the associations of the class.

In order to represent the association between two classes, the two coalgebraic observers must be related
as the following law:

Law 4.1 For all objectsoU , oV of classesU andV, we have

oU ∈ uA(oV) ⇔ oV ∈ vA(oU).

So the semantic function of an association is given as the pair of observers in (3) which satisfyingLaw
4.1:

S[[UuA
A

vAV]] ∆= {(uA, vA) | Law4.1}

The UML specification [45] states that each association end has a multiplicity constraint (may be un-
specified in an incomplete model) which is ”a subset of the open set of non-negative integers”.

The multiplicity property of an association end which specifies how many objects of a class at the given
end can be linked with a single object of another class can be described by the cardinality restriction of
the range sets of the corresponding coalgebraic observer. For example, the multiplicity∗ on theStudent
end in Figure 4 means that one course can be taken by any number of students and the multiplicity∗ on
theCourseend means that one student can take any number of courses. There is no restriction on the
upper bound of the multiplicity. So we can represent these conditions as:

∀c : Course.card(student(c)) ≥ 0
∀s : Student.card(course(s)) ≥ 0

whereCourse andStudent represent the set of courses and students at any system state,student and
course are the observers corresponding to the associationtakecourse.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 20

If the multiplicity is presented as a pairlb..ub wherelb andub correspond to the lower bound and upper
bound separately, then such an association will be interpreted as:

S[[UuA

A
vA
lb..ubV]] ∆= {(uA, vA) | Law4.1 ∧ ∀oU : Id× U.card(vA(oU)) ≥ lb ∧ card(vA(oU)) ≤ ub}

wherevA is the role name on the association end atV side.

In general, the multiplicity at an association end can be stated ass = lb1..ub1, lb2..ub2, . . . , lbn..ubn,
which is a sequence of pairs, then the association will be interpreted as:

S[[UuA

A
vA
s V]] ∆={(uA, vA) | Law4.1∧

∀oU : Id× U.
∨

i=1,...,n

(card(vA(oU)) ≥ lbi ∧ card(vA(oU)) ≤ ubi)}

From the discussions above for Figure 4, we can find that once the multiplicity is given explicitly in the
diagram, the semantic function is:

S[[UuA
mU A

vA
mV

V]] ∆={(uA, vA) | Law4.1 ∧ (∀oU : Id× U.(card(vA(oU)) ∈ mV))∧
(∀oV : Id× V.(card(uA(oV)) ∈ mU))}

There are a number of properties can be used to model the details of a system, such as navigation,
qualification, and constraints on associations. We will discuss them in detail in the following separately.

4.2.1 Navigation

For a plain association such as that in Figure 4, it is possible to navigate from objects of any class
to objects of the other. In other words, navigation across the association is bidirectional. However,
sometimes the navigation is limited to just one direction. See Figure 5 as an example which describes
the services of an operation system. Given aUser, the correspondingPassword objects can be found,
but given aPassword, the correspondingUser can not be identified.

User
1

owner
Password

*

key
{ordered}

Figure 5: Navigation

For an associationA between classesU andV in a class diagram, the navigation is represented asU →
V. The other conditions are the same as in the definition of general associations. Then the semantics of
navigation is given as:

S[[U−→
A

vA
mV

V]] ∆= {vA : Id× U → P(Id× V) | ∀oU : Id× U.card(vA(oU)) ∈ mV }

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 21

1 *

−key+owner
**

+user
PasswordUserUserGroup

Figure 6: Visibility

4.2.2 Ordering

Usually, an observer for an association yields an unordered set of objects. However, sometimes ordering
constraints are added to association ends to state whether the objects related to a single object at the
other end of this association have an order that should be preserved. In the example of Figure 5, the
Passwords associated with aUser object may be kept in a least-recently used order and be marked as
ordered.

In fact, the ordering constraint is “a performance optimization and is not an example of a logically
ordered association” [46]. The multiplicity must be greater than1 so that the objects being connected
to one object at another side can form an order. The semantics of an ordered association is, that a total
order< must be considered on the set of observed objects (without duplicates):

S[[UuA
mu A

vA ordered
mv

V]] ∆={(uA, vA) | Law4.1 ∧ (∀oU : Id× U.(card(vA(oU)) ∈ mV))∧
(∀oV : Id× V.(card(uA(oV)) ∈ mU)) ∧ ∀n ∈ mv.n > 1∧
∃ < : V × V. isTotalOrder(<)}

where for an objectoU of classU, vA(oU) is the set of objects of classV that can form a sequence
according to a particular order. Note that this is a formal definition of the “is an ordered set” property
previously shown for attributes.

4.2.3 Visibility

The visibility of an association end can be specified as that of an attribute or method in a class by
appending a visibility symbol to the role name of the end. See Figure 6 as an example.

There are three levels of visibility in UML for association end. The default kind is public, which means
other classes may navigate the association and use the role name similar to the use of a public attribute.
Private visibility indicates that only the class at the other end may navigate the association and use the
role name, and objects at the end are not accessible to any objects outside the association. Protected
visibility means that only descendants of the class at the other end may access the association and use
the role name. Since the semantics of an association is given by attributes in the classes being related,

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 22

the semantic functions for visibility of association end are similar as those of the visibility of attributes:

S[[+uA]] ∆= uA ∈ Fpub

S[[#uA]] ∆= uA ∈ Fpro

S[[−uA]] ∆= uA ∈ Fpri

4.2.4 Changeability

The changeability property of association ends is similar to that of attributes. The default changeability
is changeablein which the links can be added, deleted and moved and no indicator is needed to be given
in the diagram. If the changeability is marked asfrozen, then no links may be added, deleted or removed
from an object since its creation and initialization. If the changeability is marked asaddOnly, then links
may be added to an object, but may not be deleted or modified.

The semantic function of changeability for an association end is defined as follows:

S[[UuA

A
vA frozenV]] ∆={(uA, vA) | Law4.1∧

∀oV = (idoV , v) : Id× V.π1(uA(oV)) ≡ π1(uA(idoV , v0))}

wherev is any possible state of objectoV , v0 is its initial state and

S[[UuA
mU A

vA addOnly
mV

V]] ∆={(uA, vA) | Law4.1 ∧ (∀oU : Id× U.(card(vA(oU)) ∈ mV))∧
(∀oV : Id× V.(card(uA(oV)) ∈ mU)) ∧ card(mU) > 1∧
∀oV = (idoV , v) : Id× V.π1(uA(oV)) ⊆ π1(uA(idoV , v′))
for any successor statev′ of v}

Here the operationπ1 is the projection from a pair to its first component:π1(a, b) = a. The result of the
application ofπ1 to a set of pairs is the set of results by applyingπ1 to every element.

4.2.5 Association Classes

UML allows an association to have its own attributes, which is represented by an association class. An
association class is an association that is also a class. It defines a set of features to the association itself
but not to any of the classes. Generally, we can decompose an association class into a class and two
one-to-many associations to represent it. See Figure 7 as an example, we can describe the association
class by the classJob and the two associationshasandfor. And becausehasis one-to-many andfor is
one-to-one, we can get the result that the cardinality of the range sets ofprovider, ownerandjobof can

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 23

Job
description

salary
dateHired

Job
description

salary
dateHired

Department Professor
department professors
1 assignedto

1 owner

1..*

1

jobs 1..*

has

1

for

Department Professor
department professors
1 assignedto 1..*

jobof

provider

Figure 7: Representation of an association class

only be1. Therefore, we can flatten the powersets in the ranges and get the observers equally as follows:

provider : Job → DepartmentΣ;

jobs : Department → P(Job)Σ;

owner: Job → ProfessorΣ;

jobof : Professor → JobΣ (4)

The result of the observers of associationassignedtoat a specified system stateσ can be got from (4) as
follows:

department(p, σ) = provider(jobof(p, σ), σ)
professors(d, σ) = {owner(j, σ) | j ∈ jobs(d, σ)}

The semantic function of an association class is defined by the semantics of the class together with the
semantics of two one-to-many associations as follows:

S[[UuV
mU AC

vU
mV

V]] ∆={(c, assoU , assoV) | c ∈ S[[AC]]∧
assoU ∈ S[[UuAC

1
aU
mV

AC]] ∧ assoV ∈ S[[ACaV
mU

vAC
1 V]]∧

∀oU : Id× U, oV : Id× V.oV ∈ vU (oU) ⇔ ∃!a : A.oV = vAC(a) ∧ a = aU (oU)}

4.2.6 Qualification

An association can be qualified. A qualifier is an association attribute or a tuple of attributes whose
values partition the set of objects related to an object across an association. See Figure 8 as an example

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 24

Product
Catalog

Product
Code

Product
1

Figure 8: Qualification

of qualification where we model an association between two classesProductCatalog andProduct.
In the context ofProductCatalog, we have aProductCode which identifies a particularProduct.
In this sense,ProductCode is an attribute of the association. Given an object ofProductCatalog
and given a particularProductCode, we can navigate to zero or one object ofProduct. Therefore,
we can interpret an association with a qualifier as an association class similar as the previous section and
interpret the qualifier as an attribute of the class.

Therefore the semantic function of qualification is defined as:

S[[U(Q) V]] ∆= S[[U
Q

V]]

4.2.7 Aggregation and Composition

A binary association may represent a whole-part relationship in UML, which is called anaggregation.
Simple aggregation is a kind of association which is “entirely conceptual and does nothing more than
distinguish a ‘whole’ from a ‘part’.” [5] andcompositionis “a strong form of aggregation, which requires
that a part instance be included in at most one composite at a time and that the composite object has sole
responsibility for the disposition of its parts. . . . ” [46]. Figure 9 shows an example containing one
aggregation, two composition and one ordinary association which is taken from [17]. Every paper has
one or more authors, exactly one abstract and one or more sections, and can be associated with at most
one conference.

In fact, the definition of aggregation and composition via meta attributes instead of using two meta classes
specifying their own characteristics separately in [45] and the next version of UML in [46] is argued to
be unclear and dubious by many researchers [20, 8, 56]. Brian Henderson-Sellerset al. have done a lot of
comprehensive work on analyzing the precise semantics of different kinds of WPRs (whole-part relation-
ship) [20, 8]. Contradiction in the definition of aggregation about whether the parts can be removed from
the whole before its death is noted explicitly in [8] and a revised metamodel of relationship is introduced
where the WPR is defined independently from associations, and aggregation and composition forms two
disjoint subclasses of WPR.

According to [8], a WPR must be asymmetry at instance level (an object can not be directly or indi-
rectly a part of itself,o 6= (o,−)). There is at least one property of a whole object is independent
of its parts’ properties and at least one property of the whole object whose value is determined by its
parts. The distinction between aggregation and composition is made clear by what are called “Secondary
Characteristics” in [8, 20], such as shareability, seperability/mutability, lifetime dependency, existential
dependency, and so on.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 25

PaperSection Conference

Author

Abstract

1..*

*

1 1

1

1..*

* 0..1

Figure 9: Aggregation and Composition

An object in an aggregation can be used as part of more than one objects. However, in a composition, an
object may be a part of only one composite at a time.

S[[UuA
mU

♦−−− vA
mV

V]] ∆={a | a ∈ S[[UuA
mU

vA
mV

V]] ∧ (mU > 1 ⇒
∃v ∈ V.∃o1, o2 : Id× U.((u1, u2) is a state ofo1 £ o2∧
u1 = (v,−) ∧ u2 = (v,−)))}

S[[UuA
mU

−̈−− vA
mV

V]] ∆={a | a ∈ S[[UuA
mU

♦−−− vA
mV

V]] ∧ 0 ≤ mU ≤ 1∧
∀v : V.((∃u1, u2 : U.u1 = (v,−) ∧ u2 = (v,−)) ⇒
u1 = u2 is the state of the same object of classU)}

4.2.8 N-ary Association

An n-ary association is an association among three or more classes. In this section, we establish an
approach to semantics for such associations which is a generalization of the binary case. An instance of
a n-ary association is an n-tuple of objects of the respective classes.

The multiplicity of an n-ary association is less obvious than binary multiplicity. The multiplicity on one
end represents “the potential number of instance tuples in the association when the other N-1 values are
fixed” [45].

In order to illustrate our approach, consider the ternary association in Figure 10 without the association
classRecord, which shows the record of a team in each season with a particular goalkeeper that may
be traded during the season and can be in different teams. This association is denoted by the following
observations whereY ear, P layer andTeam are the corresponding set of objects: :

team: Y ear × Player → P(Team);
season: Team× Player → P(Y ear);
goalkeeper: Y ear × Team → P(Player);

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 26

Year

Team
team

season

Player
goalkeeper

*

*

*

Record
goalsfor
goalsagainst
wins
losses
ties

Figure 10: An n-ary Association

and all of them must satisfy the multiplicity constraint given in the diagram.

Our approach is based on a decomposition of the association into three binary associations, as shown in
Figure 11. Each of the three new binary associations links one of the classes with theCartesian product
class of the others.

Team Year−x−Player

Team−x−Player

Year−x−Team

Year

Player
goalkeeper

season

team

*

*

*

Figure 11: The ternary associationRecordbeing decomposed

A Cartesian product class
∏

1≤i≤n Ci is an auxiliary class, whose objects aren-tuples of objects of
its component classesCi. The semantics of such a tuple of objects is the parallel composition of the
corresponding coalgebrasci ∈ S[[Ci]]. More precisely, parallel composition is defined by the free product
operator⊗ (see [60] for its formal definition). Thus, formally we have

S[[
∏

1≤i≤n

Ci]]
∆= Coalg×

whereCoalg× is a category with objects defined as free products of coalgebrasci denoted by
⊗

1≤i≤n ci,
whose action is the parallel composition of the component coalgebras.

The multiplicity constraints on the observations are:

∀y : Y ear, p : Player.card(team(y, p)) ≥ 0;
∀t : Team, p : Player.card(season(t, p)) ≥ 0;
∀y : Y ear, t : Team.card(goalkeeper(y, t)) ≥ 0;

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 27

Record
goalsfor
goalsagainst
wins
losses
ties

Team

Year

*

* *

team
Player

goalkeeper

1

season 1

1

Figure 12: The decomposition of the ternary associationRecordas an association class

If an n-ary association has its own attributes, such as the classRecord in Figure 10, we can decompose
it into three binary associations between the involvedn classes and the association class as Figure 12
shows and get three pairs of observations.

4.3 Semantics of Generalization

Generalization in a class diagram describes the inheritance relationship between a general class (super-
class) and a more specialized class (subclass). The fact that a classD being a subclass ofC in a class
diagram is represented asC C−−−D. We also say thatD inherits fromC. If D inherits fromC, then all
the public and protected attributes and methods inC can be found inD, either same as in the superclass
or being overloaded. Moreover, all the axioms and the creating properties inC should be satisfied inD,
and may be strengthened.

If there is such an inheritance relationship betweenD andC, a forgetful functorG : Coalg(D) →
Coalg(C) between the corresponding category of models can be derived as shown in [23].

One problem in generalization is the need of type coertions when invoking methods defined in a super-
class for subclass object. Methods defined in a superclass as public or protected can be invoked directly
in the inheritance hierarchy. If we use the carrier set of a class as the interpretation of its type, then the
carrier set of the subclass is the subset of that of its superclass. Therefore, we can use an injection map
between them to describe the reuse of a method defined in a superclass (Up) as the following diagram
shows:

Up ×B
mp- Up × C

Us ×B

ι× id

6

ms- Us × C

ι× id

6

If a method in a superclass is overloaded in its subclass, we only need to define it as a new method
in the subclass with the same name as the method in the superclass being overloaded and appropriate

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 28

type of parameters and result. In fact, overloaded methods are “more germane to implementation than to
specification” [12], so for simplicity, we will not discuss overloading in the following since class diagram
is mainly used in the analysis and design stages of system development.

Let (Fpub, Fpro, Fpri) and(F ′
pub, F

′
pro, F

′
pri) be the functor tuples representing the signature of the pub-

lic, protected and private parts of a superclassC and its subclassC′ respectively. By definition of the
keywordspublic, protectedandprivate in [46], it is obvious that allFpubi (Fproi) can be found as com-
ponents ofF ′

pub (F ′
pro) (that means, all the public and protected attributes and methods in the superclass

can be found in its subclass, with identical or overloaded definition. Moreover, subclasses may have
additional public and protected methods). Consequently, the two projectionsppub : F ′

pub Ã Fpub and
ppro : F ′

pro Ã Fpro (as natural transformations) exist.

We useFpubi|C′ andFproi|C′ to represent the methods in classC′ corresponding to those inC, then we
can get the projectionsppub : F ′

pub ⇒ Fpub andppro : F ′
pro ⇒ Fpro

ppub =
∏Q

Fpubi
=Fpub

(πi : F ′
pub → Fpubi|C′)

ppro =
∏Q

Fproi=Fpro

(πi : F ′
pro → Fproi|C′)

(5)

Now we turn to the inheritance between classes. The following definition gives a special kind of mor-
phism, calledinheritance morphism, between a class and its superclass.

Definition 4.8 (inheritance morphism) Suppose class specificationSpec′ inherits fromSpec, and
consider two coalgebrasc and c′ as models ofSpec and Spec′ respectively. Then an inheritance
morphism fromc′ to c is defined as a tuple(G, ppub, ppro), such that all states inU ′ are mapped byG to
the states inU , andG(u′0) = u0, whereG is the forgetful functor between the model categories of the
two class specifications,ppub andppro are the two projections, and the following diagram commutes.

Fpro(U) ¾Fpro
U

Fpub- Fpub(U)

Fpro(U ′)

Fpro(G) 6

Fpub(U ′)

Fpub(G)6

F ′
pro(U

′)

pproU ′
6

¾
F ′

pro

U ′

G

6

F ′
pub

- F ′
pub(U

′)

ppubU ′
6

Since a subclass does not inherit the private part of its superclass, we can derive the definition of class
morphism which is weaker than the notion of homomorphism of coalgebras.

Definition 4.9 (class morphism)Suppose(U,α : U → F (U), u0) and (V, β : V → F (V), v0) are
two classes of specificationSpec, then a functionf : U → V is called a class morphism iff preserves

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 29

initial state (f(u0) = v0) and the following diagram commutes:

Fpro(V) ¾Fpro
V

Fpub- Fpub(V)

Fpro(U)

Fpro(f)
6

¾Fpro
U

f

6

Fpub- Fpub(U)

Fpub(f)
6

With this definition, we can get the following theorem which shows that a model of a subclass specifica-
tion is a subclass of any model of its superclass specification.

Theorem 4.2 Let classc andd be two classes of the same specificationSpec, classc′ inherit from class
c, the inheritance morphism is(G, ppub, ppro). If there is a class morphismf from c to d, thenc′ also
inherits from classd. The inheritance morphism is(f ◦G, ppub, ppro).

Proof: Immediate from the composition of the two commuting diagrams in Definition 4.8 and 4.9, as the
following diagram shows, where the commutability of the whole diagram comes from that of its upper
and lower components.

Fpro(V) ¾Fpro
V

Fpub- Fpub(V)

Fpro(U)

Fpro(f)
6

¾Fpro
U

f

6

Fpub- Fpub(U)

Fpub(f)
6

Fpro(U ′)

Fpro(G)
6

Fpub(U ′)

Fpub(G)
6

F ′
pro(U

′)

ppro

6

¾
F ′

pro

U ′

G

6

F ′
pub

- F ′
pub(U

′)

ppub

6

In this framework, the semantics of the generalization relationship in UML class diagrams can be given
as all the possible inheritance morphisms between the models of the corresponding class specifications.

S[[C C−−−D]] ∆= {g : d → c | d ∈ Coalg(D) ∧ c ∈ Coalg(C)}

whereg is the inheritance morphism fromd to c.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 30

courseID : Number
name: String

CourseStudent
name: String

GradStudent

*
studentID: Number

*Takecourse

tutor: Professor

Figure 13: Association being inherited

Substitutability is an important property of generalization. It asserts that any instance of a subclass can
be used wherever objects of the superclass are expected without changing the behavior pattern. More
precisely, the subclass can simulate the behavior of its superclass. The pairp = (ppub, ppro) between the
signature functors of the two classes which is defined by projections ensures that the methods’ signature
of the superclass are consistent with that of the subclass.

Theorem 4.3 Let h = (g, p) be an inheritance morphism between classC′ and C, F ′ is a method
functor in classC′ being inherited from classC, then for all objectso of C′, p(F ′)(g(o)) = h(F ′(o)).

Proof: Consider the diagram given in the proof of Theorem 4.2. Suppose∀u′ ∈ U ′ be the state ofo,
then

h(F ′(o)) =h(F ′(u′))
=(p(F ′)(f ◦G))(p(F ′)(u′))
=p(F ′)((f ◦G)(u′))
=p(F ′)(g(u′))
=p(F ′)(g(o))

Associations are inherited by subclasses. See Figure 13 as an example. An association of classStudent
must be applicable when objects of classStudent are substituted by objects of classGradStudent. The
representation of associationTakecoursehas been given by a pair of coalgebraic functionsstudent and
course, here we define another pair of functions to represent the inherited association between class
GradStudent andCourse:

studentgs : Course → P(GradStudent),
coursegs : GradStudent → P(Course)

The semantics of the functions above are constrained by the functions of the corresponding association

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 31

of the superclassStudent:

studentgs(c) = student(c)|GradStudent

coursegs(gs) = course(g(gs))

Herestudent(c)|GradStudent means the restriction of the set of students taking coursec to the subset
in which all the elements are graduate students taking this course, andg is the inheritance morphism
between classStudent andGradStudent.

The semantic function is given as:

S[[Bb
m

c
nC C−−−D]] ∆={((b, c), g, (b′, d)) | (b, c) ∈ S[[Bb

m
c
nC]]∧

g ∈ S[[C C−−−D]] ∧ (b′, d) ∈ S[[Bb′
m′ d

n′D]]∧
m′ ⊆ m ∧ (∀oU = (id, u) : D.b′(oU) = b((id, g(u))))∧
(∀oV : B, oU = (id, u) : D.oU ∈ d(oV) ⇒
(id, g(u)) ∈ c(oV))}

whereg is the corresponding inheritance morphism for the generalization betweenC andD. The pred-
icatem′ ⊆ m specifies the restriction on the number of objects of classB being linked to an object of
classD and classC respectively. Furthermore, the substitutability property is also satisfied.

4.3.1 Abstract Classes

Generalization relationships organize classes in a lattice, with the most generalized class at the top of
the hierarchy (eventually an abstract class). The meet and join operators are defined as the superclass
and subclass (for multiple inheritance) of classes r espectively. An abstract class may not have direct
instances. Therefore, we can not interpret it in the same way as concrete classes. However, from the
generalization relationship between an abstract class and its subclasses, we can get its semantics as the
smallest superclass of all its subclasses (or the least upper bound in the lattice of classes). Translated
to category theory this means that the semantics of an abstract class with respect to its subclasses is the
colimit of the subclass coalgebras.

Definition 4.10 (semantics of abstract class)The semantics of an abstract class is the colimit of its
subclasses in the category of classes with the inheritance morphisms as arrows for the colimit.

S[[C{Abstract} C−−− ∗{C1,C2, . . . ,Cn}]] ∆= ColimitCoalg(c1, c2, . . . , cn)

whereci are the coalgebras inS[[Ci]] respectively.

An abstract class may have several subclasses and can only be instantiated by one of them. (such as
classPerson(P) in Figure 14). If the direct subclasses form a partition of the abstract class, that means,

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 32

Student Employee

Teaching Assistant

Person
{Absrtact}

Figure 14: Multiple inheritance with common ancestor

the subclasses have no common subclass, then we can use a coproduct of the subclasses in the category
of classes to represent the abstract class and the coprojections of the coproduct are the inheritance mor-
phisms. Otherwise, the subclasses of a common abstract class may be not disjoint, such as in Figure
14, classStudent (S) andEmployee(E) have a common subclassTeachingAssistant(TA). In this
situation, the interpretation can be generalized to the colimit of the subclasses. The arrows describing
the inheritance relationships in this example are:f : S → P , g : E → P , r : TA → S, s : TA → E,
thenP is the colimit of the subclassesS, E, andTA, the corresponding colimit arrows aref, g, h, where
h = f ◦ r = g ◦ s. It is natural that the commuting property of colimit holds, as the following diagram
shows:

P

¡
¡

¡
¡f µ I@

@
@

@

g

S ¾
r

TA

h

6

s
- E

Two less common but useful notions areisRootandisLeafwhich specifies whether a class may have no
parents or children. Especially when we have multiple, independent inheritance lattices, it is useful to
designate the top and bottom of each hierarchy via the root and leaf classes.

The semantics of root and leaf classes are given as follows:

S[[C{root}]] ∆= S[[C]] ∧ (∀D.S[[D C−−−C]] = { })
S[[C{leaf}]] ∆= S[[C]] ∧ (∀D.S[[C C−−−D]] = { })

which are same as semantics of other classes, plus the condition that no superclass of a root classC (and
subclass for leaf class, respectively) is permitted to appear in the class diagram.6

6Here we abuse the operator∧. The precise meaning ofS[[C]] ∧ p is a subcategory ofS[[C]] where all objects in the
subcategory satisfyp.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 33

Array
k: Int
Element

elements[k] : Element

apply (index : Int) : Element
assign (e : Element, i : Int) : Array

<<bind>> (Int,3)

ArrInt<Person, 24>Array

Figure 15: Template classes and instantiated classes

4.3.2 Multiple Inheritance

A class may have more than one parent in a UML class diagram, a fact known asmultiple inheritance. It
means that the subclass has all the attributes, methods and associations of all the superclasses. We assume
that the multiple inheritance being concerned is well-formed, that is, an attribute or method with the same
signature can not be declared independently by several superclasses that do not inherit it from a common
ancestor. Then the semantics for a class that multiplicitly inherits from superclasses are their lower bound
coalgebras. Thus, the semantics of a classC multiply inherits from a set of classes{C1,C2, . . . ,Cn},
is given by the cones ofc1, c2, . . . , cn whereci are the coalgebras inS[[Ci]] respectively, in which the
arrows for the cone are the corresponding inheritance morphism.

S[[C −−B {C1,C2 . . . ,Cn}]] ∆= ConeCoalg(c1, c2, . . . , cn)

In the semantics of multiple inheritance, we can get the limitd of the superclass set{c1, c2, . . . , cn}
which is the terminal object in the category of all the possible cones of{c1, c2, . . . , cn}, that means,d
has no more attributes or methods than those appears in{ci}i=1,...,n, and for allc ∈ ObjS[[C]], c is a
subclass ofd.

4.4 Templates

UML allows the use oftemplatesor parameterized classes. A template has one or more unbound formal
parameters. It describes a family of classes, each of which is specified by binding the parameters to
actual values.

A template can not be used directly because it has a free parameter that is not meaningful outside of
a scope that declares the parameter. A template must be instantiated first before it is used, i.e. the
template’s parameters must be bound to actual values.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 34

As shown in Figure 15, a template can be instantiated in two ways: Either implicitly by declaring a class
whose name provides the binding or explicitly using abindrelationship specifying the source instantiates
the target template using the actual parameters.

Since a template can not have instances of itself, it can only have one direction associations from itself
to other classes. Moreover, it can not be a superclass of other classes, but its instances can.

Let C
...P

... be a template class whereP is the list of parameters. Then

S[[C
...P

... c dD]] ∆= False

S[[C
...P

... c←−dD]] ∆= False

S[[C
...P

... C−−−D]] ∆= False

Here theBool valueFalse is used to denote the empty set{ }, i.e., the diagram can not be implemented.

An instantiation of a template is a class specification which is decided by one element inS[[P]]. Its
semantics is:

S[[C < p >]] ∆=

{
p ∈ S[[P]] ⇒ S[[C[p/P]]]
else ⇒ False

which also gives the semantics of binding relationship in a class diagram.

4.5 Semantics of Class Diagrams

Up to now, the discussion has been on the class level including the relationship between classes. Finally,
the semantics of class diagrams can be given. A class diagram represents a system composed by objects
of specified classes. Its semantics can be defined coalgebraically via object diagrams.

An object diagram is a snapshot of a corresponding class diagram. It exhibits a set of objects and their
relationships existing in a system at a point of time. An example of an object diagram is given in Figure
16. The objects and their relationships in an object diagram are defined by the semantics above. Thus,
denoting the system state space byΣ, an object diagram represents a system stateσ ∈ Σ and can be
seen as an instance of the corresponding class diagram. It can be used to describe the existence of
certain objects together with the relationships between them in the system at a certain time. Therefore,
an elementσ ∈ Σ is interpreted as the product of states of different objects at the same point of time.
Consequently, the semantics of an object diagram is an elementσ ∈ Σ which describes a state of the
system, and the system being modeled can be described as a coalgebra(Σ, c : Σ → F (Σ)), wherec
describes all the possible transitions between system states.

Now we can get the following definition of class diagram semantics:

Definition 4.11 (class diagram semantics)The semantics of a class diagramCD is defined as a cate-

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 35

Sm: Student

Algebra: Course Geometry: Course Analysis: Course

takecourse takecourse

name = algebra
courseID = 0100201

name = geometry
courseID = 0100301

name = analysis
courseID = 0100101

takecourse

Figure 16: Object diagram

BA

A3

A2

A1

{C1}

{C2}
1

1

2
a1 b1

a2 b2

a3 b3

Figure 17: Inconsistency of a class diagram

gory denoted asCoalg(CD). The objects in this category are the coalgebras(Σ, c : Σ → F (Σ)) where
Σ is the system state space of all the possible system states.F is the tensor product composed by the sig-
nature functors of the component classes and associations in the class diagram, which describes the pos-
sible system state transitions and observations to the system states. The arrows areF -homomorphisms
between them.

Remark. Generally, the state space of a system may be different at different time. For example, objects
may be created or deleted. Thus, the system may be initiated in a stateσ in the state spaceΣ, but we
permit operations of the system that change the state space, so that the system state may be in another
state spaceΓ later. However, in this situation, we can takeΣ ∪ Γ as the system state space. Then the
change of state space, like creating new objects or deleting old objects, also becomes a state transition.

4.6 Examples in Checking Consistency of Class Diagrams

In this section we use some simple examples to illustrate the approach for checking the consistency of
class diagrams via the coalgebraic semantics defined previously.

Take Figure 17 as an example7, whereC1 is a constraint which states that every link inA1 is either in
A2 or in A3. The constraintC2 states thatA2 andA3 are equal. This diagram seems to be consistent,

7This example is taken from [3].

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Coalgebraic Semantics of Class Diagrams 36

borrower loans

0..1 0..5

borrower

loans 0..10

0..1

Student
name: String

GradStudent
tutor: Professor

studentID: Number

Book
name: String

Figure 18: An inconsistent class diagram for a library system

but it is not. We first give the semantics of the two constraints explicitly as follows:

S[[C1]] ∆=∀u : A, v : B.(b1(u) ⊆ b2(u) ∪ b3(u)) ∧ a1(v) ⊆ a2(v) ∪ a3(v))

S[[C2]] ∆=∀u : A, v : B.(u ∈ a2(v) ⇔ u ∈ a3(v)) ∧ (v ∈ b2(u) ⇔ v ∈ b3(u))

For an objectu of classA, from the semantics ofC1 andC2 we have

S[[C1]] ∧ S[[C2]]
=∀u : A, v : B.(b1(u) ⊆ b2(u) ∪ b3(u)) ∧ a1(v) ⊆ a2(v) ∪ a3(v) ∧ a2(v) = a3(v) ∧ b2(u) = b3(u))
=∀u : A, v : B.(b1(u) ⊆ b2(u) = b3(u) ∧ a1(v) ⊆ a2(v) = a3(v))
⇒∀u : A, v : B.(card(b1(u)) ≤ card(b2(u)) = card(b3(u)) ∧ card(a1(v)) ≤ card(a2(v)) = card(a3(v)))

From the semantics of associations, we have

∀u : A, v : B.card(b1(u)) = 2 ∧ card(b2(u)) = 1 ∧ card(b3(u)) = 1

Therefore, we have

S[[A1]] ∧ S[[A2]] ∧ S[[A3]] ∧ S[[C1]] ∧ S[[C2]] ⇒ 2 ≤ 1 ≡ False

So the diagram is inconsistent. It can not be implemented correctly.

Now take Figure 18 as another example for a library system. There are two classesStudent andBook
and an association which shows the relationship between students and books. Every student can borrow
at most 5 books at the same time. Later another classGradStudent is added to the diagram which is
desired to be the subclass of classStudent. And every graduate student can borrow at most 10 books
at the same time. From the semantics definition for inheritance of associations, we can easily derive that

S[[Bookloans
0..5

borrower
0..1 Student C−−−GradStudent]] ⇒ 0..10 ⊆ 0..5 ⇒ False

Therefore the diagram is inconsistent. To solve the problem, we can define classStudent as an abstract
class and addUnderGraduate as another subclass of classStudent, and then change the association
betweenBook andStudent in Figure 18 to an association between this subclass andBook, as Figure
19 shows. Moreover, because every book can be borrowed by at most one student at any time point, a
constraint{xor} is added to state that the two associations can not exist at the same time for one object
of classBook.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Use Cases 37

borrower

borrower 0..1

0..1

loans 0..5 loans 0..10

{xor}

Student

GradStudent UnderGraduate

Book

Figure 19: A consistent class diagram

Borrow Book

Reader
Librarian

Pay Fee

Return Book

<<include>>

<<include>>

Figure 20: Use Case Diagram

5 Use Cases

Use Cases, first introduced by Jacobson [33, 34] and widely used in object-oriented analysis and design
methods, are popular models for capturing requirements, primarily functional requirements and business
requirements [55]. They help to identify the primary requirements of the system and form the units of
work in an incremental, use case driven, object-oriented software development process like the Rational
Unified Process [21, 37] which is relatively widely used.

A use case is defined as “a sequence of transactions in a system, whose task is to yield a measurable
value to an individual actor of the system” [33]. Use cases are very useful in decomposing and capturing
the requirements, gaining an understanding of the problem domain and identifying the different goals for
individual actors and the system. Use cases are specified informally, which makes them successful in
capturing requirement.

Use cases are text documents, not diagrams. However, the UML defines the use case diagram to illustrate
the name of use cases, actors and the relationships among them. See Figure 20 as an example of use case
diagrams where theBorrow Book use case includes theReturn Book use case, which includes another
Pay Feeuse case. These use cases are written in Figure 21, 22 and 23 as flows of events with pre- and

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Use Cases 38

Use Case Borrow Book
Actors Reader, Librarian

Precondition The book can be borrowed.
Flow of Events 1. The use case begins when the reader chooses a book that is not already lent;

2. The librarian checks whether the reader could borrow any more books;
3. If the number of books borrowed by the reader arrived the upper bound

Include Return Book;
4. The librarian assigns the reader as the borrower of the book and states a deadline
for returning the book.

Postcondition The reader has successfully borrowed the book.

Figure 21: Borrow Book use case

Use Case Return Book
Actors Reader, Librarian

Precondition The reader has borrowed the book and it is not returned back by the reader.
Flow of Events 1. The use case begins when the reader chooses a book to return;

2. The book is returned and the reader is no more the borrower of the book;
3. The librarian checks whether the reader should pay for his/her debts;
4. If the reader should pay fine for debts

Include Pay Fee.
Postcondition The reader has successfully returned the book.

Figure 22: Return Book use case

post-conditions together indicating what states the system must be in at the beginning and end of a use
case.

Such use cases can be considered as contracts between the system and actors specifying the conditions
that the behaviors of the system should satisfy, which may be formalized by coalgebraic specifications
[29]. A use case can be interpreted coalgebraically as a sequence of actions followed by some observa-
tions. To measure the effect of the actions we relate the observations in a coalgebraic definition. This
means that use cases can be defined coinductively. Then single actions representatomic use cases, which
change the system from one state to another.

The signature of an atomic use caseUC is defined by a functorF . Let Σ be the system state space,
as defined in the semantics of class diagrams. Then a use case is interpreted as a coalgebraic partial
function of typeuc : Σ → F (Σ). This function is meaningful when the possible system states before the
action satisfy the given pre-condition. An example should demonstrate the coinductive formalization of
use cases.

Consider a use caseBB of borrowing a book in our previous library example (Figure 18). LetΣ be the
state space of the system. Then the behavior ofBB can be defined by a coalgebraic functionbb : Σ →

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Use Cases 39

Use Case Pay Fee
Actors Reader, Librarian

Precondition The reader has a debt to the system;
Flow of Events 1. The use case begins when the reader has a debt to the system;

2. The reader chooses an amount of the debt and pays it;
3. The librarian subtracts the sum from the reader’s debt.

Postcondition The reader has successfully payed the debt.

Figure 23: Pay Fee use case

ΣReader×Book. If a readers0 borrows bookb0, then the observable effects can be specified coinductively:

pre ` loans(s′0(bb(σ, s0, b0))) = loans(s′0(σ)) ∪ {b0}
pre ` borrower(b′0(bb(σ, s0, b0))) = s′0(σ)

wheres′0, b
′
0 are observers onΣ for obtaining the objectss0, b0 andσ ∈ Σ. Here, the preconditionpre

guarantees the multiplicity constraints in the class diagram.

To express theBorrow Book use case model completely, in the following, the RSL specifications for the
use cases are given. First, two schemes are defined for the classes involved as shown in Figure 24 and
25, which are essentially needed within our system. Then the specification for the use cases are defined
as in Figure 26, which describes all the three use cases by the axioms.

5.1 Discussions on Advanced Techniques

When the flow of events is refined, we may find similarity in the various use cases that we want to
abstract into a common place, extend a use case without changing the original description, or find a lot
of similarities in some of the actors. To take the advantage of these similarities in the system, some
techniques may be applied.

We may have something generic that can be reused. The common behavior can be abstracted with an
includerelationship. Defining an included use case Starts by identifying the steps that we want to use in
many places and put the steps in a use case and give them a name. A use case can include any number
of other use cases. We can have as many levels of including as we desire. An include relationship of use
cases means that the base use case incorporate the behavior of the target use cases. The behaviors in the
target use case is included at one point of the base use case.

A use case can be specialized into one or more child use cases, each of the child use cases contains
all the observations and behaviors in the super use case, and may add more behaviors into the behavior
sequences. This is a use casegeneralizationrelationship.

An extendrelationship means that a use case can be defined as an incremental extension to another use
case. The base use case may not depend on the extending use case. The extend relationship contains

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Use Cases 40

schemeBOOK =
class

type
Book,
Person,
Date= Nat,
Status== free| lent

value
status : Book→ Status,
returnDate : Book

∼→ Date,
borrower : Book

∼→ Person,
book : Book,
setLoan : Book× Person× Date

∼→ Book,
resetLoan : Book

∼→ Book,
today : Date,
payFee : Book→ Int

axiom
status(book)≡ free,
∀ b : Book, p : Person, d : Date•

status(setLoan(b,p,d))≡ lent
pre status(b)=free,

∀ b : Book, p : Person, d : Date•
borrower(setLoan(b,p,d))≡ p
pre status(b)=free,

∀ b : Book, p : Person, d : Date•
returnDate(setLoan(b,p,d))≡ d + 30
pre status(b)=free,

∀ b : Book•
status(resetLoan(b))≡ free
pre status(b)=lent,

∀ b : Book•
payFee(b)≡

let rd = returnDate(b)in
if rd < todaythen 0
elserd− today
end

end
end

Figure 24: RSL specification for BOOK

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Use Cases 41

context: BOOK
schemeREADER=

class
object

B : BOOK
type

Reader,
Book= B.Book,
Loan= Book-set

value
fine : Reader→ Int ,
borrowBook : Reader× Book

∼→ Reader,
returnBook : Reader× Book

∼→ Reader,
loans : Reader→ Loan,
payFine : Reader× Int ∼→ Reader,
reader : Reader

axiom
fine(reader)≡ 0,
loans(reader)≡ {},
∀ r : Reader, b : Book•

loans(borrowBook(r,b))≡ loans(r)∪ {b}
pre B.status(b)=B.free,

∀ r : Reader, b : Book•
fine(borrowBook(r,b))≡ fine(r)
pre B.status(b)=B.free,

∀ r : Reader, b : Book•
loans(returnBook(r,b))≡ loans(r)\ {b}
pre b∈ loans(r),

∀ r : Reader, b : Book•
fine(returnBook(r,b))≡ fine(r)+ B.payFee(b)
pre b∈ loans(r),

∀ r : Reader, i :Int •
fine(payFine(r,i))≡

if i<fine(r) then fine(r)−i
else0
end

pre fine(r)≥ i,
∀ r : Reader, i :Int •

loans(payFine(r,i))≡ loans(r)
end

Figure 25: RSL specification for READER

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Use Cases 42

context: BOOK,READER
schemeLIBRARY =

class
object

R : READER
type

Book= R.Book,
Reader= R.Reader

channel
reader : Reader,
book : Book,
fee : Int

value
borrowBook :Unit → in reader,bookout reader,bookUnit , - -The Borrow Book Use Case
returnBook :Unit → in reader,bookout reader,bookUnit , - -The Return Book Use Case
payFee :Unit → in reader,feeout readerUnit - -The Pay Fee Use Case

axiom
∀ b1 : R.Book•

borrowBook()≡
let (b,r)=(book?,reader?)in

if R.B.status(b)=R.B.freethen
if (card(R.loans(r))=R.limit ∧ b1∈ R.loans(r))then

reader!(R.return(r,b1));
book!(R.B.resetLoan(b1));
if R.fine(r)>0 then

reader!(R.payFine(r,R.fine(r)))
end

end;
book!(R.B.setLoan(b,r,R.B.today));
reader!(R.borrow(r,b))

end
end,

returnBook()≡
let (b,r)=(book?,reader?)in

if (R.B.status(b)=R.B.lent∧ R.B.borrower(b)=r) then
reader!(R.return(r,b));
book!(R.B.resetLoan(b));
if R.fine(r)>0 then

reader!(R.payFine(r,R.fine(r)))
end

end
end,

payFee()≡
let(f,r)=(fee?,reader?)in

reader!(R.payFine(r,f))
end

end

Figure 26: RSL specification for the use cases

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Related Work 43

a condition which should be satisfied if the extension is to happen and a sequence of extension points
which defines the location in the base use case where the extension is to take place. This is the same
situation as the generalization relationship of use cases, but the extending use case is inserted into the
base use case at the extension point conditionally, while in the generalization relationship, the parent use
case is replaced by the child use case conditionally.

A family of operations has been defined in [60], including sequential composition;, choice+, paral-
lel composition£ and⊗, etc., which can be used to build more complex use cases from atomic use
cases. So that the semantics for the relationships among use cases likeinclude, extendassociations and
generalizations of use cases can be given by these operations. For example, the use caseBB is defined
as a sequential of the atomic actions corresponding to events1, 2, another use case for returning book
corresponding to event3 when the condition istrue and event4.

6 Related Work

A lot of works on specifying the formal semantics of UML can be found in the literature (see e.g.
[6, 7, 11, 12, 13, 14, 19, 22]). However, most of them do not give a semantics for the whole language,
but only concentrate on part of it, such as class diagrams or statechart diagrams, and there is a lack of
research on checking the consistency between different UML models, which is a central issue in multi-
view modeling languages such as UML.

The meta-model approach adopted by the UML Semantics [45] use a UML class diagram together with
constraints as a meta model and define the semantics of the language via it. However, a problem in this
approach is that it defines the semantics of elements in terms of those elements whose semantics are not
precisely defined. In fact, the well-formedness rules are descriptions at the syntactic level, but not the
semantics definition.

From a logical perspective, a set of models are consistent means that they are free from contradictions. In
other words, they have a common semantic interpretation. So a natural idea is to define an independent
semantic domain in which all models can be interpreted. [6] sketches a general scenario for several
UML diagrams but no technical details are provided. Recently, some researchers also try to combine the
formalization of different UML models, see e.g. [18, 42].

An alternative approach is to translate UML into another formal language that is well understood. In
[7] a translation from UML models to Z specifications is provided. [58] studies UML class diagrams
by means of using Object-Z. [49] discusses active classes. [15] provides a translation from UML class
diagrams to RSL [63] specifications. A translation from UML class diagrams to O-Slang is provided in
[57]. Unfortunately, most of them also only focus on part of UML models.

The inspiration for our own coalgebraic semantic domain came from the work of Jacobs on object-
oriented systems [24, 25, 29] and that of Tews on the relationship between CCSL and UML [62]. We
use their concept of coalgebraic specifications to give UML diagrams a semantics. However, in contrast
to their work on the coalgebraic specification language CCSL we take a rather pragmatic approach and

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Conclusion and Discussion 44

aim to use UML diagrams to denote coalgebraic specifications. A further difference to previous work
and to very recent work on UML class diagram semantics [38, 41] is that we take a categorical rather
than a set-theoretic approach. The motivation is to be more general and flexible and, thus to be able to
cover a broader subset of UML. Already, the presented work on class diagrams shows the advantages of
having categorical tools, like morphism, functors, natural transformations etc., available. One advantage
of the cofibred approach is that it provides us with a single category which contains models (coalgebras)
corresponding to different specifications (UML classes) and allows us to relate coalgebras corresponding
to different specifications within one category. Another benefit of the categorical approach is that we can
construct the final coalgebra in the semantics for a given UML class which can be used as the minimal
implementation as shown in [59]. Our future work on the dynamic aspects of UML, like statechart
diagrams, will make these benefits even more obvious.

In UML statechart diagrams describe the dynamic behaviour of systems. Several formal semantics for
statechart diagrams have been proposed previously. For example, in [16] input-output labeled transition
systems (LTS) are used as the semantic domain. From these previous results it can be deduced that
statecharts diagrams can be straightforwardly interpreted in a coalgebraic framework. For examples
of LTSs defined as coalgebras we refer to [54]. Thus, the semantics of a statechart diagram will be a
coalgebra. Then, consistency checks between class diagrams and statechart diagrams are proofs that
the coalgebra (statechart) is a model of the corresponding coalgebraic specification (class diagram).
Similarly, refinement (implementation) relations can be defined ranging over different view models.

Compared to others’ approach, directly defining the coalgebraic semantics can make us model the system
more faithfully since we have the freedom to choose the signature functor appropriately. Concerning
verification of system, the coalgebraic approach often allows for a smaller state space of the model than
encoding the system as a Kripke structure and make the verification time of the system property shorter
(as shown by D. Pattinson in [47]). Furthermore, by resorting the underlying environment category from
Set to a set based category enriched with some algebraic structure, we naturally get a data refinement of
the state space representation.

It is already evident from our ongoing work that we will be able to stay in the domain of coalgebras for
defining semantics of other UML diagrams, like statecharts and interaction diagrams. Generally, it can
be said that our attempt of having one semantic domain for different UML diagrams contrasts us from
most of the previous works on this topic.

7 Conclusion and Discussion

In this paper, essential parts of a coalgebraic semantics for UML class diagrams have been presented.
It has been shown in detail how Classes, their Associations and Generalizations in a UML diagram can
be interpreted as coalgebraic specifications. Furthermore an outlook on the formalization of use-case
diagrams (and statechart diagrams) has been given. Although, no more technical discussion of other
diagrams is provided, the reader should by now get an idea how a coalgebraic semantics facilitate the
integration of static and dynamic aspects of UML.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

Acknowledgments 45

This paper is only a starting point for the formalization of UML. The next steps include to define the
coalgebraic semantics of other UML models, such as statechart diagrams, to give a precise meaning for
the consistency of models, to do research on the refinement of different kinds of models which involves
a transformation of functors for different steps. However, having a formal semantics is not enough. The
next step will involve research on applications of the semantics: A use-case driven development method
for UML diagrams, supported by algebraic laws and coalgebraic proof methods, will be designed. Based
on the semantics and method, tools are planned, including a model checker and a test-case generator for
UML diagrams. Moreover, the work of Jacobs and Poll on coalgebraic semantics of Java [30] shows the
possiblity of a semantic-based approach for code generation from UML models.

Currently, the opinions on UML in the research community are twofold. Some see the disadvantages
of UML and reject the language completely. Others think that it is our duty to improve this de-facto
standard and help software engineers in the application of UML. We belong to the second group and
hope that our work will contribute to the improvement of UML and its associated methods.

Acknowledgments

We would like to thank Prof. Zhang Naixiao and Luı́s Barbosa for many detailed comments and contin-
uous advices on the draft of this paper. This work is partially supported by the National Natural Science
Foundation of China under Grant No. 60273001.

References

[1] M. Abadi and L. Cardelli.A Theory of Objects. Springer-Verlag, 1996.

[2] P. Aczel. Non-well-founded sets. Number 14 in CSLI Lecture Notes. Center for the Study of
Languages and Information, Stanford, 1988.

[3] P. Andŕe, A. Romanczuk-Ŕequiĺe, J.-C. Royer, and A. Vasconcelos. Checking the Consistency
of UML Class Diagrams using Larch Prover. In T. Clark, editor,ROOM 3 (the third Rigorous
Object-Oriented Methods Workshop), Proceedings. BCS eWics, 2000.

[4] M. Barr and C. Wells.Category Theory for Computing Science, Third Edition. Les Publications
CRM, 1999.

[5] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User Guide. Addison
Wesley, 1999.

[6] R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Rumpe, and V. Thurner. Towards a
Formalization of the Unified Modeling Language. In M. Akşit and S. Matsuoka, editors,ECOOP
’97 — Object-Oriented Programming 11th European Conference, Jyväskyl̈a, Finland, volume 1241
of LNCS, pages 344–366. Springer-Verlag, 1997.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

References 46

[7] J.-M. Bruel and R. B. France. Transforming UML Models to Formal Specifications. In J. Bézivin
and P.-A. Muller, editors,The Unified Modeling Language, UML’98 - Beyond the Notation. First
International Workshop, Mulhouse, France, June 1998, Selected Papers, volume 1618 ofLNCS.
Springer, 1999.

[8] J.-M. Bruel, B. Henderson-Sellers, F. Barbier, A. L. Parc, and R. B. France. Improving the UML
metamodel to rigorously specify aggregation and composition. In S. Patel, Y. Wang, and R. H.
Johnston, editors,OOIS, 7th International Conference on Object Oriented Information Systems,
pages 5–14. Springer, 2001.

[9] C. Ĉırstea. An algebra-coalgebra framework for system specification. In H. Reichel, editor,Elec-
tronic Notes in Theoretical Computer Science, volume 33. Elsevier Science Publishers, 2000.

[10] C. Ĉırstea.Integrating Observations and Computations in the Specification of State-Based Dynam-
ical Systems. PhD thesis, Corpus Christi College and St. John’s College, University of Oxford,
2000.

[11] T. Clark and A. Evans. Foundations of the unified modeling language. In2nd Northern Formal
Methods Workshop, Ilkley, electronic Workshops in Computing. Springer-Verlag, 1998.

[12] S. DeLoach and T. C. Hartrum. A Theory-Based Representation for Object-Oriented Domain Mod-
els. Software Engineering, 26(6):500–517, 2000.

[13] A. Evans, R. France, K. Lano, and B. Rumpe. The UML as a Formal Modeling Notation. In
J. Bézivin and P.-A. Muller, editors,The Unified Modeling Language, UML’98 - Beyond the Nota-
tion. First International Workshop, Mulhouse, France, June 1998, Selected Papers, volume 1618 of
LNCS, pages 336–348. Springer, 1999.

[14] L. Favre and S. Clérici. Integrating UML and Algebraic Specification Techniques. In C. Mingins,
editor,Proceedings of TOOLS Pacific 1999. IEEE Computer Society, 1999.

[15] A. Funes and C. George. Formal Foundations in RSL for UML Class Diagrams. Technical Report
253, UNU/IIST, May 2002.

[16] S. Gnesi, D. Latella, and M. Massink. Modular Semantics for a UML Statechart Diagrams kernel
and its extension to Multicharts and Branching Time Model Checking.The Journal of Logic and
Algebraic Programming, 51(1):43–75, 2002.

[17] M. Gogolla and M. Richters. Expressing UML Class Diagrams Properties with OCL. In T. Clark
and J. Warmer, editors,Object Modeling with OCL: The Rationale behind the Object Constraint
Language, volume 2263 ofLNCS, pages 85–114. Springer, 2002.

[18] M. Große-Rhode. Formal concepts for an integrated internal model of the UML. In H. Ehrig,
C. Ermel, and J. Padberg, editors,Proc. Uniform Approaches to Graphical Process Specification
Techniques (UNIGRA) at ETAPS 2001, volume 44 ofElectronic Notes in Theoretical Computer
Science. Elsevier Science Publishers, 2001.

[19] A. Hamie, J. Howse, and S. Kent. Modular Semantics for Object-Oriented Models. InProceedings
of Northern Formal Methods Workshop, eWics Series. Springer-Verlag, 1998.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

References 47

[20] B. Henderson-Sellers and F. Barbier. Black and White Diamonds. In R. B. France and B. Rumpe,
editors,UML’99: The Unified Modeling Language - Beyond the Standard, Second International
Conference, Fort Collins, CO, USA, October 28-30, 1999, Proceedings, volume 1723 ofLNCS,
pages 550–565. Springer, 1999.

[21] J. Hunt. The Unified Process for Practitioners: Object Oriented Design, UML and Java. Practi-
tioner. Springer, 2001.

[22] H. Hussmann, M. Cerioli, G. Reggio, and F. Tort. Abstract Data Types and UML Models. Techni-
cal Report DISI-TR-99-15, DISI – Università di Genova, Italy, 1999.

[23] B. Jacobs. Inheritance and cofree constructions. In P. Cointe, editor,European Conference on
Object-Oriented Programming, volume 1098 ofLNCS, pages 210–231. Springer, Berlin, 1996.

[24] B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C. L. C.B. Jones, and H.-J. Schek,
editors,Object-Orientation with Parallelism and Persistence, pages 83–103. Kluwer, 1996.

[25] B. Jacobs. Coalgebraic reasoning about classes in object-oriented languages. InElectronic Notes
in Theoretical Computer Science, volume 11. Elsevier Science Publishers, 1998.

[26] B. Jacobs.Categorical Logic and Type Theory, volume 141 ofStudies in Logic and The Founda-
tions of Mathematics. Elsevier, 1999.

[27] B. Jacobs. The Temporal Logic of Coalgebras via Galois Algebras. Technical Report CSI-R9906,
Computer Science Institute, University of Nijmegen, April 1999.

[28] B. Jacobs. Object-oriented hybrid systems of coalgebras plus monoid actions.Theoretical Com-
puter Science, 239:41–95, 2000.

[29] B. Jacobs. Exercises in coalgebraic specification. In R. Backhouse, R. Crole, and J. Gibbons,
editors,Algebraic and Coalgebraic Methods in the Mathematics of Program Construction, volume
2297 ofLNCS, pages 237–280. Springer, 2002.

[30] B. Jacobs and E. Poll. Coalgebras and monads in the semantics of Java.Theoretical Computer
Science, 291:329–349, 2003.

[31] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction.Bulletin of the European
Association for Theoretical Computer Science, 62:222–259, 1997.

[32] B. Jacobs and H. Tews. Assertional and Behavioural Refinement in Coalgebraic Specification. In
Electronic Notes in Theoretical Computer Science, volume 47. Elsevier Science Publishers, 2001.

[33] I. Jacobson. Object Oriented Development in an Industrial Environment. In N. K. Meyrowitz, ed-
itor, Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’87), October 4-8, 1987, Orlando, Florida, Proceedings, volume 22 ofSIGPLAN Notices,
pages 183–191, 1987.

[34] I. Jacobson, M. Christerson, P. Jonsson, and G.Övergaard.Object-Oriented Software Engineering:
A Use Case Driven Approach. Addison-Wesley, 1992.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

References 48

[35] A. Kurz. Logics for Coalgebras and Applications to Computer Science. PhD thesis, Universität
München, 2000.

[36] A. Kurz. Specifying coalgebras with modal logic.Theoretical Computer Science, 260:119–138,
2001.

[37] C. Larman.Applying UML and Patterns : An Introduction to Object-Oriented Analysis and Design
and the Unified Process. Prentice Hall PTR, 2002.

[38] X. Li, Z. Liu, and J. He. Formal and Use-Case Driven Requirement Analysis in UML. Technical
Report 230, UNU/IIST, March 2001.

[39] Z. Liu. Object-Oriented Software Development Using UML. Technical Report 229, UNU/IIST,
March 2001.

[40] Z. Liu. Software Development with UML. Technical Report 259, UNU/IIST, July 2002.

[41] Z. Liu, J. He, and X. Li. Formalizing the Use of UML in Requirement Analysis. Technical Report
228, UNU/IIST, March 2001.

[42] Z. Liu, X. Li, and J. He. Using Transition Systems to Unify UML Requirement Models. Technical
Report 263, UNU/IIST, October 2002.

[43] B. Meyer.Object-oriented Software Construction (2nd edition). Prentice Hall, 1997.

[44] L. Moss. Coalgebraic logic.Annals of Pure and Applied Logic, 96:277–317, 1999.

[45] OMG. OMG Unified Modeling Language Specification, Version 1.3, 2000.

[46] OMG. OMG Unified Modeling Language Specification, Version 1.4, 2001.

[47] D. Pattinson. Coalgebraic techniques in modelchecking, 2001. Available from
http://siskin.pst.informatik.uni-muenchen.de/ pattinso/Publications/.

[48] E. Poll. A coalgebraic semantics of subtyping. In H. Reichel, editor,Proceedings 3rd Workshop
on Coalgebraic Methods in Computer Science, CMCS’2000, Berlin, Germany, 25–26 March 2000,
volume 33. Elsevier, Amsterdam, 2000.

[49] G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML active classes and as-
sociated state machines - A lightweight formal approach. In T. Maibaum, editor,Fundamental
Approaches to Software Engineering (FASE 2000), Proceedings, volume 1783 ofLNCS. Springer,
2000.

[50] H. Reichel. An approach to object semantics based on terminal co-algebras.Mathematical Struc-
tures in Computer Science, 5:129–152, 1995.

[51] M. Rößiger. From modal logic to terminal coalgebras.Theoretical Computer Science, 260:209–
228, 2001.

[52] J. Rothe, H. Tews, and B. Jacobs. The coalgebraic class specification language CCSL.Journal of
Universal Computer Science, 7(2):175–193, 2001.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

References 49

[53] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Modeling Language Reference Manual.
Addison Wesley Longman, 1999.

[54] J. Rutten. Universal coalgebra: a theory of systems.Theoretical Computer Science, 249:3–80,
2000.

[55] G. Schneider and J. P. Winters.Applying Use Cases : Second Edition. Addison-Wesley, 2001.

[56] K. Siau and T. Halpin, editors.Unified Modeling Language: Systems Analysis, Design and Devel-
opment Issues. Idea Group Publishing, 2001.

[57] J. E. Smith.UML Formalization and Transformation. PhD thesis, Northeastern University, Boston,
Massachusetts, 1999.

[58] D. A. C. Soon-Kyeong Kim. Formalizing the UML Class Diagram Using Object-Z. In R. France
and B. Rumpe, editors,UML’99- Second International Conference on the Unified Modeling Lan-
guage: Beyond the Standard, volume 1723 ofLNCS, pages 83–98. Springer, 1999.

[59] M. Sun and B. Aichernig. Component-based Coalgebraic Specification and Verification in RSL.
Technical Report 267, UNU/IIST, October 2002.

[60] M. Sun and B. Aichernig.CoalgKPF : Towards a Coalgebraic Calculus for Component-based
Systems. Technical Report 271, UNU/IIST, January 2003.

[61] H. Tews. Coalgebras for binary methods: Properties of bisimulations and invariants.Theoretical
informatics and applications, 35(1):83–111, Feb. 2001.

[62] H. Tews.Coalgebraic Methods for Object-Oriented Specification. PhD thesis, TU Dresden, 2002.

[63] The RAISE Language Group.The RAISE Specification Language. Prentice Hall International,
1992.

Report No. 272, January, 2003 UNU/IIST, P.O. Box 3058, Macau

