The United Nations
University

UNU-IIST

International Institute for
Software Technology

Pre-event Proceedings of the 1st International Workshop on

Formal Methods
for Interactive Systems

FMIS 2006

Antonio Cerone and Paul Curzon (eds)

31 October 2006

UNU-IIST Report No. 347

UNU-IIST and UNU-IIST Reports

UNU-IIST (United Nations University International Institute for Software Technology) is a Research and
Training Centre of the United Nations University (UNU). It is based in Macao, and was founded in
1991. It started operations in July 1992. UNU-IIST is jointly funded by the government of Macao and
the governments of the People’s Republic of China and Portugal through a contribution to the UNU
Endowment Fund. As well as providing two-thirds of the endowment fund, the Macao authorities also
supply UNU-IIST with its office premises and furniture and subsidise fellow accommodation.

The mission of UNU-IIST is to assist developing countries in the application and development of software
technology.

UNU-IIST contributes through its programmatic activities:

1. Advanced development projects, in which software techniques supported by tools are applied,
2. Research projects, in which new techniques for software development are investigated,

3. Curriculum development projects, in which courses of software technology for universities in devel-
oping countries are developed,

4. University development projects, which complement the curriculum development projects by aiming
to strengthen all aspects of computer science teaching in universities in developing countries,

5. Schools and Courses, which typically teach advanced software development techniques,
6. Events, in which conferences and workshops are organised or supported by UNU-IIST, and

7. Dissemination, in which UNU-IIST regularly distributes to developing countries information on
international progress of software technology.

Fellows, who are young scientists and engineers from developing countries, are invited to actively partic-
ipate in all these projects. By doing the projects they are trained.

At present, the technical focus of UNU-IIST is on formal methods for software development. UNU-IIST
is an internationally recognised center in the area of formal methods. However, no software technique is
universally applicable. We are prepared to choose complementary techniques for our projects, if necessary.

UNU-IIST produces a report series. Reports are either Research EI, Technical , Compendia or

Administrative . They are records of UNU-IIST activities and research and development achievements.
Many of the reports are also published in conference proceedings and journals.

Please write to UNU-IIST at P.O. Box 3058, Macao or visit UNU-1IST’s home page: http://www.iist.unu.edu,
if you would like to know more about UNU-IIST and its report series.

G. M. Reed, Director

)

NS
&7

gla The United Nations
2 University

UNU-IIST

International Institute for
Software Technology

P.O. Box 3058

Macao

Pre-event Proceedings of the 1st International Workshop on

Formal Methods
for Interactive Systems

FMIS 2006

Antonio Cerone and Paul Curzon (eds)

Abstract

Reducing the likelihood of human error in the use of interactive systems is increasingly im-
portant: the use of such systems is becoming widespread in applications that demand high
reliability due to safety, security, financial or similar considerations. Consequently, the use of
formal methods in verifying the correctness of interactive systems should also include analysis
of human behaviour in interacting with the interface.

This report includes pre-event versions of all papers accepted for presentation at the st Interna-
tional Workshop on Formal Methods for Interactive Systems (FMIS 2006) held on 31 December
2006 in Macau SAR China, as a satellite event of ICFEM 2006. FMIS 2006 is organized by
UNU-IIST in collaboration with the Human Error Modeling (HUM) project sponsored by EP-
SRC on research grants GR/S67494 and GR/S67500.

The aim of this workshop is to bring together researchers in computer science and cognitive

iv

psychology, from both academia and industry, who are interested in developing formal and
semi-formal methodologies and tools for the evaluation and verification of interactive systems.
The outcome is to establish a worldwide network of researchers interested in applying formal
methods to HCI. The workshop focuses on general design and verification methodologies based
on cognitive psychology as well as application areas such as mobile devices, embedded systems,
safety-critical systems, high-reliability systems, shared control systems, digital libraries, eGov-
ernment, pervasive systems, augmented reality.

All papers submitted to the workshop were reviewed by 3 referees followed by a meta-review
process. From the 18 submissions the Program Committee selected 6 papers for long presenta-
tion (40 minutes) and 2 papers for short presentation (20 minutes). Revised versions of the 6
papers accepted for long presentations will be published after the workshop by Elsevier B. V. in
the FElectronic Notes in Theoretical Computer Science Series. The authors of the most relevant
papers presented at the workshop will be invited to submit extended versions of their papers to
be considered for publication in a special issue of the journal Theoretical Computer Science.

In addition to contributed papers, the workshop programme also includes a keynote talk by
Harold Thimbleby from the University of Wales, Swansea. His presentation is entitled ”Build-
ing dependable interactive systems” and uses medical devices as a case study to discuss the
problems of making interactive systems dependable. It introduces suggestions for improving
them, particularly by using formal methods.

Report No. 347, 31 October 2006 UNU-IIST, P.O. Box 3058, Macao

Antonio Cerone Antonio Cerone joined UNU-IIST as Research Fellow in 2004. His research
interests includes formal methods and their application to interactive systems, information se-
curity, asynchronous hardware, concurrent and real-time systems, and safety-critical systems.
E-mail: antonio@iist.unu.edu.

Paul Curzon Paul Curzon is a Reader in Computer Science at Queen Mary, University of
London. His main research interest concerns formal user modeling and the verification of inter-
active systems. He also has a wider interest in both usability evaluation methods and the use
of machine-assisted proof for hardware and software verification as well as for the verification of
verification systems themselves. E-mail: pc@dcs.qmul.ac.uk

Copyright (© 2006 by UNU-IIST

vii

Contents

Model-checking Driven Design of Interactive Systems
by Antonio Cerone, Norzima Elbegbayan

Detecting Cognitive Causes of Confidentiality Leaks
by Rimvydas Ruksenas, Paul Curzon, Ann Blandford

Refinement: a constructive approach to formal software design for a
secure e-voting interface
by J Paul Gibson, Dominique Cansell, Dominique Mry

Guaranteeing Consistency in Text-Based Human-Computer-Interaction
by Bernhard Beckert, Gerd Beuster

Formal Models for Informal GUI Designs
by Judy Bowen, Steve Reeves

Towards a Common Semantic Foundation for Use Cases and Task Models
by Daniel Sinnig, Patrice Chalin, Ferhat Khendek

Towards a Coordination Model for Interactive Systems
by Marco Antonio Barbosa, Lus Soares Barbosa, Jos Creissac Campos

Some Issues in Modeling the Performance of Soft Keyboards with Scanning
by Samit Bhattacharya, Anupam Basu, Debasis Samanta, Souvin Bhattacherjee,
Animesh Srivastava

19

38

57

74

91

108

124

Report No. 347, 31 October 2006 UNU-IIST, P.O. Box 3058, Macao

viii

Workshop Programme

09:00 REGISTRATION
09:30-09:40 WELCOME

09:40-11:10 SESSION 1: SECURITY AND USABILITY - PART 1 (Chair: Harold Thimbleby)
09:40-10:20 Model-checking Driven Design of Interactive Systems (Long Presentation)
by Antonio Cerone, Norzima Elbegbayan

10:20-11:00 Detecting Cognitive Causes of Confidentiality Leaks (Long Presentation)
by Rimvydas Ruksenas, Paul Curzon, Ann Blandford

11:10-11:30 COFFEE BREAK

11:30-12:30 SESSION 2: SECURITY AND USABILITY - PART 2 (Chair: Antonio Cerone)
11:30-12:10 Refinement: a constructive approach to formal software design for a
secure e-voting interface (Long Presentation)

by J Paul Gibson, Dominique Cansell, Dominique Mry

12:10-12:30 Guaranteeing Consistency in Text-Based Human-Computer-Interaction
(Short Presentation)

by Bernhard Beckert, Gerd Beuster

12:30-14:00 LUNCH

14:00-15:20 SESSION 3: BRIDGING GAPS BETWEEN APPROACHES (Chair: Siraj Shaikh)
14:00-14:40 Formal Models for Informal GUI Designs (Long Presentation)

by Judy Bowen, Steve Reeves

14:40-15:20 Towards a Common Semantic Foundation for Use Cases and Task Models
(Long Presentation)

by Daniel Sinnig, Patrice Chalin, Ferhat Khendek

15:20-15:50 COFFEE BREAK

15:50-16:50 KEYNOTE SPEAKER: Harold Thimbleby (Chair: Paul Curzon)
Building dependable interactive systems
by Harold Thimbleby

16:50-17:50 SESSION 4: MODELLING INTERACTIVE SYSTEMS (Chair: Adegboyega 0jo)
16:50-17:30 Towards a Coordination Model for Interactive Systems (Long Presentation)
by Marco Antonio Barbosa, Lus Soares Barbosa, Jos Creissac Campos

17:30-17:50 Some Issues in Modeling the Performance of Soft Keyboards with Scanning
(Short Presentation)

by Samit Bhattacharya, Anupam Basu, Debasis Samanta, Souvin Bhattacherjee,

Animesh Srivastava

17:50-18:15 DISCUSSION AND CLOSING SESSION

Report No. 347, 31 October 2006 UNU-IIST, P.O. Box 3058, Macao

ix

Program Committee

Ann Blandford
UCL Interaction Center, UK

Ralph Back
Abo Akademi, Finland

Howard Bowman
University of Kent, UK

George Buchanan
University of Wales Swansea, UK

Antonio Cerone (Program Co-chair)
United Nations University, Macau SAR China

Paul Cairns
UCL Interaction Center, UK

José Creissac Campos
University of Minho, Portugal

Paul Curzon (Program Co-chair)
Queen Mary, University of London, UK

Gavin Doherty
Trinity College, University of Dublin, Ireland

Michael Harrison
University of Newcastle upon Tyne, UK

C. Michael Holloway
NASA Langley Research Center, USA

Chris Johnson

University of Glasgow, UK
Alan Dix

Lancaster University, UK

Li Siu Pan
Macao Polytechnic Institute, Macau SAR, China

Peter Lindsay
The University of Queensland, Australia

Adegboyega Ojo
UNI-IIST, Macau SAR China

Philippe Palanque
University of Toulouse III, France

Fabio Paterno
CNR-ISTI, Italy

Rimvydas Ruksenas
Queen Mary, University of London, UK

Report No. 347, 31 October 2006

UNU-IIST, P.O. Box 3058, Macao

FMIS 2006

Model-checking Driven Design of Interactive
Systems

Antonio Cerone! and Norzima Elbegbayan

International Institute for Software Technology
United Nations University
Macau SAR China

Abstract

This paper describes a model-checking based methodology to detect systematic
errors commonly made by non-expert users. The human and computer components
of the systems are modelled separately. The human component consists of a general
model of the user’s cognitively plausible behaviour, which can be then refined into
specific instances of behaviour that reflect relevant aspects of users’ personalities and
skills. We consider, as a case study, a formal model of an online interactive tool that
enables conference attendees to share thoughts and reactions and select matching
attendees to start communication with. Starting from the initial system design, a
model-checking technique is used to highlight system vulnerabilities that arise from
interactions with non-expert users and may lead to security violations. The results
of the analysis are exploited to improve the design by introducing safeguards that
reduce or even prevent security violations.

Key words: formal verification, human behaviour, usability, user
error, social computing, process calculi, model-checking.

1 Introduction

The widespread use of computers in safety-critical and security systems in-
creases the need for human-computer interaction to be designed in a way that
reduces the likelihood of human errors.

Human Reliability Assessment (HRA), which mostly emerged in the 1980’s,
have been widely used in the analysis of safety-critical systems but have shown
little success when applied to the safety assessment of user interface design
[11]. In the 1990’s increasing use of formal methods has yielded more objec-
tive analysis techniques [6], which, however, mainly addressed safety-critical

1 Email: antonio@iist.unu.edu
2 Email: norzima@iist.unu.edu
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

CERONE, ELBEGBAYAN

aspects of Interactive Systems (IS) where the human component is represented
by operators with expected expertise and skills. Moreover, the operator be-
haviour was often modelled as defined by the interface requirements. In reality,
however, the user interacting with the system does not necessarily behave as
it was expected while designing the interface, and errors are actually the very
result of an unexpected user behaviour that emerge through the interaction.
To best capture such an emergent behaviour, a model of the operator must
specify the cognitively plausible behaviour, that is all the possible behaviours
that can occur, and that involve different cognitive processes [1]. The model
must take into account all relationship between user’s actions, user’s goals and
the environment.

A number of researchers have explored the use of formal models to under-
stand how cognitive errors can affect user performance. Rushby [12] models
the behaviour of a forgetful operator who follows a warning display light or
a non-forgetful operator without warning lights and checks for an emergent
mode confusion. Curzon and Blandford [5] focus on goal-based interactions
and model the behaviour of a user who assumes all tasks completed when
the goal is achieved, but forgets to complete some important subsidiary tasks
(post-completion error).

In this paper we focus on IS intended for use among large groups of people,
with communication, collaboration, information exchange and interest match-
ing as the main goals [8,9]. In such a context there is no concern about safety,
but the system must be easy to use regarding learnability and efficiency as well
as guarantee confidentiality and other security properties, as required by legal
and community policies. The complexity of the interface should be accept-
able for any level of user’s skill, and the system should not discourage users
with its deficient or inconvenient operability. Moreover, there is little a prior:
knowledge about the user’s behaviour and experience in using the system, and
about more general user’s skills in dealing with computers and the Internet. It
is important, therefore, to set the most pessimistic scenario, in which the user
is non-expert, with minimal skills, and also explore alternative user behaviours
corresponding to a variety of attitudes and personalities. Mode confusion and
post-completion errors must be considered very likely to occur. On the other
hand, the system must be designed to guide user’s actions and decisions by
offering appropriate options in stages of interaction.

We use modelling techniques developed in previous work [2], which are
based on the CSP process algebra [10] and on temporal logic, first to define
the user goals and the interface as separate processes, and then to compose
such processes in parallel and analyse the emergent interaction, looking for
security vulnerabilities. Analysis is carried out by specifiying the properties
in temporal logic and using the Concurrency Workbench of the New Century
(CWB-NC) [4], a model-checker developed by SRI, to verify properties against
the model. We illustrate the approach on a simple case study based on a web-
based online interactive tool that enables conference attendees to communicate

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

and share their thoughts and reactions to a shared event [7].

Section 2 introduces a scenario that may occur during a workshop or con-
ference, in which conference attendees share thought and opinion through
a web interface motivated by various goals (Section 2.1). We also assume
a basic structure of the web interface accessible through a login mechanism
(Section 2.2).

Section 3 briefly introduces the CSP notation used throughout the paper
and describes the model of the user behaviour in terms of three possible goals
that may motivate and lead the user in interacting with the system: expressing
own ideas in the forum (Section 3.1), establishing contact with a matching user
(Section 3.2) and gathering information about other users (Section 3.3).

Section 4 presents an initial design of the system as the parallel compo-
sition of two CSP processes (Section 4.3), one modelling the user privileges
(Section 4.1) and the other modelling the web pages (Section 4.2).

Section 5 introduces assumptions on the expertise and forgetfulness of a
typical user (Section 5.1), shows how to analyse the system design under the
given assumptions with respect to a property which aims to prevent security
violations (Section 5.2), and describes possible improvement of the design to
reduce, or even completely overcome, the vunerabilities of the initial design.

2 Case Study: A Conference System

This tool consists of a web-based interface which could be a part of a bigger
system, that features a simple discussion forum and a member list. Through
web pages users gather information on a conference (or some other events)
and find/contact other users who are likely to match their interests. The tool,
however, does not feature a dating service [9]. Matching decisions are instead
explicitly made by the user.

2.1 Scenario

We start considering a common scenario that may occur at a workshop or
conference. We use the word user to identify the main subject of our scenario.
After a lecture or speech a user would like to meet other attendees to discuss
impressions or reactions to the attended presentation. Such attendees might
either be working on similar projects as our user or have similar thoughts
about the topic of the presentation. A lecture usually involves a large number
of attendees and every single attendee could have a different opinion about the
topic. In series of lectures attendees do not have many chances to communicate
with one another and ask opinions. Therefore it is important to allow the user
to search and initiate communications before attending the conference and
in order to make in advance plans and appointments for meetings to be held
while being at the conference.

A conference has a website dedicated to sharing and discussing ideas and

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

reflections about talks and seminars. On such a website users can set up their
own profiles and browse other users’ profiles in order to decide whether to
contact them. The purpose of the system is to help people to meet and share
their opinions and reactions to lectures or other events that will be (or were)
held during the conference.

The conference web site contains all information about the conference, in-
cluding lists of lectures and events. We assume that users have already started
sharing their thoughts and opinions well before the beginning of the confer-
ence. In a typical situation, the user accesses the web site and scans through
the lists of events and lectures, and reads the lecture notes and abstracts of pa-
pers and presentations. After logging in the user can set up a profile, which
includes the choice of some keywords to represent the user’s professional and
research interests as well as ideas and thoughts. The user can also:

read messages posted by other users to get a general view of other people’s
reaction to a recent event/presentation as well as to look for users with
matching thoughts and opinions;

post messages to share thoughts and opinions on a recent event/presentation;

reply to messages posted by other users to support or try to confute their
thoughts and opinions;

read profiles of other users to understand whether they have matching in-
terests, ideas and thoughts;

contact users who are believed to represent good matches;

logout from the system.

We assume that every post and reply has a link where all related posts and
replies are listed.

The user may have different motivations to use the conference system.
These motivations, in general, depend on the user’s personality, social skills,
familiarity with the topics, research and professional interests, as well as prac-
tical issues such as availability of time.

Motivations determine the users’ goals in using the conference system. De-
pending on the specific goals, the user may exploit different services provided
by the system. In this paper we analyse the behaviour of the user in relation
to three specific goals:

gathering information by just browsing through posted messages and user
profiles;

establishing contacts with users who represent good matches;

expressing ideas by just posting messages and replying to messages (after
reading them).

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

2.2 Web Interface

The informal description of the user’s interaction with the system presented
in Section 2.1 highlights three basic user statuses:

e the user has not logged in;
e the user has logged in, but not set up a profile;

e the user has set up a profile.
We assume that

(1) only logged-in users can set up their profiles and read a user profile and
a message;

(2) only users who have set up a profile can post or reply to a message and
contact other users.

Therefore, the user status changes when the user logs in, sets up a profile and
logs out.

The system interface consists of three main web pages: a Home page, a
page to set the User Profile, and a Forum page that allows the user to read
and post messages and to access other users’ profiles.

The Forum Page is linked to two additional pages. The first page allows
the user to analyse profiles looking for matching ones and, when matchings
are found, contact the corresponding users. This page is also directly acces-
sible from the User Profile page. The second page allows the user to analyse
messages looking for matching ones and, when matchings are found, reply
to them. These two pages are mutually linked because every message has an
author who must have set up a profile, due to assumption (2) above. More-
over, messages are linked to the author’s profile. Similarly, a profile may be
linked to message(s), if the corresponding user has already posted (or replied
to) any.

3 Modelling User Behaviour

The notation that we are going to use throughout the paper is based upon
Hoare’s CSP notation for describing Communicating Sequential Processes [10].

We use the CWB-NC [4] syntax for CSP:

e “a -> X” means that action a occurs and then process X starts;

e “X [] Y7 is the choice between processes X and Y;

e “X [I S [] Y” is the parallel composition of processes X and Y with syn-
chronisation set S.

The synchronisation set defines the set of actions that must synchronise within

the parallel composition.

Our model of the user behaviour focusses on the three user goals intro-
duced in Section 2.1. The specific goal the user has in mind will drive the

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

choice of the appropriate actions, among those allowed by the web interface.
For example, if the goal is gathering information, the user will just need to
browse through posted messages and other user profiles, whereas if the goal
is establishing contact, the user will eventually need to explicitly contact an-
other user. To achieve any goal the user always needs to login in the system
(assumptions (1) and (2) in Section 2.2).

proc Goals = (gather_info -> login -> GatherInfo)

[1 (establish_contact -> login -> EstablishContact)
[1 (express_ideas -> login -> ExpressIdeas)

After achieving the goal, the user can either logout or choose a new goal
and continue the interaction session with the system. In principle, a cognitively
plausible behaviour [1] must include the situation in which the user may leave
the interaction session unattended at any time, independently of whether the
goal is achieved or not. However, such a situation is unlikely to occur when
the user focusses on achieveing the goal, but it is much more plausible after
the goal is achieved. It is actually common that the user assumes all tasks
completed when the goal is achieved, but forgets to complete some important
subsidiary tasks (post-completion error) [5], such as logging out of the system.
Therefore we assume that

(3) the user will not logout and will not leave the interaction session unat-
tended while trying to achieve a goal, unless failing to perform an action
needed to achieve the goal;

(4) after achieving the goal, the user may forget to logout and leave the
interaction session unattended.

proc GoalAchieved = (gather_info -> GatherInfo)

[1 (establish_contact -> EstablishContact)
[1 (express_ideas -> ExpressIdeas)
[(logout -> Goals)
[l (leave -> ((short_delay -> Unattended)
[1 (long_delay -> Unattended)))
proc Unattended = (contact -> Unattended)
[1 (reply -> Unattended)
[1 (post_a_message -> Unattended)
[l (read_a_message -> Unattended)
[1 (read_a_profile -> Unattended)
[(logout —-> Goals)
[1 (failure -> Unattended)
[1 (short_delay -> Unattended)
[1 (long_delay -> Unattended)

State Unattended models the situation in which the interaction session is
left unattended by an authorised user and an unauthorised user may exploit
this open session by performing any action. We use actions short_delay
and long_delay to characterise respectively the short or long interval elapsed
between the time when the authorised user leaves the interaction session unat-
tended (action leave) and an unauthorised user starts exploiting the situation

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

(in state Unattended).

3.1 FExpressing Ideas

Posting messages in the forum and replying to already posted messages are

ways of expressing one’s ideas.

In general, the goal can be achieved (action goal_achieved) by either
posting a message (action post_a_message) or replying (action reply) to a
message, possibly after reading such message (action read_a_message). Note
that, in general, even if we assume that the user has the intention to read a
message before replying to it, we cannot assume that such intention will be
always implemented in the right sequence of actions. It may happen that the
user reads several messages before replying to any of them and then, intending
to reply to some of them, may erroneuosly reply to a message which was not
previously read.

proc ExpressIdeas = (post_a_message -> goal_achieved -> GoalAchieved)
[1 (read_a_message -> ExpressIdeas)
[1 (reply -> goal_achieved -> GoalAchieved)
[1 (failure -> (ExpressIdeas
[1 (leave -> ((short_delay -> Unattended)
[l (long_delay -> Unattended)))
[1 (logout -> Goals)))

At any stage of the interaction, the user may fail (action failure) to
perform an action. There are four possible ways in which the user may react
to such a failure:

(i) try to repeat the failed action (remaining in state ExpressIdeas and
repeating the same action);

(ii) try an alternative action (remaining in state ExpressIdeas and perform-
ing a different action);

(iii) leave the interaction session unattended (action leave);
(iv) log out from the system (action logout).

In general the choice of reaction depends on the user’s personality and famil-
iarity with computer systems, as well as time availability:.

3.2 Establishing contacts

In order to establish contact with a matching user it is necessary to explicitly
contact that user. In general, the user who wishes to establish contact may
have already collected outside the system all necessary information to select
a matching user and use the system just to contact such a matching user.

proc EstablishContact = (read_a_profile -> EstablishContact)
[l (read_a_message -> EstablishContact)
[1 (contact -> goal_achieved -> GoalAchieved)
[1 (failure -> (EstablishContact
[1 (leave -> ((short_delay -> Unattended)
[1 (long_delay -> Unattended)))

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

[1 (logout -> Goals)))

The system provides two ways for gathering information to help selecting
a matching user: reading profiles (action read_a_profile) and reading mes-
sages (action read_a_message). The user who wishes to establish contact will
keep reading profiles and messages (remaining in state EstablishContact)
until a matching user is found, before contacting such a matching user (ac-
tion contact). However, action contact may be immediately performed
without any iteration in the information gathering loop, if the information
gathering process has been performed outside the system. Obviously, the
goal_achieved action must be preceeded by the contact action.

As for the previous goal, at any stage of the interaction, the user may fail
(action failure) to perform an action.

3.3 Gathering Information

Gathering information about other users may not only be a means to select a
matching user but also be the final goal to achieve. If gathering information is
the actual user’s goal, then each of the read_a_profile and read_a_message
actions may either be an iteration of the information gathering loop (in state
GatherInfo) or lead to the goal_achieved action, which is performed when
the user has collected all needed information.
proc GatherInfo = (read_a_profile -> (GatherInfo
[1 (goal_achieved -> GoalAchieved)))
[(read_a_message -> (GatherInfo
[1 (goal_achieved -> GoalAchieved)))
[1 (failure -> (GatherInfo
[1 (leave -> ((short_delay -> Unattended)
[1 (long_delay -> Unattended)))
[1 (logout -> Goals)))

4 Initial System Design

4.1 Model of User Privileges

The three basic user statuses highlighted in Section 2.2 can be formalised by
three CSP processes as follows.

proc OutUser = (login -> ((noprofile -> enter -> InUser)
[1 (profile -> enter -> Member)))

proc InUser = (setup -> Member)
[l (read_a_profile -> InUser)
[l (read_a_message -> InUser)
[(logout —> OutUser)

proc Member = (read_a_profile -> Member)
[1 (read_a_message -> Member)
[(post_a_message —> Member)
[(reply —> Member)
[(contact -> Member)

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

[(logout -> OutUser)

Process OutUser defines the initial state, in which the user has not logged
in yet. After the user logs in (action login), the system checks whether the
user has already set a profile (action profile) or not (action noprofile).
If the user has not set a profile yet, the state changes to InUser, otherwise
it changes to Member. These two states define the two user privileges that
correspond to assumptions (1) and (2) in Section 2.2. The purpose of action
enter is to move to the state corresponding to the appropriate user privilege
and to activate the web interface described in Section 4.2. User privileges
can be changed by executing action setup (from InUser to Member). Action
logout leads back to the initial state (OutUser).

4.2 Model of the Web Interface

The model of the web interface consists of six states.

proc Entryl = (enter -> Homel)

proc Homel = (users -> UserProfilesl)
(] (forum -> Foruml)
[0 (setup -> Homel)
[1 (logout -> Entryl)

proc UserProfilesl = (forum -> Foruml)
[l (read_a_profile -> AProfilel)
[1 (home -> Homel)

proc AProfilel = (back_to_users -> UserProfilesl)
[1 (read_a_message -> AMessagel)
[1 (contact -> AProfilel)

proc Foruml = (read_a_message -> AMessagel)
[1 (users -> UserProfilesl)
[l (post_a_message -> Foruml)
(1 (home -> Homel)

proc AMessagel = (read_a_profile -> AProfilel)
[1 (back_to_forum -> Foruml)
[(reply —> AMessagel)

In the initial state (Entry1) the home page of the web interface is activated
by action enter (and the subsequent change to state Homel), which ends the
procedure to check the user privileges described in Section 4.1.

The other states model the five web pages described in Section 2.2. Actions
users, forum, home, back_to_users and back_to_forum allow the user to
freely navigate through the five web pages. Note that action logout is only
possible from state Home. This means that the user has always to go back to
the home page in order to be able to logout.

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

4.3 Owerall System Model

The overall system is expressed by process SYSTEM1 given by the parallel
composition of the user privileges (initially in state OutUser), the web interface
(initially in state Entry1) and the user goals (process Goal)
proc SYSTEM1 = ((OutUser [| {enter, read_a_profile, read_a_message,
post_a_message, reply, contact, setup, logout} |] Entryl)
[| {login, read_a_message, read_a_profile, contact, logout,
post_a_message, reply, failure} |] Goals)

The OutUser and Entryl processes must synchronise on all actions that
can be eventually performed by the OutUser process apart from the profile
and noprofile, which define the checking procedure modelled by the OutUser
process (they are internal actions of OutUser).

The process originated by the parallel composition of QutUser and Entryl
is then composed with the Goals process. In this second parallel composition,
the synchronisation must include all user actions that define interactions with
the interface. Note that we have also included the failure action, which
does not occur in the OutUser and Entryl processes (and therefore neither
in their parallel composition) in the sychronisation set. This prevents the
overall system from performing the failure action, so modelling the following
assumption

(5) user never fails to perform an intended action that is immediately avail-
able on the current web page.

The purpose of this assumption is to show that the design weaknesses captured
by the model-checking analysis presented in Section 5 are independent of the
skill of the user in performing a single interaction with the interface.

5 Improving the System Design

In this section we use CWB-NC to analyse the interaction between the user
behaviour model defined in Section 3 and various versions of the web interface
defined in Section 4. The analysis of the original web interface defined in
Section 4 highlights security vulnerabilities, which are then partly or entirely
overcome in the next versions.

5.1 Constraining the User Behaviour

According to assumptions (3) and (4) in Section 3 the user will not logout and
will not leave the interface unattended before achieving the goal. However,
after achieving the goal, the user may forget to logout and leave the interface
unattended without coming back to use it. Such a situation may lead to
security violations. The interface is supposed to be designed with the aim
to minimise the likelihood that an unattended session is exploited by a non-
authorised user to access profiles (privacy violation) or pretend to be the

10

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

logged-in user (masquerading).

Ideally, we would like an unattended session to automatically logout on
time to prevent security violations. However, in practice, we can just introduce
safeguards that minimise the likelihood of security violations, in a way that
does not introduce much degradation in the quality and performance of the
services provided to the user. In order to find the right balance between
security and the quality and performance services, it is important to analyse
the user attitudes and behaviours while interacting with the system. Specific
attitudes and behaviours may actually reduce the likelihood of some threats
and increase the likelihood of others. For example, panicking when the planned
action does not appear immediately available on the current web page is an
attitude that may lead to the behaviour of leaving the session unattended, so
causing a security threat. On the other hand, the attitude of always checking
that all tasks have been completed after achieving a goal reduces the likelihood
of forgetting to logout before leaving the session.

It is therefore sensible to introduce safeguards only to prevent the most
likely threats, that is, those threats that are more likely to occur given specific
assumptions about user attitudes and behaviours. The users of our system are
not supposed to be expert in using interactive systems. In fact, some of them
might have very low familiarity with computers. The user behavior model
defined in section 3 is a very general one and needs to be restricted to capture
specific attitudes and behaviours of non-expert users.

A typical behaviour of a non-expert user after achieving a goal is to try
to logout but, if such attempted logout fails, to eventually leave the session
unattended. Such a behaviour may be enforced by a process defined as follows.

proc NonExpert = (home -> NonExpert)

[(users -> NonExpert)

[l (forum -> NonExpert)

[1 (back_to_users -> NonExpert)
[1 (back_to_forum -> NonExpert)
[1 (leave -> NonExpert)

[1 (logout -> NonExpert)

[1 (goal_achieved ->

((logout -> NonExpert)
[1 (leave -> NonExpert)
)
)

This process has then to be composed in parallel with the system as follows.

proc SYSTEMIN = (SYSTEM1 [| {home, users, forum, back_to_users,
back_to_forum, goal_achieved, leave, logout} |] NonExpert)

Apart from leave and logout, any other action on which the two processes
synchronise cannot occur after the goal_achieved action, consistently with
the behaviour of a non-expert user described above.

The user defined by the SYSTEMIN process may, however, forget to lo-
gout and leave the session unattended even if there is a logout mechanism

11

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

(e.g. a logout button) promptly available on the current web page. This oc-
curs when actions leave and logout are both available but leave is chosen.
A non-forgetful user, who will always choose a logout action when avail-
able after goal_achieved, rather than leaving the session unattended (action
leave), may be defined by appropriately synchronising the system with the
NonForgetful process defined as follows.

proc NonForgetful = (goal_achieved -> 1logout -> NonForgetful)
[1 (logout -> NonForgetful)

The appropriate synchronisation is achieved by composing this process,
which works as a constraint, in parallel with SYSTEM1N as follows.

proc SYSTEMINR = (SYSTEMIN [| {goal_achieved, leave, logoutl} |]
NonForgetful)

Since the two components must also synchronise on leave, and this does
not occur in the behaviour of the NonForgetful process, the leave action can
never occur in the composite process.

5.2 Analysis of the Initial Design

An important requirement that our system should meet is that an open session
is never left unattended. Meeting such a requirement would definitely prevent
security violation from occurring.

According to assumptions (3) and (4) in Section 3 an open session may
be left unattended only if the logged-in user, after achieving a goal, does not
pursue a new goal and does not logout. Using CWB-NC syntax [4], a property
asserting that every time a goal is achieved there will eventually be either a
logout or a new goal pursued can be formalised as follows.

prop eventually_logout = A G ({goal_achieved} ->

12

F ({gather_info} \/ {establish_contact} \/ {express_ideas} \/ {logout}))

This property is not stating that the session is never left unattended. It
would be anyway useless to state a property that depend only on the free will
of the user rather than on the way the interface constrains the user behaviour.
Action leave may actually occur after action leave and before persuing a new
goal (gather_info or establish_contact or express_ideas) or logging-out
(logout).

Property eventually_logout prevents any action in P = { contact,
reply, post_a_message, read_a_message, read_a_profile } from occur-
ing between achieving a goal and persuing a new goal or logging-out. In fact,
if such an occurrence were possible, then also an infinite sequence containing
only actions in P would be possible after achieving the goal, which contraddict
property eventually_logout.

Therefore property eventually_logout guarantees that if the the session
is left unattended (leave) after achieving a goal (goal_achieved), then no
unauthorised user can take over the session and perform actions in P, possibly

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

leading to a security violation, before logging-out (pursuing a goal must always
follow a logout action).

We should note that, in principle, the authorised user might also indef-
initely browse web pages with no real goal and never logout, whereas this
behaviour is also ruled out by property eventually_logout. However, this is
not a cognitively plausible behaviour, not only because the user will not sit at
the session for an infinite time, but also because we assume that all our users
are strongly motivated in achieving goals.

Using the CWB-NC we can verify that eventually_logout does not hold
for the SYSTEM1NR system. Therefore, the web interface needs to be improved
to address non-expert users. The problem is that the logout is not available on
each web page, but just on the Home page. The users have to properly navigate
back to the Home page from the page where the goal has been achieved. This
might be quite challenging for a non-expert user. In addition, the presence of
a logout button on each web page would be a reminder for the user to logout,
so addressing also expert but forgetful users.

We therefore modify the interface (renaming Entryl to Entry2, and anal-
ogously for the other states) by inserting in every state apart from Entry?2
(and Home2, which already has it) the choice

[1 (logout -> Entry2)

The processes that define the composite system are defined as follows.

proc SYSTEM2 = ((OutUser [| {enter, read_a_profile, read_a_message,
post_a_message, reply, contact, setup, logout} |] Entry2)
[l {login, read_a_message, read_a_profile, contact, logout,
post_a_message, reply, failure} |] Goals)

proc SYSTEM2N = (SYSTEM2 [| {home, users, forum, back_to_users,
back_to_forum, goal_achieved, leave, logout} |] NonExpert)

proc SYSTEM2NR = (SYSTEM2N [| {goal_achieved, leave, logoutl} |]
NonForgetful)

We can now verify, using CWB-NC, that eventually_logout holds for
the SYSTEM2NR system.

5.8 Introducing a timeout

A problem with the interface defined by SYSTEM2 is the lack of any protection
for forgetful users. Although adding a direct logout mechanism to each web
page may work as a reminder to the user to logout, users might still forget to
logout. Property eventually_logout does not actually hold for SYSTEM2N.

A way of improving the situation is the introduction of a timeout in the
interface to force the system to automatically logout if there is no action by
the on-line user, within a given time. We may modify the interface (renaming
Entry2 to Entry3, and analogously for the other states) by inserting in every
state, apart from the initial one (Entry3), both choice

13

Siraj Shaikh
Rectangle

14

CERONE, ELBEGBAYAN

[1 (long_delay -> timeout -> logout -> Entry3)

and the choice of action short_delay with no change of state. For example,
state UserProfiles3 is defined as follows.

proc UserProfiles3 = (forum -> Forum3)

[1 (read_a_profile -> AProfile3)

(1 (home -> Home3)

(1 (logout -> Entry3)

[1 (short_delay -> UserProfiles3)

[1 (long_delay -> timeout -> logout -> Entry3)

The timeout will occur only after some time (long_delay), which is long
enough not to disrupt the short idling periods that users normally have during
sessions. In general, this safeguard does not fully solve the problem of unau-
thorised accesses. In fact, an unauthorised user can still enter an unattended
session before the timeout expires. Let us consider the composite system
defined as follows.
proc SYSTEM3 = ((OutUser [| {enter, read_a_profile, read_a_message,

post_a_message, reply, contact, setup, logout} |] Entry3)

[l {login, read_a_message, read_a_profile, contact, logout,
short_delay, long_delay, post_a_message, reply, failure} |] Goals)

proc SYSTEM3N = (SYSTEM3 [| {home, users, forum, back_to_users,
back_to_forum, goal_achieved, leave, logout} |] NonExpert)

We can actually verify using CWB-NC that eventually_logout does not
hold for the SYSTEM3N system. However, we can assume that

(6) no authorised user may enter an unattended session within a time period
shorter (short_delay) than the delay (long_delay) that triggers the
timeout.

Such an assumption may be modelled as follows.

proc QuickTimeOut = (home -> QuickTimeOut)
[J (users -> QuickTimeOut)
[1 (forum -> QuickTimeOut)
[1 (back_to_users -> QuickTimeOut)
[1 (back_to_forum -> QuickTimeOut)
[1 (logout -> QuickTimeQOut)
[1 (leave -> long_delay -> timeout -> logout -> QuickTimeOut)

The process that incorporates this assumption is defined as follows.

proc SYSTEM3NQ = (SYSTEM3N [| {timeout, home, users, forum, back_to_users,
back_to_forum, leave, logout, short_delay, long_delay} |17 QuickTimeOut)

We can verify that eventually_logout holds for the SYSTEM3NQ system.

5.4 Introducing authentication

All safeguards introduced in previous sections contribute to reduce the like-
lihood of security violations, but they do not guarantee the absence of such

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

violations. Those safeguards aim actually to reduce the likelihood that an
unauthorised user enter an unattended open session, but there are no explicit
mechanisms in the system to prevent an unauthorised user, who has actually
entered the session, from performing interactions with the systems.

We could modify the web interface by introducing a protection mechanism
that requires the user to provide authentication (i.e. to input a password)
before performing a specific critical action. For example, we would like to
avoid masquerading threats by requiring authentication to users who wish to
contact other users.

We may modify the interface (renaming Entry3 to Entry4, and analo-
gously for the other states) by replacing the AProfiles3 with the following:
proc AProfile4 = (back_to_users -> UserProfiles4)

[1 (read_a_message —> AMessage4)
[1 (request_contact ->
(authenticated -> contact -> AProfile4)
[1 (short_delay -> failure -> AProfile4))
[1 (logout -> Entry4)
[1 (short_delay -> AProfiled)
[1 (long_delay -> timeout -> logout -> Entry4)

An analogous change must be done to state Forum3, in which messages
can be posted, by introducing action request_post. These are the only two
states in which an unauthorised user may perform a masquerading attack.

Posting a message and contacting another user are now allowed only upon
successful authentication. For example action contact may occur only after
action authenticated. If action failure occurs instead (the authentication
fails), then action contact cannot occur (no contact can be established).

We assume that

(7) only authorised users can be authenticated.

This is a reasonable assumption, which in password-based authentication cor-
responds to the assumption that the password is kept secret. Assumption (7)
may be defined by a constraint as follows.
proc Authorised = (failure -> Authorised)

[1 (authenticated -> Authorised)

[1 (leave -> UnAuthorised)
proc UnAuthorised = (failure -> UnAuthorised)

[(logout —> Authorised)

This process models the presence of an authorised user until action leave
occurs, and then the presence of an unauthorised user, with no authenticated
action allowed, until action logout occurs. Note that this constraint is also
consistent with assumption (5) in Section 4.3.

The processes that define the composite system are defined as follows.
proc SYSTEM4 = ((OutUser [| {enter, read_a_profile, read_a_message,

post_a_message, reply, contact, setup, logout} |] Entry4)
[l {login, read_a_message, read_a_profile, contact,

15

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

logout, short_delay, long_delay, request_post, post_a_message,
request_reply, reply, failure} |] Goals)

proc SYSTEM4A = (SYSTEM4 [| {failure, authenticated, leave, logoutl} |]
Authorised)

We would like to prove that if an open session is left unattended (action
leave), then no contact is established (action contact), no message is posted
(action post_a_message), no reply is sent (action reply), until at some time
when the session was unattended a logout (action logout) occurs. Such a
property can be formalised as follows.

prop never_masquerading = A G ({leave} ->
((“{contact,post_a_message,reply}) W {logout}))

We can verify that prop never_masquerading holds for the SYSTEM4A
system and does not hold for any of the previous versions of the overall sys-
tem (with the user behaviour component modified with the choice regarding
request_contact, request_post and request_reply described above).

The web interface might be modified in a similar way to obtain a system
protected from confidentiality threats. In this case the request for authentica-
tion would be associated with actions read_a_profile and read_a_message
and the property to be verified would be

prop confidentiality = A G ({leave} —>
(("{read_a_profile,read_a_message}) W {logout}))

Finally, the web interface could be modified to protect from both confi-
dentiality violation and masquerading. Although these mechanisms guaran-
tee perfect security under assumption (7), it is unlikely that they would all
be implemented in a real system similar to the case study we have analysed.
However, if it is likely that some sensitive information may be posted on the
website, privacy policies might require confidentiality just for that particular
information. Then the solution above would guarantee that no unauthorised
user can read confidential profiles or messages of other users. Although mas-
querading is still possible and some users might be driven by the attacker
to post confidential information, such information could not be read by the
attacker.

6 Conclusion

We have used modelling techniques developed in previous work [2] to sepa-
rately model the user goals and web interface components of an interactive
tool for communication, information exchange and interest matching [7].
The composition step has been carried out using the constraint-based mod-
elling style [13,3], in which the behavior of a process is restricted by composing
it with a special process that works as a contraint. This approach has been
exploited to model alternative aspects of the behaviour of non-expert users
(processes NonExpert, NonForgetful) as well as assumptions that are needed

16

Siraj Shaikh
Rectangle

CERONE, ELBEGBAYAN

to set the contexts in which security properties can be expressed (processes
QuickTimeQOut, Authorised).

Analysis has been carried out by specifying properties in temporal logic and
using several iterations of model-checking to discover security vulnerabilities
of the initial design and verify the correctness of the safeguards introduced.

References

[1] R. Butterworth, Ann E. Blandford, and D. Duke. Demonstrating the cognitive
plausability of interactive systems. Formal Aspects of Computing, 12:237-259,
2000.

[2] Antonio Cerone, Peter Lindsay, and Simon Connelly. Formal analysis of
human-computer interaction using model-checking. In Bernhard Aichernig
and Bernhard Beckert, editors, Proceedings of the 3rd IEEE International
Conference on Software Engineering and Formal Methods, pages 352-361. IEEE
Comp. Soc., 2005.

[3] Antonio Cerone and George Milne. Property verification of asynchronous
systems. Innovations in System and Software Engineering, 1(1):25-40, April
2005.

[4] Rance Cleaveland, Tan Li, and Steve Sims. The concurrency workbench of the
new century. User’s manual, SUNY at Stony Brook, Stony Brooke, NY, USA,
2000. URL: http://www.cs.sunysb.edu/ cwb.

[5] Paul Curzon and Ann E. Blandford. Formally justifying user-centred design
rules: a case study on post-completion errors. In E.A. Boiten, J. Derrick, and
G. Smith, editors, Integrated Formal Methods, volume 2999 of Lecture Notes in
Computer Science, pages 461-480. Springer-Verlag, Berlin, Germany, 2004.

[6] Alan John Dix. Formal Methods for Interactive Systems. Academic Press, 1991.

[7] Norzima Elbegbayan. Shared reflection — case study on conference support

website. Technical Report 342, UNU-IIST, 2006.
URL: http://www.iist.unu.edu/.

[8] Joseph F. McCarthy et al. Digital backchannels in shared physical spaces:
attention, intention and contention. In CSCW ’04: Proceedings of the 2004
ACM Conference on Computer Supported Cooperative Work, pages 550-553,
New York, NY, USA, 2004. ACM Press.

[9] Andrew Fiore and Judith S. Donath. Online personals: An overview. In ACM
Computer-Human Interaction, Vienna, 2004.

17

URL: http://smg.media.mit.edu/papers/atf/chi2004 personals_short.pdf.

[10] C.A.R Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice Hall, 1985.

Siraj Shaikh
Rectangle

18

CERONE, ELBEGBAYAN

[11] B. Kirwan. Human error identification in human reliability assessment. Part 1:
Overview of approaches. Applied Ergonomics, 25(5):299-318, 1992.

[12] John Rushby. Using model-checking to help discover mode confusions and other
automation surprises. Reliability Engineering and System Safety, 75(2):167—
177, February 2002.

[13] C. A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Specification styles
in distributed systems design and verification. Theoretical Computer Science,
89:179-206, 1991.

Siraj Shaikh
Rectangle

FMIS 2006

Detecting Cognitive Causes of
Confidentiality Leaks™

R. Ruksénas®!, P. Curzon?, A. BlandfordP®

& Dept. of Computer Science, Queen Mary, University of London, London, UK

b University College London Interaction Centre, London, UK

Abstract

Most security research focuses on the technical aspects of systems. We consider
security from a user-centred point of view. We focus on cognitive processes that
influence security of information flow from the user to the computer system. For
this, we extend our framework developed for the verification of usability properties.
Finally, we consider small examples to illustrate the ideas and approach, and show
how some confidentiality leaks, caused by a combination of an inappropriate design
and certain aspects of human cognition, can be detected within our framework.

Key words: human error, security, cognitive architecture, formal
verification, SAL.

1 Introduction

There has been much research on security (confidentiality) of information flow
(see Sabelfeld and Myers’ overview [19]). The starting point is the assumption
that computation uses confidential inputs. The goal is to ensure a noninterfer-
ence policy [10], which essentially means that no difference in outputs can be
observed between two computations that are different only in their confiden-
tial inputs. Various approaches to this problem, such as access control [3] and
static information-flow control [9], have been proposed, and formalisms and
mechanisms developed, e.g. security-type systems [20] and type-checkers [15].

All this research focuses on the technical aspects of software systems. It
aims at ensuring that the implementation of a system does not leak confiden-
tial information. However, technology is only one aspect of security. Within
interactive systems, there is another actor besides a computer system — its

* This research is funded by EPSRC grants GR/S67494/01 and GR/S67500/01.
! Email: rimvydas@dcs.qgmul.ac.uk
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

19

RUKSENAS, CURZON AND BLANDFORD

Device Model

output input

. . I:: : User Model
interpretation effect
<:| input memory output

Environment M odel

world state

Fig. 1. The cycle of interaction

human user. Even perfectly designed and implemented systems cannot pre-
vent users from unwittingly compromising confidential information they have.
Users can breach security for many reasons. Nevertheless, research in human-
computer interaction [1,13] reveals systematic causes of such violations, includ-
ing cognitive overload, lack of security knowledge, and mismatches between
the behaviour of computer systems and the mental model that their users
have. Even in the absence of software errors security can be breached when
the functionally correct behaviour is inconsistent with user expectations [13].

The relationship between users and security mechanisms is addressed by
user-centred security which provides “security models, mechanisms, systems,
and software that have usability as a primary motivation or goal” [21]. Much
of this work takes social dimensions, considering problems like user motivation
and understanding of security mechanisms, work practices, the relationships
between system users, including authorities and communities of users, and
threats to security exploiting social engineering techniques.

Our work lies between the technical aspects of information-flow security
and the social aspects of user-centred security. More specifically, we are in-
terested in information flow; however, the locus of this flow is now not within
a computer system but within the inputs provided to it by its user. We are
not considering the social aspects of human-computer interaction and secu-
rity. Instead, the focus of our attention is cognitive processes that influence
information flow from the human user into the computer system.

We build upon the generic user model (cognitive architecture) we devel-
oped in our work on usability [8]. It was developed from abstract cognitive
principles, such as a user entering an interaction with knowledge of the task
and its subsidiary goals. The cognitive architecture was later extended [17] to
include an abstract specification, interpretation, of the pathways from device
signals and environment objects to the user decision of what they mean (see
Fig.1). Incorporating such models of user behaviour into models of security
is advocated by user-centred security [21]: e.g. Ka-Ping derives the guidelines
(design rules) for secure interaction design from an informal user model [13].

Our cognitive architecture has proved of use for detecting various types of

20

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

systematic user errors in the context of usability and task completion [8,17].
Here our aim is to show that the behaviours emerging from this architecture
also expose security problems and so facilitate the improvement of security
aspects in user interaction design. To demonstrate this, we first informally
discuss, from a security viewpoint, several examples of user error dealt with
in our earlier work [8]. Then we consider an example of using the model
checking tool SAL [14] to detect some confidentiality leaks emerging from our
cognitive architecture and conditioned by the user interpretation of system
prompts. More specifically, we consider security problems that may arise
from the combination of user habits and (relative) positioning of input fields
in authentication interfaces. The examples are small and intended to illustrate
an approach and ideas that we believe are more generally applicable.
Summarising, the main contribution of this paper is the following:

e An investigation into the formal modelling of cognitive aspects of confiden-
tiality leaks in interactive systems.

* An extension of our framework, developed for usability verification, to deal
with the security problems in user interaction.

e An illustrative example of confidentiality leaks, caused by cognitive inter-
pretation and detectable by model checking using our cognitive architecture.

Related work

Whilst conducted independently and in parallel, Beckert and Beuster’s
work [2] takes a similar approach to ours. They also develop a formal user
model, and combine it with specifications of the application and the user’s
assumptions about that application to verify security properties of interactive
systems. Their user modelling is based on the formalisation of an established
methodology, GOMS [12], which is the core of their work. The modelling of
user’s assumptions partially coincides with our user interpretation. However,
their “assumptions” model user choice between multiple plausible options,
whereas our “interpretation” deals, in addition, with the user perception of
interface objects depending on their shape, position, etc. Beckert and Beuster
informally define three HCI security requirements, however, only one is for-
malised, whereas correctness properties in our framework also address the
remaining two. It is also unclear whether they provide tool support for auto-
matic verification. On the other hand, their methodology supports hierarchical
models: an advantage when dealing with larger systems.

In the related area of safety-critical systems, Rushby et al [18] focus on
mode errors and the ability of pilots to track mode changes. They formalise
plausible mental models of systems and analyse them using the Mur¢ verifica-
tion tool. The mental models though are essentially abstracted system models;
they do not rely upon structure provided by cognitive principles. Neither do
they model user interpretation. Cerone et al’s [7] CSP model of an air traf-
fic control system includes controller behaviour. A model checker was used

21

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

to look for new behavioural patterns, missed by the analysis of experimental
data. The classification stage in their model is similar to user interpretation.

Ka-Ping [13] gives a list of design rules, justified by an informal user model
and tailored to increase security of interactive systems. As the rules are in-
formal (many are probably too abstract to be formalised), there is no tool
support for verifying whether designs obey them.

2 The Cognitive Architecture in SAL

Our cognitive architecture is a higher-order logic formalisation of abstract
principles of cognition and specifies cognitively plausible behaviour [5]. The
architecture specifies possible user behaviour (traces of actions) that can be
justified in terms of specific results from the cognitive sciences. Real users
can act outside this behaviour, about which the architecture says nothing. Its
predictive power is bounded by the situations where people act according to
the principles specified. The architecture allows one to investigate what hap-
pens if a person acts in such plausible ways. The behaviour defined is neither
“correct” nor “incorrect”. It could be either depending on the environment
and task in question. We do not attempt to model the underlying neural
architecture nor the higher level cognitive architecture such as information
processing. Instead our model is an abstract specification, intended for ease
of reasoning.

We rely upon cognitive principles that give a knowledge level description
in the terms of Newell [16]. Their focus is on the goals and knowledge of a
user. Our formalisation of the principles is based on the SAL model checking
environment [14]. It provides a higher-order specification language and tools
for analysing state machines specified as parametrised modules and composed
either synchronously or asynchronously. The SAL notation we use is given in
Table 1. We also use the usual notation for the conjunction, disjunction and set
membership operators. A slightly simplified version of the SAL specification
of a transition relation that defines our user model is given in Fig.2, where
predicates in italic are shorthands explained later on. Below we discuss the
cognitive principles and the way they are reflected in the SAL specification
(module User).

Non-determinism. In any situation, any one of several cognitively plau-
sible behaviours might be taken. It cannot be assumed that any specific plausi-
ble behaviour will be the one that a person will follow. The SAL specification is
a transition system. Non-determinism is represented by the non-deterministic
choice, [1, between the named guarded commands (i.e. transitions). For ex-
ample, GoalCommit in Fig. 2 is the name of a family of transitions indexed by
i. Each guarded command in the specification describes an action that a user
could plausibly make.

Mental versus physical actions. A user commits to taking an action in
a way that cannot be revoked after a certain point. Once a signal has been sent

22

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

Table 1

A fragment of the SAL language
x:T x has type T
Ax:T):e a function of x with the value e
x =e an update: the new value of x is that of the expression e
{x:Tlpx)} a subset of T such that the predicate p(x) holds
alil the i-th element of the array a
r.x the field x of the record r
r WITH .x:=e the record r with the field x replaced by the value of e
g — upd if g is true then update according to upd
c []d non-deterministic choice between ¢ and d
[1:T): ¢4 non-deterministic choice between the c; with i in range T

from the brain to the motor system to take an action, it cannot be stopped
even if the person becomes aware that it is wrong before the action is taken.
Therefore, we model both physical and mental actions. Each physical action
modelled is associated with an internal mental action that commits to taking
it. In the specification, this is reflected by the pairings of guarded commands:
GoalCommit — GoalTrans, and ReactCommit — ReactTrans. The first of the
pair models committing to an action, the second actually doing it (see below).

User goals. A user enters an interaction with knowledge of the task and,
in particular, task dependent sub-goals that must be discharged. These sub-
goals might concern information that must be communicated to the device or
items (such as bank cards) that must be inserted into the device. Given the
opportunity, people may attempt to discharge such goals, even when the device
is prompting for a different action. We model such knowledge as user goals
which represent a pre-determined partial plan that has arisen from knowledge
of the task in hand, independent of the environment in which that task is
performed. No fixed order is assumed over how user goals will be discharged.

To see how this is modelled in SAL consider the guarded command Goal-
Trans for doing a user action that has been previously committed to:

gcommit/[i] = done;
gcommit[i] = committed — gcomm’ = FALSE;
GoalTransition(i)

The left-hand side of — is the guard of this command. It says that the rule
will only activate if the associated action has already been committed to, as
indicated by the i-th element of the local variable array gcommit holding value
committed. If the rule is then non-deterministically chosen to fire, this value
is changed to done and the boolean variable gcomm is set to false to indicate
there are now no commitments to physical actions outstanding and the user
model can select another goal. GoalTransition(i) represents the state updates
associated with this particular action .

User goals are modelled as an array, goals, which is a parameter of the
User module. The state space of the user model consists of three parts: input

23

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD 24

TRANSITION
[1 (i:GoalRange): GoalCommit:
gcommit[i] = ready A
NOT(gcomm V rcomm) A _ gcommit/[i] = committed,;
finished = notf A gcomm’ = TRUE
goals[i|.grd(in, mem, env)
(]
[] (i:ReactRange): ReactCommit:
rcommit[i] = ready A

NOT(gcomm V rcomm) A _ rcommit/[i] = committed,;
finished = notf A rcomm’ = TRUE
react[i].grd(in, mem, env)
(]
[1(i:GoalRange): GoalTrans:
gcommit/[i] = done;
gcommit[i] = committed — gcomm’ = FALSE
GoalTransition(i)
(]
(] (i:ReactRange): ReactTrans:
rcommit/[i] = ready;
rcommit[i] = committed — rcomm’ = FALSE
ReactTransition(i)
(]
Ezit:
PerceivedGoal(in,mem) A
NOT(gcomm V rcomm) A — finished = ok
finished = notf
(]
Abort:
NOT(EnabledGoals(in, mem, env)) A
NOT(EnabledReact(in, mem, env)) A finished’ = IF Wait(in,mem)
NOT(PerceivedGoal(in,mem)) A — THEN notf
NOT(gcomm V rcomm) A ELSE abort ENDIF
finished = notf
(]
Idle:

finished = notf —

Fig. 2. User model in SAL (simplified)

variable in, output variable out, and global variable (memory) mem; the envi-
ronment is modelled by a global variable, env. All of these are specified using
type variables and are instantiated for each concrete interactive system. Each
goal is specified by a record with the fields grd, tout, tmem and tenv. The grd
field is discussed below. The remaining fields are relations from old to new
states that describe how two components of the user model state (outputs
out and memory mem) and environment env are updated by discharging this

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

goal. These relations, provided when the generic user model is instantiated,
are used to specify GoalTransition(i) as follows:

out’ € {x:0ut | goals[i].tout(in,out,mem) (x)};
mem’ € {x:Memory | goals[i].tmem(in,mem,out’) (x)};
env' € {x:Env | goals[i].tenv(in,mem,env)(x) A possessions}

Since we are modelling the cognitive aspects of user actions, all three up-
dates depend on the initial values of inputs (perceptions) and memory. In ad-
dition, each update depends on the old value of the component updated. The
memory update also depends on the new value (out’) of the outputs, since we
usually assume the user remembers the actions just taken. The update of env
must also satisfy a generic relation, possessions. It specifies universal physi-
cal constraints on possessions and their value, linking the events of taking and
giving up a possession item with the corresponding increase or decrease in the
number (counter) of items possessed. For example, it specifies that if an item
is not given up then the user still has it. The counters of possession items are
modelled as environment components. We omit further details since, in this
paper, possession properties are not used in any way.

If the guarded command for committing to a user goal, GoalCommit, fires,
it switches the commit flag for goal i to committed thus enabling the GoalTrans
command. The predicate grd, extracted from the goals parameter, specifies
when there are opportunities to discharge this user goal. Because we assign
done to the corresponding element of the array gcommit in the GoalTrans
command, once fired the command below will not execute again. If the user
model discharges a goal, it will not do so again without an additional reason
such as a device prompt.

Reactive behaviour. Users may react to an external stimulus, doing the
action suggested by the stimulus. For example, if a flashing light comes on a
user might, if the light is noticed, react by inserting coins in an adjacent slot.
Reactive actions are modelled by the pairing ReactCommit— ReactTrans in the
same way as user goals but on different variables, e.g. parameter react of the
User module rather than goals. ReactTransition(i) is specified in the same
way as GoalTransition(i). The array element rcommit [i] is reassigned ready
rather than done, once action i has been executed, since reactive actions, if
prompted, may be repeated.

Goal based task completion. Users intermittently, but persistently,
terminate interactions as soon as their main goal has been achieved [6], even if
subsidiary tasks generated in achieving the main goal have not been completed.
A cash-point example is a person walking away with the cash but leaving the
card. In the SAL specification, a condition that the user perceives as the main
goal of the interaction is represented by a parameter PerceivedGoal of the User
module. Goal based completion is then modelled as the guarded command
Exit, which simply states that, once the predicate PerceivedGoal becomes
true and there are no commitments to user goals and/or reactive actions, the

25

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

user may complete the interaction. This action may still not be taken because
the choice between enabled guarded commands is non-deterministic. Task
completion is modelled by setting the local variable finished to ok, whereas
the value notf means that the task is unfinished.

No-option based task termination. If there is no apparent action
that a person can take that will help complete the task then the person may
terminate the interaction. For example, if, on a ticket machine, the user
wishes to buy a weekly season ticket, but the options presented include nothing
about season tickets, then the person might give up, assuming the goal is not
achievable.

In the guarded command Abort, the no-option condition is expressed as
the negation of predicates EnabledGoals and EnabledReact. Note that, in such
a case, a possible action that a person could take is to wait. However, they will
only do so given some cognitively plausible reason such as a displayed “please
wait” message. The waiting conditions are represented in the specification by
predicate parameter Wait. If Wait is false, finished is set to abort to model
a user giving up and terminating the task.

3 Verification of Security Aspects in User Interaction

In this section, we discuss examples of user error, focussing on the security
aspects of interaction. We first introduce the properties to verify.

3.1 Correctness properties: usability and security

Previously, our approach dealt with two kinds of usability properties. First,
we want to be sure that, in any possible system behaviour, the user’s main goal
of interaction (as they perceive it) is eventually achieved. Given our model’s
state space, this is written as the SAL assertion

(1) F(PerceivedGoal(in, mem))

where F means ‘eventually’. Second, in achieving a goal, subsidiary tasks are
often generated that the user must complete to complete the task associated
with their main goal. If the completion of the subsidiary tasks is represented as
a predicate, SecondaryGoal, the required condition is (where G means ‘always’):

(2) G(PerceivedGoal(in,mem) = F(SecondaryGoal(in,mem, env)))

This states that the secondary goal is always eventually achieved once the
perceived goal has been. Often secondary goals can be expressed as interac-
tion invariants [8] which state that some property of the system state, that
was perturbed to achieve the main goal, is restored. Previously, we viewed
property (2) in terms of pure usability, applying it to, e.g. user possessions.
The verification of (2) can, however, also be used to detect security prob-
lems. Moreover, we will introduce a third kind of correctness property, relevant

26

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

to confidentiality leaks in user input. Intuitively, one would like to prevent
such leaks in all system states, so we are aiming at a safety property. In terms
of information-flow security [19], let us have, for simplicity, two confidentiality
levels of user inputs, “high” and “low”. A safety property that addresses some
security aspects is that in no states do high inputs appear on a low channel.
A boolean, SecurityBreach, represents system states that breach this. The
property, stating that it is always true there is no security breach, is then:

(3) G(NOT(SecurityBreach))

We discuss how SecurityBreach is set to true, indicating breaches, in Section 4.

Note that neither of the first two correctness properties capture confiden-
tiality leaks modelled as SecurityBreach. Property (1) is a usability prop-
erty; the essential condition is a user achieving the main goal. The fact that
this goal might be achieved by first making a mistake then undoing the er-
roneous action is irrelevant. However, with respect to security, undo is not
good enough [13]: an erroneous action could already have leaked confidential
information. Though checking property (2) can reveal some security problems
related to, e.g. post-completion errors (see below), it is still a liveness property.
As such, it does not require a system to satisfy the condition SecondaryGoal
in all states, only at some point after the main goal has been achieved.

3.2 User error and security

Erroneous actions are the proximate cause of failure, since it was a particular
action that caused the problem: e.g. a user entering data in the wrong field.
To eliminate the problem, however, one must consider the ultimate causes of
an error. In our framework, we consider situations where the ultimate causes
are aspects (limitations) of human cognition that have not been addressed
in the interface. An example is that a person enters data in a particular
field because the interface design suggests it as appropriate for that data.
In Hollnagel’s terms [11] which distinguish between human error phenotypes
(classes of erroneous actions) and genotypes (the underlying, e.g. psychological,
cause), our cognitive architecture deals with genotypes. Since there is no
evidence that security errors are conditioned by different cognitive causes to
usability errors, our cognitive architecture can exhibit behaviours leading to
security problems, even though it was developed without security concerns in
mind. Some of these errors have the same cognitive causes as the usability
errors we dealt with in our earlier work [8]. Next we discuss several types of
user error, related to security but still detectable within the usability based
approach represented by properties (1) and (2).

A persistent user error that emerges from the cognitive architecture is
the post-completion error [6], where a user terminates an interaction with
completion of subsidiary tasks outstanding. People have been found to make
such errors even in lab conditions [6]. An example of this error, which is also a
security breach, is when, with old cash machines, users persistently took cash

27

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

Password:

User Name: Password: |:|
‘ ‘ ‘ User Name:
L]

Fig. 3. Two layouts of an authentication interface

but left their bank card. Within our cognitive architecture, such behaviour
emerges because of an action (Ezit) that allows a user to stop once the goal has
been achieved. Using our verification framework, this is detected by checking
property (2). For this, SecondaryGoal would state that the total value of user
possessions (bank cards included) in a state is the same as it was before the
interaction. The formal verification of a similar example is described in [8].
Blandford and Rugg [4] give an example of an extant security breach caused
by users forgetting to log out when moving away from an industrial printer,
leaving it vulnerable to sabotage — e.g. by unauthorised users changing the
printed message, etc. Being a case of the post-completion error, it can be de-
tected by verifying property (2) with the appropriately chosen SecondaryGoal.
Previously [17] we also considered user error due to the shape-induced
confusion over the meaning of interface prompts. The example was that of a
user attempting to top-up a phone card using an ATM. We showed how model
checking, based on our cognitive architecture, can identify user confusion as
to which of two numbers, phone number or top-up card number, is requested.
The property checked was of type (1), i.e. whether the user achieves the main
goal. User confusion in a similar situation can also result in confidentiality
leaks. For example, asked to enter a card number, a person might be confused
whether the number requested is that of a bank card or a phone card. If a bank
card number is entered when the interface prompts for a top-up card number,
the input might be displayed which is a security breach. This problem would
also be detected by analysing why the user could not achieve the main goal.

4 A Case Study: Authentication Interface

In this section, we extend our previous work and investigate how other security
problems, not considered in that work, can be detected using our cognitive
architecture formalised in SAL. In particular, we show how user habits in
combination with some designs, can lead to the incorrect interpretation of
interface prompts, resulting in the leakage of confidential information. To
determine whether such leakages are possible, we introduce into our framework
a new entity, generic module tester. This module is instantiated by providing
a collection of channels and a high security value. The instantiated module
then checks whether this value can appear on one of the low security channels.

28

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

EnterPressed
(IncompleteData

IncompleteMsg
Acknowledged

EnterPressed

Correctinput;

(put) LOGIN

EnterPressed EnterPressed LoginMsg
(IncorrectData) (Correctinput)

displayed
DisplayedEnter

EnterPressed
(~Correctinput)

Acknowledged

IncorrectMsg displayed AbortMsg
DisplayedEnter
LastAttemptMsg

Fig. 4. Authentication procedure

4.1 An Authentication Interface

Our example considers a common problem concerning an authentication step
present in various everyday interactive systems, e.g. internet banking. Before
any transaction, users must establish their identities by providing a user name
and a login password. The system checks whether the provided password
is the same as the one associated with the provided user name and stored
in the system’s database. On the surface, one could expect the design of
an authentication interface to be simple, e.g. like the one in Fig. 3(left). In
reality, the situation is more complicated. The sizes of interface windows in
internet banking systems are not fixed; users might change them at any time.
This means that the layout of input fields is determined by an algorithm.
Depending on this algorithm, the layout shown in Fig.3(right) is possible
when the window size is reduced. We will argue that the two interfaces are
not equally secure and will show how confidentiality leaks in the second one
can be detected using our verification framework.

We assume that a high security channel is associated with login passwords
and a low security channel with user names. This could mean, e.g., that the
text entered into the name box is echoed on the screen whereas an entry into
the password box is hidden. The data is sent whenever the users press the
Enter button. The operation of the authentication mechanism is illustrated
by a finite state machine in Fig.4 (false outputs are omitted). We distinguish
two cases of incorrect input represented by the transitions IncompleteData and
IncorrectData. The authentication procedure moves into the INCOMPLETE state
when Enter is pressed and either a user name or a password is missing from
the input boxes. An appropriate error message is displayed by the interface,
and no other options for the user are given until the message is acknowledged.
Once the user acknowledges it, the authentication procedure returns to the
INIT state. The transition IncorrectData represents the case when both a user
name and a password are provided but some of this data is incorrect. Upon

29

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

acknowledgment, the procedure moves into the WARNING state in this case. The
idea is that, for security reasons, a single authentication attempt with incorrect
data is allowed before the authentication procedure aborts the interaction
(STOP state). Finally, authentication succeeds if the user provides correct data,
represented by the LOGIN state reachable from either the INIT or WARNING state.

The SAL specification of the authentication procedure is a direct trans-
lation of the diagram in Fig.4. The two input boxes are modelled as the
type Inbox = {A, B}. Each box has a number of attributes: position, security
level, “visibility”, label, text entered and text displayed, modelled as arrays
with the range Inbox. Thus, position[j] is a record with the coordinate
fields x and y, denoting the top-left corner of box j. Its width and height are
represented by the constants dx and dy. The security level level[j] is either
Low or High; displayed[j] indicates whether j is displayed (visible) or not.
The label 1abel[j] is a value of type {NameLabel, PasswordLabel}. Finally,
value[j] and display[j] represent, respectively, text entered and text dis-
played, which can differ when the entered text is hidden. The array value
and booleans EnterPressed and Acknowledged are the inputs of the authenti-
cation procedure, whereas position, displayed, label, display with booleans
DisplayedEnter, IncompleteMsg, IncorrectMsg, LastAttemptMsg, LoginMsg,
and AbortMsg are its outputs.

4.2 A User Model

Now we instantiate the generic module User for the authentication task. We
start by specifying the state space of the concrete user model. For each input
box j, we assume that a person either sees it or not, and perceives its label
and the text displayed, represented by seen[j], label[j] and valuel[j], re-
spectively. The perception of whether the Enter button is active is denoted
by EnterActive. The person also perceives whether an error, warning or au-
thentication message is given, denoted by ErrorMsg, WarningMsg and LoginMsg.
Variables InputName and InputPass denote the perception of which of the two
boxes prompts for the user name and which for the password. Finally, name and
password denote the values the person perceives as a user name and password.
All these components form a record type, In, which is used to instantiate the
corresponding type variable in User.

Next, we specify variables related to the actions users might take. The text
typed into box j is represented by value[j]. The booleans EnterPressed and
Acknowledged denote whether the Enter button and a button to acknowledge
messages are pressed. These components form a record type, Out. We assume
users remember their user name, name, and login password, password. They
also remember whether they already typed information into box j, denoted
entered[j] (reset to false when an error message is acknowledged), and keep
track of whether there was a failure to authenticate, denoted failed. These
form a record type, Mem, which also records, in a component of the type Out,

30

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

the actions taken in the previous step. The reality surrounding our system is
given by a record type, Env. It includes the user name, name, and the correct
password, password.

We assume that user knowledge of authentication includes the need to
communicate (1) user name and (2) login password. This knowledge is speci-
fied as user goals (elements of array goals) instantiated by giving the action
guard and the updates to the output component. For the goal of communi-
cating the user name, the guard is that an input box, regarded as the name
box, is seen. The output action is to enter the name as the user perceives it:

grd := A(in,mem,env): in.seen[in.InputName]
tout := A(in,outO,mem):A(out): out = Default(out0O.value)
WITH .valuel[in.InputName] := in.name

where Default (x) is a record with the field value set to x and all other fields
set to false thus asserting that nothing else is done. The memory update
(omitted) simply records the action taken. As an example, we will specify the
most complicated memory update below. The action of communicating the
login password is specified similarly. Since the environment updates change
nothing (in all the actions), they are omitted here.

We assume that the user can react to the active Enter button by pressing
it. For this to happen, the user must not have the recollection of a failure to
authenticate. Alternatively, if there was such a failure, we expect the user to
be more careful and press Enter only when both input boxes were filled in:

grd := A(in,mem,env): in.EnterActive A (NOT(mem.failed) V
(mem.entered[in.InputName] A mem.entered[in.InputPass]))
tout := A(in,outO,mem):\(out):
out = Default(outO.value) WITH .EnterPressed := TRUE

We also assume that the user can acknowledge error messages. This only
happens when the message is interpreted as an error signal. The acknowledg-
ment must also not have occurred, as indicated by the memory, in the previous
step. By acknowledging the error message, the user records in the memory
the fact of a failed authentication attempt, and “forgets” previously typing
data into the input boxes (since the data was rejected), formally specified as:

grd := A(in,mem,env): in.ErrorMsg A NOT(mem.out.Acknowledged)
tout := A(in,outO,mem) : A(out):
out = Default(outO.value) WITH .Acknowledged := TRUE
tmem := A(in,memO,out):A(mem): mem = memO WITH .failed := TRUE
WITH .entered := [[j:Inbox] FALSE] WITH .out := out

As discussed earlier, the need to communicate the name and password
is modelled as user goals. However, it is plausible that the user makes an
error when trying to achieve those goals, e.g., enters a wrong password or
presses Enter when some box is empty. Errors can also occur due to user
habits; relying on previous experience, the user might expect the input box
for the name to precede that for the password. In such cases, once the error

31

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

message has been acknowledged, the system prompts for a new authentication
attempt. We assume that the user will respond to this prompt. The response
is modelled as two reactive actions. In the case of the password, the action
guard is that an input box is seen (as for the corresponding user goal) and the
password was not entered, as indicated by the memory, in the previous step.
The output action is the same as for the corresponding user goal. Finally, the
memory update records the fact of entering the password:

grd := A(in,mem,env): in.seen[in.InputPass] A
NOT (mem.entered[in.InputPass]) A mem.failed

tout := A(in,outO,mem):A(out): out = Default(out0O.value)
WITH .value[in.InputPass] := in.password
tmem := A(in,memO,out):A(mem): mem = memO

WITH .entered[in.InputPass] := TRUE WITH .out := out

The reactive action for entering the name is analogous to the one above.

Goal and wait predicates are the last parameters used to instantiate the
User module. The display of LoginMsg confirms authentication which is the
main goal. We also assume that there are no signals that a user would perceive
as a suggestion to wait. These predicates are specified as follows:

PerceivedGoal = A(in,mem): in.LoginMsg
Wait = A(in,mem): FALSE

Finally, the user model for the authentication task, UserAuthenticate, is
defined by instantiating the generic user model with the parameters (goals,
reactive actions, perceived goal and wait condition) just defined.

4.8 User Interpretation

So far we have specified an authentication interface and have developed a
formal model of its user. As in reality, the state spaces of the two specifications
are distinct. The changing interface state is first attended to then interpreted
by the user. Next we specify this interpretation, thus connecting distinct state
spaces. The specification is given as a new SAL module, interpretation. The
module, being a connector, has input variables that are the output variables of
the interface, and an output variable that is the input (perception) component
of the UserAuthenticate module (record in).

In the authentication task, the crucial aspect of user interpretation is the
perception of the meaning (function) of the two input boxes. Their function
is indicated by labels, however, we assume that people may not pay sufficient
attention to the labels. Instead, the user might assume the name box comes
first. The perception of precedence depends on the layout (coordinates) of
boxes in the interface window. Formally, we define the condition when the
input box i precedes j as follows (pos is an array of coordinates):

precedes(i,j,pos) = (pos[i].x + dx < pos[jl.x A posl[i]l.y < pos[jl.y)
V (posl[i].x < pos[jl.x A posl[i]l.y + dy < pos[j].y)

32

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

Intuitively, this means that j is placed to the right and to the bottom of i.
Thus, the name box in the left interface in Fig. 3 precedes the password box,
whereas neither of the boxes in the interface on the right precedes the other.
Now we formally define the user interpretation of the function of input
boxes, depending on their layout and labelling. We distinguish three cases.
First, the user might judge the function of input boxes from their labels:

ByLabel(1,x) = 3(i,j): 1[i] = NameLabel A 1[j] = PasswordLabel A
x.InputName = i A x.InputPass = j

Second, if i precedes j then i is perceived as a name and j as password
box:

ByPrecedence(pos,x) = 3(i,j): precedes(i,j,pos) A
x.InputName = i A x.InputPass = j

Finally, the user might get confused. This is possible when neither of the
input boxes precedes the other or their labels are the same; the judgment
about the function of the boxes is random in this case:

Random(pos,1,x) = (1[A] = 1[B] V V(i,j):NOT(precedes(i,j,pos))) A
x.InputName # x.InputPass

User interpretation is modelled as a SAL definition which allows one to
describe system invariants. Intuitively, this means that the left-hand side of
an equation is updated whenever the value of the right-hand side changes. We
assume that, once the user makes a mental commitment to a goal or reactive
action, the interpretation of the interface outputs does not change until the
associated physical action is performed. If there is no commitment, the user
directly perceives the Enter button, the displayed input boxes with their labels
and displayed text, and the interface messages. Hence the first seven conjuncts
in Fig. 5 simply rename the interface variables to the corresponding fields of
the record in.

For the user name and password, the user relies on the memory unless a
warning message is displayed. If so, we expect the user to be careful enough
to provide the correct values. For simplicity, here we do not consider how this
is actually achieved (perhaps they are taken from a notebook), assuming that
the values from the environment specification are used.

As explained earlier, the perception of which of the two boxes is for the
names and which for the passwords is more complicated; the results of this
perception are assigned to InputName and InputLabel, respectively. We as-
sume that, upon receiving a warning message, the user becomes more careful
and interprets the input boxes by their labels. Otherwise, if there are major
changes in the layout of the boxes, the interpretation is an arbitrary choice
between the three cases defined above. If there are no major changes, the
interpretation of the boxes is the same as in the previous step. The auxil-
iary variables s, p and 1 are not intended to represent aspects of cognition.
Intuitively, they, and the related TRANSITION section, are used to store the

33

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

DEFINITION in € { x:In |
IF NOT(gcomm V rcomm) THEN
x.EnterActive = DisplayedEnter A
x.seen = displayed A x.label = label A x.value = display A
x.ErrorMsg = (IncompleteMsg V IncorrectMsg) A
x.WarningMsg = LastAttemptMsg A x.LoginMsg = LoginMsg A
x.name = IF x.WarningMsg THEN env.name ELSIF mem.name ENDIF A
x.password = IF x.WarningMsg THEN env.password
ELSIF mem.password ENDIF A
IF x.WarningMsg THEN ByLabel(label,x)
ELSIF MajorChanges(p,position,1l,label) THEN ByLabel(label,x)
V ByPrecedence(position,x) V Random(position,label,x)
ELSE x.InputName = s.InputName A x.InputPass = s.InputPass ENDIF
ELSE x = s ENDIF }
TRANSITION

s’ = in; p’ = position; 1’ = label

Fig. 5. User interpretation in SAL

previous interpretation which allows specifying that user interpretation does
not change. Finally, “major” changes mean changes in the precedence of input
boxes or any label change:

MajorChanges (pos0,pos,10,1) =
3(i,j): precedes(i,j,pos0) # precedes(i,j,pos) V 10[i] # 1[il]

Admittedly, this attempt to formally specify how the user perceives input
boxes already hints at potential problems, even before the actual verification.
However, we aim at developing a generic model of interpretation which would
turn the specification process into a simple instantiation of the generic model.

4.4 Verification

We have specified an authentication interface and its user model. Now the
correctness properties of this interactive system can be analysed. We start
from the interface with no constraints on the layout of the input boxes (other
than that they do not intersect). The usability property (1), the user eventu-
ally achieving the perceived goal, is satisfied by the interactive system. Next
we proceed with the analysis of security aspects of the system.

Even though security properties for each concrete system can be speci-
fied separately, we prefer to take a generic approach as with the user model
itself. We thus introduce a generic module, tester. The idea is that the
module, composed with an interactive system, monitors the communication
between the device and the user. When security is breached, it sets the variable
SecurityBreach to true. What security aspects are monitored is determined
by the instantiation of the module. It has three parameters. The type variable
Chan represents the communication channels. The predicate filter specifies
which of the channels are monitored. Finally, test denotes security sensitive

34

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

data. When this data appears on a monitored channel, SecurityBreach is set
to true. The transitions of the module are the following family of commands:

[J(j:Chan): filter(j) A valuel[j] = test — SecurityBreach’ = TRUE

For our authentication task, Chan is instantiated to the input boxes (type
Inbox). The security sensitive data is the actual user password env.password.
Finally, the channels monitored are low security channels:

filter(j) = (levellj]l = Low)

With this instantiation of tester, we check property (3); the verification fails.
The counterexample produced by SAL indicates that the user enters the pass-
word into the name box. The analysis of the specifications reveals that this
counterexample occurs because neither of the boxes precedes the other which
confuses the user.

Why was this confusion not detected when verifying property (1)? The
answer is that it does not prevent the user from achieving the main goal,
authenticating their identity. Our user model is “smart” enough to recover
from the mistake made due to this confusion and, after receiving a warning
message, to provide the required information according to the labels of the
input boxes. Such a recovery, however, is not good enough from the security
point of view, since the mistake could have already breached security and
undoing or redoing a wrong action cannot undo the consequences of this breach
in most cases, which is detected by the failure to establish property (3).

How can we avoid this security breach? Since the confusion leading to it
is caused by the layout of the input boxes, the solution is to display them as
in Fig. 3(left). However, one must be careful even with such a layout. If the
password box preceded the name box, people might enter their password into
the name box, due to their habits rather than confusion. Again, this security
breach was detected by verifying (3). The latter holds only when the layout
of the input boxes is such that precedes(InputName,InputPass,position) is
true.

5 Conclusion

In previous work, we assumed that usability verification is enough to estab-
lish user-centred correctness of interactive systems. This is not true within
security- or mission-critical contexts where it is possible to achieve the main
goal while exposing ourselves to various security or safety risks. Here we ad-
dressed one aspect of interactive systems security — information-flow security.
We discussed how security breaches can be detected using our earlier frame-
work. The main focus, however, was an extension of that framework to address
security aspects more directly and link them to the usability properties. For
this, we introduced into our framework a generic tester module which moni-
tors information flow between the user and the device and registers security
breaches in it. Using the tester, we added to our verification approach a cor-

35

Siraj Shaikh
Rectangle

RUKSENAS, CURZON AND BLANDFORD

rectness property which captures some security aspects of interactive systems.

To illustrate these extensions, we considered a simple authentication inter-
face. We showed how the layout of input fields combined with user habits can
influence the user (mis)interpretation of interface prompts, possibly leading
to confidentiality leaks (see our SAL specs at http://www.dcs.qmul.ac.uk/
~rimvydas/usermodel/fmis06.zip). We demonstrated how these leaks are
detected using the SAL verification tools, and how the analysis of the SAL
counterexamples can help in eradicating cognitively susceptible interface de-
signs. The SAL environment was primarily chosen because of its support for
higher-order specifications. This is necessary for developing a generic cognitive
architecture as ours.

The user interpretation stage was introduced into our framework from gen-
eral considerations. We previously showed how modelling user interpretation
allows us to detect usability problems due to the shape-induced confusion over
device prompts [17]. Here we showed that similar ideas apply in the context of
security properties and their dependence on the layout of input fields. Finally,
we also considered user habits, which we had not dealt with before.

Human factors in the security context have been considered before [1,13].
The novelty of our approach is dealing with the cognitive aspects of security
in a completely formal way, making them amenable to automatic verification.
Moreover, our cognitive architecture could be used to prove generic results on,
e.g., design rules for security, using its formalisation within the HOL prover.

References

[1] Adams, A., and M. A. Sasse, Users are not the enemy, CACM 42(12) (1999),
41-46.

[2] Beckert, B., and G. Beuster, A method for formalizing, analyzing, and verifying
secure user interfaces, in press: Proc. ICFEM 2006, LNCS, Springer, 2006.

[3] Bell, D. E., and L. J. La Padula, Secure computer system: Unified exposition
and Multics interpretation, Tech. Rep. MTR-2997, MITRE Corp., MA, 1976.

[4] Blandford, A., and G. Rugg, A case study on integrating contextual information
with usability evaluation, Int. J. Human-Computer Studies 57(1) (2002), 75-99.

[5] Butterworth, R., A. Blandford, and D. Duke, Demonstrating the cognitive
plausibility of interactive systems, Form. Asp. Computing 12 (2000), 237-2509.

[6] Byrne, M. D., and S. Bovair, A working memory model of a common procedural
error, Cognitive Science 21(1) (1997), 31-61.

[7] Cerone, A., P. A. Lindsay, and S. Connelly, Formal analysis of human-computer
interaction using model-checking, in: Proc. SEFM 2005, IEEE Press, 352-362.

36

http://www.dcs.qmul.ac.uk/~rimvydas/usermodel/fmis06.zip
http://www.dcs.qmul.ac.uk/~rimvydas/usermodel/fmis06.zip
Siraj Shaikh
Rectangle

37

RUKSENAS, CURZON AND BLANDFORD

[8] Curzon, P., and A. E. Blandford, Detecting multiple classes of user errors, in:
R. Little, and L. Nigay, eds., Proc. EHCI 2001, vol. 2254 of LNCS, Springer,
2001, 57-71.

[9] Denning, D. E., and P. J. Denning, Certification of programs for secure
information flow, CACM 20(7) (1977), 504-513.

[10] Goguen, J. A, and J. Meseguer, Security policies and security models, in: Proc.
IEEE Symp. on Security and Privacy, Apr. 1982, IEEE Press, 1982, 11-20.

[11] Hollnagel, E., “Cognitive Reliability and Error Analysis Method,” Elsevier,
1998.

[12] John, B. E., and D. E. Kieras, The GOMS family of user interface analysis
techniques: Comparison and contrast, ACM Trans. CHI 3(4) (1996), 320-351.

[13] Ka-Ping, Y., User interaction design for secure systems, in: R. Deng, et al.,
eds., Proc. ICICS 2002, vol. 2513 of LNCS, Springer-Verlag, 2002, 278-290.

[14] de Moura, L., S. Owre, H. Ruess, J. Rushby, N. Shankar, M. Sorea, and A.
Tiwari, SAL 2, in: R. Alur, and D.A. Peled, eds., Computer Aided Verification:
CAV 2004, vol. 3114 of LNCS, Springer-Verlag, 2004, 496-500.

[15] Myers, A. C., JFlow: Practical mostly-static information flow control, in: Proc.
of ACM Symposium on Principles of Programming Languages, 1999, 228-241.

[16] Newell, A., “Unified Theories of Cognition,” Harvard University Press, 1990.

[17] Ruksénas, R., P. Curzon, J. Back, and A. Blandford, Formal Modelling of
Cognitive Interpretation, in press: Proc. DSVIS 2006, LNCS, Springer, 2006.

[18] Rushby, J., Analyzing cockpit interfaces using formal methods, Electronic Notes
in Theoretical Computer Science 43 (2001).

[19] Sabelfeld, A., and A. C. Myers, Language-based information-flow security,
IEEE Journal on Selected Areas in Communications 21(1) (2003), 1-15.

[20] Volpano, D., G. Smith, and C. Irvine, A sound type system for secure flow
analysis, Journal of Computer Security 4(3) (1996), 167-187.

[21] Zurko, M. E., User-centered security: Stepping up to the grand challenge, in:
Proc. ACSAC 2005, IEEE Press, 2005, 187-202.

Siraj Shaikh
Rectangle

FMIS 2006

Refinement: a constructive approach to formal
software design for a secure e-voting interface

Dominique Cansell ?

Université de Metz,
France

J Paul Gibson 3

Computer Science Department,
NUI Maynooth,
Ireland

Dominique Méry *

Université Henri Poincaré,
Nancy,
France

Abstract

Electronic voting machines have complex requirements. These machines should be
developed following best practice with regards to the engineering of critical systems.
The correctness and security of these systems is critical because an insecure system
could be open to attack, potentially leading to an election returning an incorrect
result or an election not being able to return any result. In the worst case scenario
an incorrect result is returned — perhaps due to malicious intent — and this is not
detected. We demonstrate that an incorrect interface is a major security threat and
show the use of the formal method B in guaranteeing simple safety properties of the
voting interface of a voting machine implementing a common variation of the single
transferable vote (STV) election process. The interface properties we examine are
concerned with the collection of only valid votes. Using the B-method, we apply an
incremental refinement approach to verifying a sequence of designs of the interface
for the collection and storage of votes, which we prove to be correct with respect to
the simple requirement that only valid votes can be collected.

Key words: Formal Verification, refinement, formal specification,
interface design, e-government

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

38

CANSELL, GIBSON AND MERY

1 Introduction

The problem of electronic vote counting (or tabulation) involves a wide range
of issues, requiring expertise in science, engineering and technology. As such,
it provides a good challenge for the application of formal methods.

1.1 E-voting: background and motivation

Applying state-of-the-art computer and information technology to “modernise”

the voting process has the potential to make improvements over the existing
paper (or mechanical) systems; but it also introduces new concerns with re-
spect to secrecy, accuracy and security [8]. The debate over the advantages
and disadvantages of e-voting is not a new one; and recent use of such sys-
tems in actual elections has led to their analysis from a number of viewpoints:
usability [9], trustworthiness and safety criticality [12], and risks and threats
[15].

Despite ungoing uncertainty over the trustworthiness of these systems —
which is the major disadvantage associated with them — many countries have
chosen to adopt e-voting.

In a recent paper, Kocher and Schneier [10] conclude by stating: “The
threats are real, making openness and verifiability critical to election security.”
The formal methods community is experienced in chasing technological change
in software engineering: and this paper proposes that, in general, already
existing formal techniques can help to alleviate many® of the verification
problems that the adoption of new e-voting technologies can introduce. For
the specific modelling and verification in our study we chose to use the B
method.

1.2 The B Method

B is a method [1] for specifying, designing and coding software systems. The
concept of refinement [3] is the key notion for developing B models of (software)
systems in an incremental way. B models are accompanied by mathematical
proofs that justify them. We start from an abstract model and each subsequent
model is a refinement of the previous one. Proofs of properties of B models
help to convince the user (designer or specifier) that the (software) system
is correct, since they demonstrate that the behavior of the last, and most

Thanks to the NUIM and CNRS who supported Dr Gibson’s Sabbatical leave.

Email: Dominique.Cansell@loria.fr

Email: pgibson@cs.nuim.ie

Email: Dominique.Mery@loria.fr

We do not expect that all of the problems can be addressed completely by the use of
formal methods. For example, problems of human error and those posed by malicious
intent are very different in nature, but can both arise from simple design flaws. Our focus
is on verification of design steps.

1
2
3
4
5

39

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

concrete, system (software) respects the behaviour of the first, most abstract
model (which we assume has already been validated).

1.3 E-voting: formal methods, correctness and security

We propose to construct a formal, mathematical model of the e-voting problem
in B. We argue that no e-voting system can be considered “safe” until the
requirements of these systems are better defined and introduce refinement as
a method for supporting the correct design and implementation of “safe e-
voting systems”. In this paper we concentrate on the front-end of the e-voting
system (the user interface for the voters).

Our view is that the collection and tabulation must be developed formally:
human error in the development of the collection and tabulation software
might have considerably more serious consequences than such errors in the
manual system. We argue that even a minor design flaw in the way in which
votes are collected and passed on for tabulation can lead to security weaknesses
that could be exploited by an election saboteur.

2 Critical system development: formality and security

To motivate the use of formal methods, we argue that e-voting is at least mas-
siton critical and may, in some circumstances, be considered as safety critical
[12]. For our argument we consider a “worst case scenario”, where the system
fails to elect the correct candidates without the failure being identified. There
is no meaningful way of equating this with a financial cost but its potential
negative impact on the well-being of individuals and society is great. Thus,
we must consider e-voting systems to be (at least) mission critical and we
advocate the use of formal methods in their development as their application
should ensure that the likelihood of failures due to modelling errors during
design is reduced.

JFrom a technological viewpoint we know that system (and interface)
design has an important role in security assurance. Mercuri [13] addresses
the theme of quality in the process of engineering security: “By encouraging
artistry and applying craftsmanship to our security problems, viable solutions
will emerge. One way of starting this process is by defining computer secu-
rity with respect to need.” This supports our view that one must start with
a simple model of the security needs and refine that model, during design,
towards a correct implementation. For this reason we chose a simple security
requirement — that only valid votes can be found in the system — and start
our formal development from there.

40

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

3 Valid Votes: a STV case study

The Single Transferable Vote (STV) model on which we build this case study
is regarded as a good democratic election process. However, it incorporates
a complex, not necessarily determinisitic, tabulation (counting) procedure.
In 2003, Farrell and McAllister [6] reported on how a subtle change in the
implementation of the STV rules can lead to major changes in the results
returned.

In this paper, the counting algorithm is not developed formally. However,
a brief overview of the tabulation process will help us to develop our claim
that it is critical that there is a formal verification of the property that only
valid votes are counted.

3.1 Overview of the typical counting algorithm

During an election, a candidate is elected if the number of votes they have is
greater or equal to the quota. This quota, () say, is a function of: the number
of valid votes, V' say, and the number of seats available for election, S say. It
is usually defined by the equation: Q) =1+ SLH

We note that the quota cannot be calculated without knowing the number
of wvalid votes, and so its correct calculation is dependent on the notion of
validity being correctly implemented. This notion is non-trivial as the STV
election process allows voters to register support for more than one single
candidate, by placing candidates in a preferred order. Thus on each vote, a
candidate may or may not have an associated preference.

Informally, a vote is considered valid if and only if it shows a unique first
preference. The means of specifying this property depends, of course, on a
notation for representing a vote. Consider a constituency where there are
three candidates: A, B and C, say. We could choose to represent a vote as a
string of characters taken from the alphabet {A, B,C}. In such a string, we
naturally interpret a character ch at index 7 in the vote string as stating that
the ith preference of that particular vote is the candidate ch. Now, we can
define a valid vote in this constituency by explicitly identifying the set of valid
vote strings, for example:

{A,B,C, AB, AC, BA, BC,CA,CB, ABC, ACB, BAC, BCA,CAB, CBA}.

In such a definition we preclude, for example, the following strings from being
considered as representations of valid votes:

e The empty string — correctly excluded, we would argue, as there is no first
preference.

e The string AA — excluded, perhaps, because the candidate with the first
preference has another associated preference. (We note that this was not
explicit in the original informal definition, and it would be normal for this
interpretation to be validated through additional discussion of this require-

41

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

ment with the customer.)

e The string ABBC' — excluded, perhaps, because the number of preferences
cannot be more than the number of candidates. (We note, again, that this
was not explicit in the original informal definition.)

Of course, it is better® to define the notion of validity as a generic boolean
function that takes any string of characters and decides on its validity, without
having to explicitly construct all the members of the valid vote set. An even
better approach, as taken with our abstract B model is to specify the set of
all valid votes and to use refinement to be sure that a vote belongs to this set
without having to actually construct it (as it exists in the abstraction).

3.2 Requirements for valid votes

Within any voting system, changing the definition of a valid vote can have
major consequences for the election process and the results returned. In any
STV system, for example, there is a major difference between allowing and
requiring a voter to place all candidates in a preference order.

In our model, it is required that a vote is considered valid if and only if it
shows a unique first preference. This is a simple requirement, but one which
can cause problems if it is not treated formally.

Clearly, if invalid votes manage to get passed to the tabulation process (to
be counted) then there is a risk that this could break the counting process.
For example, it would not be unreasonable to suggest that some of the tabu-
lation methods make the assumption that the votes being counted are valid.
However, without some degree of formal verification it is also likely that an
invalid vote could — by accident — be counted and that this could lead to
an incorrect result, a run-time error, or non-termination. Consequently, this
weakness could also be exploited by an attacker to deliberately manipulate
the election process.

Such a potential attack is similar to those mentioned in [14] where the
security of votes stored in memory is addressed. In particular, the use of
Trojan code to exploit vote data that has been tampered with is shown to be
a real threat that requires elaborate schemes for the secure storage of votes. In
most e-voting systems, there is a clear interface between the storage of votes
and the input of votes. We argued that the same degree of care must be taken
in designing the vote interface to ensure that Trojan code cannot be used to
exploit the input of invalid votes.

6 Simple, naive, construction (listing) of the complete valid vote set is infeasible for elections
involving even a moderate number of candidates.

42

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

3.8 Validating votes in a typical implementation architecture

Typically, a voting machine has a simple, classic, layered architecture. We
propose a generic, abstract model 7 in order to illustrate the need for formality
in the processing of votes electronically:

e An interface facilitates the voter to input their preferences.
e A store records the preferences of all votes that have been input.

o A tabulator takes all the votes from the store and calculates the result.

We argue that an invalid vote in the tabulation process can compromise the
security of the whole election. Thus, for an e-voting system to be considered
secure, it is necessary that the tabulator does not process invalid votes; and
so the store cannot transfer invalid votes into the tabulator. Consequently,
it may be necessary to show that the store cannot receive invalid votes from
the interface. There are clearly a number of design decisions that need to be
taken with respect to the implementation of this simple architecture; and it is
the responsibility of the designers to verify that their designs are correct with
respect to the validity requirement.

4 Informal software design for vote validity

In this section we comment on typical design decisions that arise during im-
plementation of our generic architecture. We focus, for simplicity, on the first
layer of our architecture: the interface. Simple analysis of the requirement
for only wvalid votes in the tabulation process could lead one to designing a
machine where the interface layer takes responsibility for guaranteeing that
voters record only valid votes and rely on a secure store. In all the following
designs we refer to buttons that the user can press and the information that
is displayed to the voter. We abstract away from details of how these buttons
and displays are implemented.

4.1 The rapid prototyping approach

We wish to verify that a given interface design implements the requirement
that no invalid vote can be sent to the store. A standard technique for carrying
out such a verification is to incrementally add rigour to the process, structuring
the verification process in a number of layers. A typical 3-layer approach,
which we used for the purpose of our study, is:

* Run some voting scenarios through the natural language description and
check, by hand, that there are no obvious examples of a scenario that leads
to the requirement not being met.

e Prototype an executable model of the design and test this executable model
as thoroughly as possible.

7 We deliberately choose not to model a specific machine.

43

Siraj Shaikh
Rectangle

44

CANSELL, GIBSON AND MERY

* Formalise the prototype model so that more formal model-checking or theorem-
proving can be used to show that the design is correct.

In practice, with simple designs such as a simple vote interface, developers
often see no need to progress to layer 3. In the designs that follow in the
remainder of this section, we follow a rapid-prototyping approach that never
progresses to the 3rd layer of rigour. In Section 5 we show how the B method
and tools can be used to fully support layer 3 in this verification process.

In this section we concentrate on the validity of a single vote. We note
that the validity of a complete set of votes will require that each individual
vote is valid. The validity of individual votes will be a necessary, but perhaps
not sufficient condition for the validity of all votes.

Before we consider verifying the property that the system contains only
valid votes, it is necessary to formulate what we mean by a valid vote in a way
that the design verification process can be automated. This means that, in
our chosen modelling language, we have to choose a means of specifying the
property that needs to be checked.

Consider the Java code® which models the Vote (of a single voter) as an
array of “Candidates”.

public class Vote{
int numberofCandidates;
int preferences [];
// Vote - construct empty Vote with no preferences
public Vote(int numCs){
numberofCandidates = numCs;
preferences = new int [numberofCandidates];
for (int i = 0; i<numberofCandidates; i++) preferences[i] = 0;
}//END Vote Constructor
// ...
}// END CLASS Vote

We now formally specify a safety ® property that defines a valid vote as a
boolean method of the Vote class.

Of course, this invariant property could be modelled using design-by-contract
[4] language and tool support. However, in this initial case study we choose
to use only fundamental concepts that are part of the core programming lan-
guage: we believe that little, if any, current voting software incorporates more
rigorous design by contract methods.

8 Starting with simple Java models helps us to identify the main issues with respect to
interface evolution and refinement.

9 The use of the word ‘safety’ here does not mean that the property is “safety critical” in
the classic sense that lives may be at risk, for example. The term is taken from the formal
methods community where it is used to refer to an invariant property of the system that
must be true all the time otherwise system behaviour cannot guaranteed to be correct. It
may be a safety property of the system but that does not necessarily make the system safety
critical.

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

/7 1sVaLid sskskskokskokokkskokkokkokokokok ok ok ok ok ok ok ok ook ok ook ook o ok ok ook ok ook o ok ok ook ook ok o
// The safety property to ensure the validity of a Vote
// A vote is valid iff there is a unique 1st preference recorded
public boolean isValid(){

int numberofls =0;

for (int i = 0; i<numberofCandidates; i++)

if (preferences[i]==1) numberofls++;

return (numberofils==1);

}// END Vote.isValid

Given the formal (constructive) specification of a valid vote (in Java) we
can now proceed to the design of the first component of our generic architec-
ture: the interface. The goal is to offer alternative interface designs and to
verify the correctness, or otherwise, of each.

4.2 Designl: the simplest interface

We propose the following design for verification:

“Every candidate is associated with a candidate button. Beside each can-
didate button, information is displayed to show the preference that is as-
sociated with that candidate. Initially, at the beginning of each vote, no
preferences are displayed. When a voter presses a candidate button (for the
Ist time) then it is assumed that the voter selected that candidate to be
their first preference, and the number 1 is displayed beside that candidate’s
button. When a voter presses (for the second time) another candidate but-
ton then this is taken to represent their second preference, etc.... If they
press a candidate’s button that already has a preference associated with it
then that press is ignored. When a voter is happy that they have recorded
all their preferences, they press a wvalidate vote button and the vote is sent
to be stored. The wvalidate vote button will only send the vote if at least one
candidate button has been pressed.”

We now model the design by a Java method (pressCandButton) which
implements the behaviour of the system in response to the pressing of a can-
didate’s button. We note that the choice of underlying data representation,
with a vote as an array of candidate’s preferences, maps closely the structure
of the voting data as presented to the voter.

// Designl
// pressCandButton sskkskskskokskskskskokskokskokskokdokdeskohoksdeskok ok ok ok ko sk sk ok ke
// Record next press as a preference, provided button is enabled
// Calls lastPref() to correctly assign the next preference value
// Calls buttonEnabled() to check if preference already allocated
public void pressCandButton(int button){

if (!'buttonEnabled(button-1)) return;

else preferences[button-1] =lastPref ()+1;

} // END Vote.pressCandButton

45

Siraj Shaikh
Rectangle

46

CANSELL, GIBSON AND MERY

This pressCandButton method is dependent on two other methods: buttonEnabled
for checking if the button being pressed is actually enabled (has not been
pressed before), and lastPref for finding out the value of the last preference
selected. The buttonEnabled behaviour is straightforward to implement, and
left as an exercise for the reader. The lastPref method, as implemented
below, examines all the preferences and deduces that the largest current pref-
erence value must have been the last preference made. We note, for future
reference, that this is a correct (but inefficient) implementation of the design.

[/ LastPref kkskkskkskkskkokkokkokskskkkkkokkokkok ko kHok Kok Kok ok ok ok ok KKK ok ok ok kKKK Kok K
// Called by pressCandButton()
protected int lastPref (){
int largest =0;
for (int i = 0; i<numberofCandidates; i++)
if (preferences[i]> largest) largest = preferences[i];
return largest;
} //END Vote.lastPref

It is not easy to ensure the correctness of even this simple interface de-
sign without explicitly specifying and correctly implementing the isValid ()
method, as we have done. Without an explicit stament of what is valid, it is
possible that the notion of validity could be interpreted ambiguously and thus
the engineers could believe that they have built a correct interface when such
an interface allows votes to be cast that the users do not consider to be valid.

4.8 Poor design may lead to security risks

A reasonable approach to rapidly prototyping this “simple” first design is to
realise that a vote is valid as soon as one of the candidate buttons is pressed.
This was hinted at in the initial statement of the design:

“The walidate vote button will only send the vote if at least one candidate
button has been pressed.”

It is a much quicker and simpler solution to hardcode this as an enabled
boolean variable. In fact, this solution is correct but it is a poor design
because it is not robust to changes in requirements. Consider a scenario where
the interface requirements are extended to allow voters to reset their vote (in
order, perhaps, to facilitate them in correcting an input error, or in changing
their minds). The design using boolean enabled could result in the developers
forgetting (during the coding of the new design feature) that they need to set
this value to false when a vote is reset, and consequently lead to their designs
allowing an empty vote — with no preferences recorded — to be sent to the
store. Could this sort of thing happen in a real e-voting system? Judging by
analysis regarding the quality of the code (and development methods) used
in systems that have been examined in detail [11], one could not be sure that

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

professional developers would not make the same simple mistake.

It is difficult to judge the severity of such an interface design fault. Clearly,
it has the potential for voters to have their voting intentions incorrectly
recorded. This could lead to an election returning the wrong result. A second
risk is that invalid empty votes in the store may break the tabulation process:
if tabulation methods (functions) work on the assumption that all votes have
at least one unique first preference (and may have been tested under that
assumption) then it is possible that tabulation may not even terminate if this
assumption is broken. A third risk is that some attacker has managed to in-
troduce code into the system that can manipulate the tabulation process but
will only be called when an invalid vote (or password-like sequence of invalid
votes) is passed to the store. Of course, rigorous design procedures should
find these types of design flaws without the need to resort to formal methods.
However, in critical system design, “should” is not good enough.

4.4 Design2: a more sophisticated, incorrect, interface design

In the second design, we analyse how an extension to the requirements, in order
to provide a more sophisticated interface, can pose specific problems. Imagine
that we wish to provide a means of a voter changing their vote, without them
having to reset all their preferences. In particular, we wish them to be able to
cancel the last preference chosen (in the case that they accidentally pressed
the wrong button). We propose the following design for verificiation:

“if the voter presses a candidate button again then that preference is erased”.

This is a faulty design, but without the use of formal methods are we sure to
identify the fault before more costly implementation takes place?

The VoteExt1 class uses the inheritance mechanism in Java to add this
extra interface feature to the already existing Vote class.

// Design2
public class VoteExtl extends Vote {
VoteExtl (int numCs){ super (numCs);}
// pressCandButton sskskskskskskskskokskskskskskokokskokskok sk kok ook sk sk ok ok ok sk sk sk ok ook sk ok
// The new feature requires over-riding of pressCandButton().
// Here is how it SHOULD NOT be done
public void pressCandButton(int button){
if (!buttonEnabled(button-1)) preferences[button-1] = 0;
else preferences[button-1] =lastPref ()+1;
} // END VoteExtl.pressCandButton
} // END VoteExt1

In an ideal world, our development tool(s) should be able to automatically
tell us that, either: the new functionality respects the safety property of the
exisiting Vote class (that we have already formally verified) and provide the
proof, or identify at least one scenario in which the new functionality breaks
the safety property.

47

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

This code nearly works: it implements the requirements correctly provided
one makes the assumption that a voter will only press a button a second time
(to cancel a preference) immediately after pressing that button for a first time,
with no other preferences being recorded in the mean time. We model this
using B in Section 5; and demonstrate how the B tools automatically prove
that the system is “broken” if this assumption about the voter’s behaviour is
invalid.

4.5 The risk of feature interactions in design

We note that making parallel changes to requirements and design models can
lead to feature interactions similar to those well documented for telephone
services [7]. Consider the interaction between two features that by themselves
do not break the safety property of the system but when combined lead to
invalid votes being recorded:

e The lastPrefs method was optimized by adding a counter value so that
an iteration through the candidate list was not required each time a new
preference was input.

* A reset button was added to allow all preferences to be deleted.

Individually, each of these refinements does not compromise the system by
allowing the introduction of previously invalid votes. However, together they
can result in an invalid vote with no first preference being recorded even though
some preferences have been selected. (With candidates A, B and C, for example,
the sequence of button presses A-B-reset-C leads, under the new combined
feature functionality, to an invalid vote where only the 3rd preference for C is
recorded.)

4.6 Design3: a more sophisticated, correct interface design

Consider the interface design whereby a voter can press a candidate button
a second time and this will delete that candidate’s preference value, as in
Design2, above. However, it will also delete all the preference values lower
than the preference just deleted.

Informally, one can verify its correctness with the following reasoning:
“This will guarantee that if the 1st preference is deleted then all the pref-
erences are deleted and that the empty vote is the only invalid vote that can
be found in the interface.” We see, in the next section, how we prove the
correctness of the design in a more formal manner.

48

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

// Design3
public class VoteExt2 extends Vote {
VoteExt2 (int numCs){ super (numCs);}
// The extension over-rides the pressCandButton method.
// pressCandButton ks skkskkskkskkokkokkok koo kokokkokkokkokkokok ok okkokkok ko k ok
public void pressCandButton(int button){
if (!buttonEnabled(button-1)) {
int deletefrom = preferences[button-1];
for (int i = 0; i<numberofCandidates; i++){
if (preferences[i] >= deletefrom) preferences[i] = 0;
else preferences[button-1] =lastPref(O+1;}

} // END VoteExt2.pressCandButton
} // END VoteExt2
Name Syntax Definition
Binary Relation st P(s x t)
Domain dom(r) |{alaesAnTb.(betha—ber)}
Codomain RAN (7) dom(r~1)
Restriction s<ar id(s);r
Co-restriction r>t r; id(s)
Anti-co-restriction | r >t r > (ran(r) —t)
Image r{w] RAN (w <)
Partial Function s+t | {rlres—t A (rtr)Cid(t)}
Total Function s—t {fl|fes—t A dom(f)=s}
Total injection s—t {flfes—t AN fletws)

Fig. 1. B set notations
5 Formal software design for vote validity

5.1 Incremental development and refinement

The main idea in our refinement based-approach is to start with a very ab-
stract model of the system under development. We then gradually add details
to this first model by building a sequence of more concrete ones. The relation-
ship between two successive models in this sequence is that of refinement [3,1].
This is controlled by means of a number of proof obligations, which guarantee
the correctness of the development. Such proof obligations are proved by auto-
matic (and interactive) proof procedures supported by a proof engine [5]. The
essence of the refinement relationship is that it preserves system properties.

Figure 1 gives set-theoretical notations of the B data modelling language.
A complete introduction to B can be found in [1].

The refinement of an event B model [?] allows one to enrich the model in a
step-by-step manner. Refinement provides a way to construct stronger invari-

49

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

ants and also to add details to a model. It is also used to transform an abstract
model into a more concrete version by modifying the state description. This is
essentially done by extending the list of state variables (possibly suppressing
some of them), by refining each abstract event into a corresponding concrete
version, and by adding new events. The abstract state variables, z, and the
concrete ones, y, are linked together by means of a gluing invariant J(x,y). A
number of proof obligations ensure that: (1) each abstract event is correctly
refined by its corresponding concrete version, (2) each new event refines skip,
(3) no new event takes control for ever, and (4) relative deadlock-freeness is
preserved.

50

Following the traditional refinement process, the first model (A11VotesAtOnce)

we propose is very high level: it abstracts away from individual votes and but-
ton presses. There is only one event — Voting — which models the votes of
all electors who came to vote in one shot.

For readers unfamiliar with the B modelling language, we note that:

e ELECTOR is the set of all electors and CAN D is the set of all candidates,
e vote is the variable which contains votes of all the electors, and

e nbv is the cardinal of the domain of vote representing the total number of
votes.

Instead of modelling all the votes in a single one shot, as above, in our next
step we choose to refine the most abstract specification so that each individual
vote is modelled, using the event One_Vote in the model EachVoteAtOnce.
Without such a refinement a realisitic implementation cannot be constructed.

In this more concrete EachVoteAtOnce model, STATE is an enumeration
set which contains two values: voting to represent a voting system that is open,
and finish to represent when the voting is closed. The variable st contains
one of these values, elector is the subset of ELECTOR recording the electors
who have already voted, vt is the variable which contains these votes, and cvt
is its cardinal. All votes in vt are valid. The event One_Vote models the vote
of a single elector in one shot (as a single event).

The B models that follow correspond to the three Java designs that we
saw in Section 4. We show how the designs can be formally verified when
modelled in B.

5.2 Designl: the simplest interface

In this Vote model — which corresponds to the Java Vote class — an elec-
tor e (who has not already voted) votes for candidates by pressing on the
corresponding buttons.

One_voting is an enumeration set which contains three values: no_elec
when no electors are voting, start when the a new elector e starts to vote, and
valid when the elector e pushes the button to validate their vote. The variable
sto contains one of these values. Variable e contains the current elector, vt is

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

MODEL
AllV otes AtOnce
SETS
ELECTOR;CAND
CONSTANTS
nbe
PROPERTIES
nbe = card(CAND)
DEFINITIONS
valid(v) = 3n- (n € l.nbc A v~ € 1.n — CAND))
VARIABLES
vote, nbv
INVARIANT
vote € ELECTOR < (CAND x (1.mbc)) A
Ve - (e € dom(vote) = wvalid(vote[{e}]) A
nbv € N A
nbv = card(dom(vote))
INITTALISATION

vote := {||nbv := 0

EVENTS
Voting =
begin
vote € ELECTOR < (CAND x (1..nbc)) A
vote,nbu | Ve - (e € dom(vote) = wvalid(vote[{e}])) A
nbv € N A
nbv = card(dom(vote))
end

their current vote which is modified when a candidate button is pushed, and
n is the preference number of the chosen candidate.

We remark that the guard of the event Button_valid requires that n # 0
and so we are sure that when an elector pushes this button then the partial
vote v is not empty and so v is a valid vote. Remark also that we have no
condition on n in the guard of the event Button_cand. When a candidate is
not in the codomain of v we are sure'” that n < nbe.

10We have proven it thanks to the invariant property and the refinement construct. This

51

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

INITIALISATION
MODEL vote :==) || nbv :=0 ||
EachV ote AtOnce st := voting || elector :==) ||
REFINES cvt :=0 || vt:=0
AllVotesAtOnce EVENTS
SET
One_Vote =
STATE = {voting, finish} any e,v,n where
st = voting
VARIABLES e € ELECTOR — elector
n € 1l..nbc
vote, nbv, ve€l.n— CAND
st, elector, vt, cut then
INVARIANT vt:=vt U ({e} xv™1) ||
elector := elector U {e} ||
elector C ELECTOR A cut :==cuvt +1
vt € elector — (CAND x (1..nbc)) A end ;
dom(vt) = elector A Voting =
Ve- (e € dom(vt) = walid(vt[{e}]) A when
cvt € N A st = voting
cvt = card(elector) A then
st e STATE A vote, nbv := vt, cvt ||
(st = finish = dom(vote) = elector) st := finish
end
END

5.3 Enriching the interface: Design2 and Design3

In the previous model an elector cannot correct input mistakes: now we spec-
ify three: (1) delete that candidate’s preference (corresponding to VoteExt1
in the Java), or (2) delete that candidate’s preference only if that was the
last preference made (corresponding to the suggested “fix” that we wished
to formally verify), or (3) delete that candidate’s preference and all lower
preferences (corresponding to VoteExt2).

In the first design, if we remove the corresponding vote and decrement our

proof, as all others referred to in the paper, is available from the authors on request.

52

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

MODEL
Vote
REFINES
EachVoteAtOnce
SET
One_Voting = {start,valid, no_elec}
VARIABLES
vote, nbv,
st, elector, vt, cut

e,n,v, sto

INVARIANT

e € ELECTOR A
veEN— CAND A
n € 0..nbc A
n = card(ran(v)) A
sto € One_Voting N
(sto # no_elec =
veEl.n— CAND) A
(sto # no_elec =
e € ELECTOR — elector) A

(st =wvoting A sto=wvalid = n #0)

INITIALISATION

vote ;=0 || nbv:=0 ||

st := voting || elector := () ||

cot :==0 || vt:=0||

sto :=no-elec || e :€ ELECTOR |
vi=0|n:=0

EVENTS
Start_vote =
any F where
sto = no-elec A
E € ELECTOR — elector
then

sto := start ||

=B |
ni=0 ||
vi=10
end;

Button_.cand =
any c¢ where
sto = start A
c€ CAND —ran(v)
then
n:=n+1||
vi=v U{n+1—c}
end;
Button_valid =
when
sto = start A
n#0
then
sto := valid
end;
One_Vote =
when
st = voting N
sto = valid
then
vt:=ovt U ({e} xv71) ||
elector := elector U {e} ||
cvt :=cvt+1 ||
sto := no_elec
end;

END

53

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

Button_cancel_incorrect_cand =
any c¢ where
sto = start N
¢ € ran(v)
then
n:=n-—1|]
vi=v & {c}

end;

Button_cancel_last.cand = || Button_cancel_.cand =
any c¢ where any c¢ where
sto = start A sto = start A
n—cev ¢ € ran(v)
then then
n:=n-—1| n=v"1c)—1 |
vi=v & {c} vi={nneNAn<v1(c)} < v
end; end;

(sto # no_elec = v (c) — 1= card(ran({nln e NAn <v7l(c)} < v))

counter an unproved proof obligation is generated. This is formally treated by
the Button_cancel_incorrect_cand event. In particular, the new event doesn’t
preserve the invariant which says that the partial vote v is an injection.

In Section 4, we suggested a “fix” to the previous design. Using B, this
“fix” can be formally modelled (in event Button_cancel_last_cand) and proven
correct. In fact, there are no difficulties to prove the invariant preservation.
All new proof obligation are discharged automatically by the prover.

For this event there was only one difficulty in the proof process: we need
to prove that v™(c) — 1 = card(ran({n|n € NAn <v7'(c)} < v)). We have
proved this assertion — for all ¢ in the co-domain of v — by simple induction
on the assertions clauses.

6 The semi-automated proof process

The complexity of the development is evaluated through the number of proof
obligations generated for the validation of each model or refinement; among

54

Siraj Shaikh
Rectangle

CANSELL, GIBSON AND MERY

generated proof obligations, a large number are automatically discharged by
the tool [5]. In our simple case study, 44 proof obligations are automatically
discharged, and 10 are interactively proved using the tool but with human
help.

7 Conclusions and Future Work

We have demonstrated the use of the formal method B in guaranteeing a simple
safety property of an interface to an e-voting machine. We demonstrated that
guaranteeing validity of votes recorded not only helps in the formal verification
of the voting process, but also has an important role to play in making the
machine more secure. This is the first step in developing a generic framework
for the design of secure interfaces which could be proved to satsify various
safety-related properties. It is our goal to try and formulate such a framework
as a set of formal design patterns much like those proposed by Abrial when
using B to verify properties of control systems [2]

There are interesting alternative techniques for e-voting, like pollsterless
systems [16] which could benefit from further formal verification using our ap-
proach. This is planned for future work. Furthermore, we are currently using
B to prove the correctness of an actual storage mechanism which claims to
offer tamper-evident, history-independent and subliminal free data structures
[14]. After this we aim to use B to prove safety properties concerned with the
tabulation of votes, and so verify all layers in a typical voting architecture.

References

7

[1] Abrial, J., “The B Book - Assigning Programs to Meanings,
University Press, 1996, iSBN 0-521-49619-5.

Cambridge

[2] Abrial, J.-R., Formal methods in industry: achievements, problems, future,
in: ICSE °06: Proceeding of the 268th international conference on Software
engineering (2006), pp. 761-768.

[3] Back, R. J. R., On correct refinement of programs, Journal of Computer and
System Sciences 23 (1979), pp. 49-68.

[4] Bate, 1., R. Hawkins and J. McDermid, A contract-based approach to designing
safe systems, in: CRPIT ’33: Proceedings of the 8th Australian workshop on
Safety critical systems and software (2003), pp. 25-36.

[5] ClearSy, “Web site Bdfree set of tools for development of B models,” (2004).
URL http://www.bdfree.com/index.php

[6] Farrell, D. and I. McAllister, "The 1983 change in surplus vote transfer
procedures for the australian semate and its consequences for the single
transferable vote”, Australian Journal of Political Science 38 (2003), pp. 479
491.

55

http://www.b4free.com/index.php
Siraj Shaikh
Rectangle

56

CANSELL, GIBSON AND MERY

[7] Gibson, J. P., Feature requirements models: Understanding interactions., in:
P. Dini, R. Boutaba and L. Logrippo, editors, FIW (1997), pp. 46-60.

[8] Gritzalis, D., editor, “Secure Electronic Voting,” Advances in Information
Security 7, Springer, 2003.

[9] Herrnson, P. S., B. B. Bederson, B. Lee, P. L. Francia, R. M. Sherman, F. G.
Conrad, M. Traugott and R. G. Niemi, Farly appraisals of electronic voting,
Soc. Sci. Comput. Rev. 23 (2005), pp. 274-292.

[10] Kocher, P. and B. Schneier, Insider risks in elections, Commun. ACM 47 (2004),
p- 104.

[11] Kohno, T., A. Stubblefield, A. D. Rubin and D. S. Wallach, Analysis of
an electronic wvoting system, in: IEEE Symposium on Security and Privacy
(S€P 2004) (2004), pp. 27-40.

[12] McGaley, M. and J. P. Gibson, E-Voting: A Safety Critical System, Technical
Report NUIM-CS-TR-2003-02, NUI Maynooth, Comp. Sci. Dept. (2003).

[13] Mercuri, R. T., Computer security: quality rather than quantity, Commun. ACM
45 (2002), pp. 11-14.

[14] Molnar, D., T. Kohno, N. Sastry and D. Wagner, Tamper-evident, history-
independent, subliminal-free data structures on prom storage-or-how to store
ballots on a voting machine (extended abstract), in: SP ’06: Proceedings of the
2006 IEEE Symposium on Security and Privacy (S€P’06) (2006), pp. 365-370.

[15] Neumann, P. G., Inside risks: risks in computerized elections, Commun. ACM

33 (1990), p. 170.

[16] Storer, T. and I. Duncan, Polsterless remote electronic voting, Journal of E-
Government 1 (2004).
URL http://www.dcs.st-and.ac.uk/research/publications/SD04a.php

http://www.dcs.st-and.ac.uk/research/publications/SD04a.php
Siraj Shaikh
Rectangle

FMIS 2006

Guaranteeing Consistency in Text-Based
Human-Computer-Interaction

Bernhard Beckert !

Department of Computer Science
University Koblenz-Landau
Koblenz, Germany

Gerd Beuster 23

Department of Computer Science
University Koblenz-Landau
Koblenz, Germany

Abstract

Wrong assumptions about the state of the computer system are a main source
of error in human-computer interaction. We show how consistency requirements
between the state of a computer system and the user’s assumptions about the
state can be formally defined. The definition of HCI consistency is used to show
correctness of a methodology to ensure consistency for TTY-based applications.

Key words: Formal Methods, Security, HCI

1 Introduction

Security of interactive systems critically depends on correct display of the
system’s state. Only if the user’s assumptions about the state of the system
are correct, can he make informed decisions about the further course of action.
Informally, a system is consistent if the user’s assumptions about the system
correspond to the actual system state whenever he interacts with the system.
There are two main sources for wrong assumptions about system state leading
to inconsistent systems:

I Email: beckert@uni-koblenz.de
2 Email: gb@uni-koblenz.de
3 This work was partially funded by the German Federal Ministry of Education, Sci-
ence, Research and Technology (BMBF) in the framework of the Verisoft project un-
der grant 01 IS C38. The responsibility for this article lies with the authors. See
http://wuw.verisoft.de for more information about Verisoft.

This paper has been presented at the

1st International Workshop on Formal Methods for Interactive Systems
URL: fmis.iist.unu.edu

BECKERT, BEUSTER

* Inconsistency during updates
Human-Computer Interaction is inherently asynchronous. Execution of
user commands and updates of the data displayed by the output device take
time. Due to the inherently asynchronous character of Human-Computer
Interaction, the user may err about the system state; either because com-
mands have not been executed yet, or because the screen has not been
updated.

e Insufficient information or wrong interpretation of data

The system may not provide enough information to determine the system
sate, or the user may interpret application output wrongly. A large part of
the specification of interactive applications is concerned with the relation
between user input and the information shown to the user. For example,
when editing a text, the current (internal) state of the text should be shown
to the user, and user input should cause changes to the text. Usually, the
specification of user input and system output is rather informal. Specifica-
tions declare that something “is shown on the screen” and the user “enters
a text.” In most cases, this informal description is sufficient. However, in
security-critical applications, a precise and formal definition is desirable.

The second point, wrong interpretation of data, is addressed in a number
of works. Reeder and Maxion [21] analyzed the problem of representing NTFS
file permissions on Windows XP systems and developed the design principle
of “anchor-based subgoaling” in order to mitigate the problem.

In this work, we address the first source of errors, inconsistencies during
updates. Most user interface security requirements are highly application
specific. However, there are also some generic requirements. We show that for
a large class of applications, it is possible to define generic requirement in a
formal way. In this paper, we focus on one of these generic requirements: The
user should always be aware of the system state when he issues a command.
We show how consistency during updates can be guaranteed for text-based
applications.

In Section 4 we develop a formal definition of consistency based on the
generic computer security requirement of application Integrity. In Section 5,
we show that the common approach to model interactive applications does not
guarantee consistency. We provide an alternative model for which consistency
can be guaranteed. In Sections 6 and 7, a generic specification template for
interactive applications that guarantee consistency in HCI is presented. In
this paper, we consider text-based user interfaces only, but our methods can
be extended for handling graphical user interfaces. In the Verisoft project
(http://www.verisoft.de), our methods are applied to specify and verify
an email system.

58

http://www.verisoft.de
Siraj Shaikh
Rectangle

BECKERT, BEUSTER

2 Related Work

We build upon work on formal methods for developing computing systems,
human-computer interaction (HCI) research, and secure system design.

Formal methods, human computer interaction, and security are established
fields of computer science research. There is also work combining each two
of these fields. Formal methods have been used to specify human-computer
interaction. User interfaces have been designed and evaluated under security
aspects. System security has been treated with formal methods. In this work,
we combine all three fields.

Abowd et al. [1] and Jain [15] give a survey of formal languages for the
description of user interfaces. More overviews are given in two (different)
books called Formal Methods in Human-Computer Interaction [13,19]. An
early contribution to formal methods for the description of user interaction is
the PIE model, developed by Dix and Runciman [9]. In this model, system
behavior is defined as a function from commands issued by the user to effects
produced by the system. In case of a text-based user interface, the input
is a sequence of keystrokes and the output are characters displayed on the
screen [8].

Carr’s Interaction Object Graphs (IOG) are an extension of statecharts
for modeling elements of graphical user interfaces and their interactions [4].
It allows a description both on the pixel-level and on an aggregated level.
[IOGs focus on graphical user interfaces, and the language used to describe
them is directly executable. The formalism of IOG allows basic reasoning
tasks like testing for reachability of all states. Statecharts are also used by
Degani et al. for specification of the interaction interfaces between human users
and machines, addressing the question what information about a machine’s
state is required in order to operate it safely [6].

Sucrow [23] uses graph grammars to describe graphical user interface ele-
ments. Changes in the GUI are modeled by re-write rules. Palanque et al. [18]
use hierarchical Petri nets to combine user models and a system models of in-
teractive systems. Berstel et al. developed “Visual Event Grammars” (VEG),
a formal method for the specification and validation of graphical user inter-
faces [2]. They describe complex graphical user interface as communicating
automata.

PIE and similar formalisms put an emphasis on describing the I/O be-
havior of a computer system and are suitable for automated reasoning, e.g.
with model checkers. Rushby uses model checking in order to detect poten-
tial discrepancies between system behavior and the mental models of system
users [22].

Other approaches like Task Knowledge Structures (TKS) [12], (Extended)
Task Action Grammar ((E)TAG) [5], and Goals Operators Methods Selection-
rules (GOMS) [16] focus on providing cognitive models of the user. TKS
provides an explicit representation of the cognitive model of the user. TAG

59

Siraj Shaikh
Rectangle

BECKERT, BEUSTER

allows a precise formal description of the user actions, the user’s knowledge and
the user’s internal representation of the system (what the user thinks about
the system). GOMS is more oriented towards psychological analysis of user
behavior and timed measurement of user activity. A major weakness of GOMS
is that it is limited to sequential user plans, and that it does not provide means
to generate application specifications from user models. ConcurTaskTrees [20],
developed by Paterno et al., provides a richer formalism for the description of
user behavior and generation of application specifications. Harrison et al. [27]
use formal methods to derive requirements for human-error tolerance from
task descriptions.

A general weakness of these formal HCI models is that they require de-
tailed models of the user behavior in order to model the interaction between
a computer system and a user. While computer systems can (and should) be
formally specified, a formal user model is always based on assumptions about
the user which may or may not be true. The approach presented in this we
paper make no unnecessary assumptions about the user.

In [13], Dix and Harrison develop the concept of “State Display Confor-
mance” which is closely related to the consistency requirements developed in
this paper. It should be noted that Grudin’s argument against user interface
consistency requirements [11] does not apply to the work presented in this
paper. He argues that consistency defined as having similar user interface
elements for similar functionality can not be generalized, because similarity
depends on context. Our work however does not address consistency within
a user interface, but consistency between a user’s mental representation of a
system state and the actual system state.

In a number of works, formal specification methods like Z have been applied
to user interface design. One of the first formal specifications of interactive
components was the specification of a text editor in Z in Sufrin’s paper Formal
specification of a display editor [24]. Based on Sufrin’s specification, Booth
and Jones implemented an editor in the Miranda functional programming
language [3]. Goldson [10] and Hussey/Carrington [14] provide more case
studies in using 7 for user interface specification.

3 Notation

We specify the abstract behavior of system components by Input Output La-
beled Transition Systems (IOLTS) and Linear Temporal Logic (LTL). Below,
we define these concepts and some related notions used throughout this paper.

Definition 3.1 A Labeled Transition System (LTS) is a tuple L = (S, %, sg, —)
where S is a set of states, sqg € S is an initial state, > is a set of labels,
and — C S x ¥ x S is a transition relation. We use the notation p = ¢ for

(p,0,q) € —.
Definition 3.2 An Input Output Labeled Transition System (IOLTS) is an

60

Siraj Shaikh
Rectangle

BECKERT, BEUSTER

7 !

Fig. 1. State Transition Diagram representation of an IOLTS.

LTS L = (S,%, sg, —) with X = X7 U X! U XI. We call ¥? the input alphabet,
! the output alphabet, and I the internal alphabet.

We use state transition diagrams to visualize IOLTS. An example is shown
in Figure 1.

The combination of two IOLTSs L, and L, where the output alphabet
of L, is the input alphabet of L, is called a composition:

Sh, 2, Sop, —p) be two IOLTS

Definition 3.3 Let L, = (Sa, X4, Soa, —a); Lo = (
= (S5,%, 59, —) of L, and L, is de-

with X!, = 37,. The composition (L||Ly)

fined by:
S:SO X Sl
X71=3%7,
YI=3l,

I=XI,UXl,UXl!,

S0 = (S04, Sob)

—=1{((84,5), 0, (5, 5)) | 80 = s, with o € X2, UXI,}U
{((3a558), 7, (84, 5)) | 86 = 8) with o € Xl UXI,} U
{((84,50),0,(5,5,)) | 8a Za s, and s, 2y 5, with o € X!, = £7,}

Often, components are combined by mutual composition. In mutual com-
position, the output of L, serves as input for L;, and the output of L, serves
as input of L, (this is illustrated in Figure 2).

Definition 3.4 Let L, = (S4, X4, S0a, —a) and Ly = (Sp, X, Sop, —5) be IOLTS.

We assume the input and output alphabets of L, and L; to consist of
internal and external subsets, where the internal input is denoted with 377,
the external input with »77, the internal output with X!/, and the external
output with X!E. And we demand that these subsets are chosen such that
Y, =371, and X!, = ¥71,.

Then, the mutual composition (Lg||mLs) = (S, %, so,—) of L, and Ly is
defined by:

61

Siraj Shaikh
Rectangle

BECKERT, BEUSTER

TE!Ea T YIE,

I,

A] B

PN

TZ?Ea TE?Eb

Fig. 2. Mutual composition of IOLTSs.

S=5p x 51
Y?1=¥"E,UX7E,
YI=¥IF,UXlE,
XI=%I,UXl,UX!,UX!I],
$0 = (S0as S0p)
— ={(84,58), 0, (5,,5)) | 854 —a 5, With 0 € ?E, UXIE,UXI,} U
{(54,5), 0, (5a,8,)) | 85 23 5, with o € £7E, U X! E, UXI,} U

{(8a,50),0, (54, 81)) | 80 =4 8, and s, = s} with

oeX,UX, =%21,UX?[,}

The input/output behavior of a component is described by traces, which
are (possibly infinite) sequences of elements from the alphabet ¥, and paths,
which are corresponding sequences of states.

Definition 3.5 Let L = (5, %, sg, —) be an IOLTS. Then, a path is a sequence
(S0, 81,...) of states from S with s; — s;41 for all i > 0. A trace (of L) is a
sequence (0q,01,...) of elements of 3 such that there is a path (sg, sq,...)
with S; & Si+1 (Z Z O)

We use Linear Temporal Logic (LTL) to describe properties of components.
The syntax of LTL is defined as usual, i.e., given a set P of atomic propositions,
LTL formulae ¢ are constructed inductively by:

¢ == ploV lo A P|=d| X |U|GO|Fd (p e P)

Now, we can use IOLTSs to interpret LTL formulas—in combination with
valuations A that map atomic propositions to the states in which they are
true. The satisfaction relation is extended to more complex formulae as usual.

Definition 3.6 Given an IOLTS L = (S,%,s9,—) and a set P of atomic
propositions, a wvaluation X is a mapping from P to S. An atom p is said
to be true in s € S iff s € A\(P).

62

Siraj Shaikh
Rectangle

BECKERT, BEUSTER

Given a path ¢ = (sg, s1,...), by ¢ we denote the sub-path of ¢ starting
at S;.

Whether an LTL formula ¢ is satisfied by a path ¢ and a valuation A,
denoted by L, A, ¢ |= ¢, is inductively defined as follows:

s L\cET

s L\ cE¢if ¢ € Pand sy € \(9)

e L\,cE—¢ifnot L\, cE¢

s LAcEoANYIELANcE¢and L\ clE1
s L\ cEoVif LA\ cEdor L\ cEY
e LA\cEXpif L\ E¢

e L\ ckE oUuif (a) L, \,c =1 or (b) there is some i > 1 s.t. L, \,¢' =
and L, \,c* = ¢ forall 0 < k <
e LA\ cEGoif L cE¢foralli>0
e L\ cEFoif L,c = ¢ for some i >0
An LTL formula ¢ is said to be satisfied by a valuation A, denoted by

LA ¢, iff L)\, ¢ |E ¢ for all paths ¢ of L. And ¢ is said to be satisfied by L,
denoted by L |= ¢ iff L, \ | ¢ for all valuations .

4 Formal Definition of User Interface Integrity

The aim of computer security is to guarantee access to services and resources
to authorized persons, while preventing access and manipulation by unautho-
rized parties. The basic security threats are Data Leaking, Data Manipulation,
and Program Manipulation [7]. These are countered by the core security re-
quirements, usually abbreviated as CIA:

Confidentiality: Information is available to authorized parties only.

Integrity: Both the assumptions of the user about the application, and the
assumptions of the application about the user are correct.

Availability: Accessibility of services and data is guaranteed.
Adapting these concepts to user interface security is straightforward:

HCI Confidentiality: No secret information is leaked via the user interface.

HCI Integrity: There is a correspondence between the configuration of the
application (defined by its internal state and data), and the user’s assump-
tion about the data and the state.

HCI Availability: The user interface must guarantee reachability of desir-
able states, and it must prevent user interactions that lead to transitions
into undesirable states.

In the following, we concentrate formalizing the integrity requirement. Infor-
mally, we define HCI Integrity as follows:

Siraj Shaikh
Rectangle

BECKERT, BEUSTER

Application

AppOut ! CMD

User

Fig. 3. Basic System (User + Application) Model

Definition 4.1 HCI Integrity: Whenever the user makes a critical decision,
all critical properties are the same in the application and the user’s assumption
about the application.

In order to maintain a most general view on all possible applications and
user models, we do not define what constitutes critical properties and their
correct interpretation by the user. We only assume that there are critical
properties, and that the user may or may not have correct assumptions about
them. We assume that in all critical states atomic proposition critical holds,
and that there are atomic propositions ay, ..., a, representing critical prop-
erties of the application, and wuy, ..., u, representing the user’s assumptions
about these properties. With these definitions, HCI Integrity is defined by the
LTL formula

G(critical — ((ag <> uo) A (a1 < ur) A -+ A (a, < uyp))) (1)

The definition of ag, ..., a, and uo,...,u, depends on the actual application
and user models. For given user and application models, automated reasoning
techniques (e.g., model checking) can be used to check if the HCI Integrity
formula holds.

5 Guaranteeing Integrity

In the last Section, we developed a formal definition of integrity. In order to
apply the definition, suitable user and application models and definitions of a
valuation function A must be provided. In this Section, we use the methodol-
ogy to deduce required properties of a generic class of text-based user inter-
face. Based on this, a specification of a main execution loop for this class of
applications is developed in Section 6.

In a generic model of a TTY application, one user interacts with one
application. A keyboard is used as the input device and a TTY screen as the
output device. This model is depicted in Figure 3. Two types of messages are
used to exchange information between the user and the application: AppOut is
the data type for information shown on the screen. CMD is the data type for
input given by the user. This model can be further structured without losing

64

Siraj Shaikh
Rectangle

BECKERT, BEUSTER

Application Execution Cycle Application Logic

Get AppOut? Show AppOut!
Result Result

CMD!

AppOut ! CMD

AppOut Q

AppOut?

AppOut! Appout
User Execution Cycle User Logic

Decide @ :

Fig. 4. Basic generic model of user and application.

generality. All well-designed applications (and all reasonable models of user
behavior) split up the components into a generic execution loop, governing the
general behavior of the application (or the user), and an application (task)
specific component. The separation of a generic execution loop and a task
specific component serves two purposes: It follows established system design
practice and therefore allows realistic modeling of applications. Secondly, the
separation in a generic and an application specific component allows to deduce
properties that hold for all applications following this design, independent of
the concrete application’s task.

A basic model following this approach is shown in Figure 4. In this model,
AppOut and CMD are variables representing all possible command input and
application output. Question marks after variable names indicate reading of
an input value, and exclamation marks indicate writing of an output value.
Thus, in one cycle of application execution the following steps are taken:

The application waits for the user to enter a command (GetCommand CMDr,
Execute). The command is processed by application logic (Execute MDY,

GetResult, GetResult AppOut?, ShowResult), and the result of the computation

is forwarded to the output device (ShowResult AppOut GetCommand). In the
same way, the user reads application output, evaluates which command should
be issued next, and enters the command into the input device.

This basic model already allows to deduce interesting properties in respect
to Integrity constraints. A reasonable assumption is that all decisions made

65

Siraj Shaikh
Rectangle

BECKERT, BEUSTER

CMD | @ CMD | ™
showa? cmaa?
- cmaal - shows!
AppOut owss AppOut o
User Logic Application Logic
Fig. 5. Simple Logic Modules.
AppExec UserExec | AppLogic | UserLogic | AppOut | CMD
ShowResult Wait a b - -
GetCommand | Wait a b showA -
GetCommand | Classify a b showA -
GetCommand | Decide a a showA -
GetCommand | Act a a showA -
GetCommand | Wait a a showA cmdB
Execute Wait b a showA -
Execute Classify b a showA -
Execute Decide b a showA -

Fig. 6. Refutation of naive model (excerpt)

by the user are critical::
A(ceritical) = {UserExeCyc.Decide }

Critical properties of an application, and user assumptions about critical prop-
erties, always depend on the user and application model. We provide most
simple definitions of these components in order to show a general weakness
of the naive application and user execution cycle model. In this most simple
component definition, there are only two commands, two application outputs,
and two states in both the user and application logic model. These logic mod-
els are shown in Figure 5. As the security relevant property, we define the

Wa” .,

question whether the application is in state “a”:
A(ag) = {AppLogic.a}
A(ug) = {UserLogic.a}

Integrity is not guaranteed for this model. The problem lies in the lack of
consistency, as the trace given in Figure 6 shows: When the user decides about

Siraj Shaikh
Rectangle

BECKERT, BEUSTER

Application Execution Cycle Application Logic

CMD!

—

“Processing”

A
AppOut CMD
\
AppOut?=
Act CMD! @ “F")r[;ce;sing"
c g
Wait CM D
ESC'I -
AppOut?£
CMD? User “Processing”
“Waiting” Q
Decide Classify >
AppOut! Appout
User Execution Cycle User Logic

Fig. 7. Refined Model

the next command for the second time, he does not recognize that execution
of the first command has not been completed.

The system model is not a model for Formula 1, because the application
configuration may change while the user issues a command. This problem is
well known from real-world computer systems: if the user does not know if a
command has been executed, he may be tempted to re-issue the command,
resulting in double execution of the command. In the worst case, this can
lead to a security problem, for example when the user accidentally confirms a
critical action twice. Next, we show a solution for the problem. In Section 6,
we apply the solution to a real-world program specification.

The problem can be solved by introducing new states for synchronization,
as shown in Figure 7. In this model, the system gives visual feedback indi-
cating whether it is waiting for user input or processing user input. Once the
application received a user command, it shows “processing” on the screen.
When processing is finished, the new application status is shown. Just show-
ing the message “processing” while executing user commands is not sufficient,
however. Depending on execution speed, the user may not recognize the mes-
sage “processing” at all (because it was shown for a very short amount of
time), our it may take a long time before the message is shown (in case the
system is slow). In order to give the user the ability to distinguish between
the two cases, an escape-key is introduced. If the user pushes the escape-key,
the message “waiting” is shown. This way, if the user does not know about
the state of the input process, he can press “escape” and wait for the message
“waiting” to show up. The model given in Figure 7 satisfies the integrity

67

Siraj Shaikh
Rectangle

BECKERT, BEUSTER

constraint of Formula 1.

While it is perfectly fine to change the specification of the application, one
may ask if it is acceptable to change the user model, i.e. our assumptions
about the user. We do think this is acceptable. It is common practice to train
the user on how to operate a system. For this, a formal user model allows to
explicit state what a user has to know in order to operate the system.

6 Specification of Secure Interactive Applications

In Section 5 we showed that the naive model of user and application inter-
action is not sufficient to guarantee consistency. While we showed that the
refined model guarantees consistency for the given application logic and user
logic components, we did not—and can not—show that the consistency con-
straint holds for all application and user logic components, because it does
not solely rely on consistency between the user and the application model;
the user must also have the right assumptions about the application model.
He must have knowledge about the inner working of the application, and
about the consequences of his actions. This knowledge is represented in the
user logic module. Just like the user’s and application’s execution loops, the
logic components of user and application are modeled as IOLTS. This requires
a state-based representation of the application, and of the user’s knowledge
about the application.

In the last Section, basic application logic and user logic modules were
used in the refutation of the naive model. These example modules (given in
Figure 5), had only two outputs: showA and showB. In actual applications,
possible system configurations and outputs are much richer in detail. Even
if considering T'TY-based applications, we have screens with multiple rows
and columns, where each cell can contain an alphanumeric character. Even
on a moderately sized screen, the set of all possible combinations of output
characters are too large to be modeled explicitly. Therefore, it is necessary to
find a suitable abstraction of application states, application output and user
assumptions about application states in order to make real-world applications
suitable for automated model checking for consistency constraints. Of course,
such security-relevant states are abstractions of the application’s actual in-
ternal configuration, which is much richer in detail. Nevertheless, we assume
that these states are the right abstraction in that the user has sufficient infor-
mation about the internal configuration of the application if he or she knows
the abstract state of the application.

In the following, our abstract model of an application assumes that an
application can be in one of many states, and that the current state is rep-
resented in variable applicConf. User commands (usually corresponding to
keystrokes entered by the user) trigger state transitions. Depending on the
result of a command, the system transits into a new state. The actual spec-
ifications of command execution is application dependent. Pseudo code for

68

Siraj Shaikh
Rectangle

BECKERT, BEUSTER

1: repeat
{Show Result}
updateScreen (confAsString (applicConf) ,applicConf)
{Get Command}
repeat
cmd = getKeystroke ()
if cmd = ESC then
{Escaped}
updateScreen (confAsString (applicConf) +
‘‘Waiting’’,applicConf)

10: end if
11: until cmd # ESC
12. {Busy}

13: updateScreen(confAsString (applicConf) +
‘‘Processing’’,applicConf)

14: {Execute & Get Result}

15: applicConf = execute(cmd,applicConf)

16: until cmd = QUIT

Algorithm 1. The main event loop

a main event loop implementing the Application Execution Cycle model from
Figure 7 is given in Algorithm 1.

For the specification of the screen update function updateScreen, we use
the following auxiliary functions:

* confAsString(applicConf) is a string that allows the user to identify the
state of the application.

* screenOutput(applicConf) is a two-dimensional array of characters. It con-
tains the correct screen output corresponding to applicConf. The actual
definition of screenOutput is under the discretion of the application at
hand.

o stringAt(z,y) is the string shown on screen position (z,y).

We require that the current state of the application logic component plus
optionally the additional information “waiting” or “processing” are shown in
the first line of the screen. A specification for function updateScreen in OCL*
is shown in Table 1.

It should be noted that we do not restrict ourselves to a certain application.
The specification fits every applications requiring a secure, text-based user
interface.

4 The OCL specification should be understandable without deeper knowledge of OCL. See
[25,26] for more information on OCL and [17] for the current language specification.

69

Siraj Shaikh
Rectangle

BECKERT, BEUSTER

context updateScreen(status,conf)
post stringAt(0,0) = status and
Vk e {1,...,screenHeight — 1} :
stringAt(0, k) =
screenOutput(applicConf)k — 1]

Table 1
Specification of the application’s function for updating the screen contents

7 Verification

In order to verify that an implementation satisfies the consistency constraints,
a number of assumptions about the user are necessary:

(i) The user observes the screen.

(ii) The user understands the output of stateAsString.

Under these assumptions, it is sufficient to show that the status string as pro-
vided by stateAsString is adequate, and that updateScreen is called as specified
in the last Section. With these assumptions and the additional assumption
that the operating system works correctly, verification of observability can be
split into two parts:

(i) Proofs for the application’s functions execute and updateScreen.

(ii) Proofs about the main event loop in respect to the application model.

The second part is generic, since the main event loop given in Algorithm 1 is
applicable to all applications following our design methodology.

It should be noted that two calculi are integrated in our approach. The
properties of the main execution loop need to be proven in some temporal
calculus. Satisfaction of the requirements for the main execution loop can be
proven by model checking. Proofs about the application’s functionality can
be executed in a calculus based on pre- and postconditions, e.g. Hoare logic.
From the proofs about the application’s functionality it follows that for each
distinct system configuration, updateScreen produces a distinct and up-to-
date screen representation. From the assumption that the user understands
the chosen representation, it follows that observability is given immediately
after every call of updateScreen.

In project Verisoft (http://www.verisoft.de), this approach is used to
prove observability of an email client application in the context of a pervasively
verified computer system.

70

http://www.verisoft.de
Siraj Shaikh
Rectangle

BECKERT, BEUSTER

8 Conclusions and Future Work

In this paper, we showed how formal methods can be used to guaranteed a
fundamental requirement of user interface security.

In Section 4, we translated the generic security requirements of Confiden-
tiality, Integrity, and Availability to human-computer interaction, and we gave
a formal definition of Integrity for HCI: The user should always be aware of
the current state of the system. In Chapter 5, we developed generic models
for TTY-based application. We showed that a naive approach leads to models
that do not guarantee consistency. We provided a refined model that satis-
fies consistency constraints. In Section 6, we showed how the formal model
can be transfered to actual applications, and what has to be shown about an
application in order to ensure its security.

In project Verisoft (http://www.verisoft.de) our method is used to spec-
ify, implement and verify a secure email client. In Verisoft, both the operating
system and the application program are formally verified based on that spec-
ification.

In the future, we plan to extend our work to other aspects of user interface
security. Our goal is to create a systematic formal description of user interface
security for interactive systems.

References

[1] G. D. Abowd, J. P. Bowen, A. J. Dix, M. D. Harrison, and R. Took. User
interface languages: A survey of existing methods. Technical Report PRG-TR-
5-89, Oxford University Computing Laboratory, October 1989.

[2] Jean Berstel, Stefano Crespi Reghizzi, Gilles Roussel, and Pierluigi San
Pietro. A scalable formal method for design and automatic checking of
user interfaces. ACM Transactions on Software Engineering and Methodology
(TOSEM), 14(2):124-167, April 2005.

[3] Simon P. Booth and Simon B. Jones. A screen editor written in the miranda
functional programming language. Technical Report TR-116, Department of
Computing Science and Mathematics, University of Stirling, February 1994.

[4] David A. Carr. Interaction object graphs: an executable graphical notation for
specifying user interfaces. In Philippe Palanque and Fabio Paterno, editors,
Formal methods in Human-Computer Interaction, pages 141-155. Springer,
1997.

[5] Geert de Haan. ETAG, A Formal Model of Competence Knowledge for User-
Interface Design. PhD thesis, Vrije Universiteit, Amsterdam, 2000.

[6] Asaf Degani, Michael Heymann, George Meyer, and Michael Shafto. Some
formal aspects of human-automation interaction. Technical report, NASA,
Moffett Field, CA: NASA Ames Research Center, 2000.

71

http://www.verisoft.de
Siraj Shaikh
Rectangle

BECKERT, BEUSTER

[7] Riidiger Dierstein. Sicherheit in der Informationstechnik — der Begriff IT-
Sicherheit. Informatik Spektrum, 27(4), August 2004.

[8] A. Dix and G. Abowd. Modelling status and event behaviour of interactive
systems. Software Engineering Journal, 11(6):334-346, 1996.

9] A. J. Dix and C. Runciman. Abstract models of interactive systems. In
P. Johnson and S. Cook, editors, HCI’85: People and Computers I: Designing
the Interface, pages 13-22. Cambridge: Cambridge University Press, 1985.

[10] Doug Goldson. Formal modelling of interactive systems. In Proceedings of
APAQS 2000, the First Asia-Pacific Conference on Quality Software, IEEE
Conference Proceedings. IEEE Computer Society Press, 2000.

[11] Jonathan Grudin. The case against user interface consistency. Communications
of the ACM, 32(Issue 10):1164-1173, October 1989.

[12] F. Hamilton. Predictive evaluation using task knowledge structures, 1996.

[13] Michael Harrison and Harold Thimbleby, editors. Formal methods in human-
computer interaction. Cambridge Univ. Press, Cambridge, Mass., 1990.

[14] A. Hussey and D. Carrington. Specifying a web browser interface using
Object Z. In Philippe Palanque, editor, Formal methods in human computer
interaction, chapter 8. Springer, 1998.

[15] Vipul Jain. User interface description formalisms. Technical report, McGill
University School of Computer Science, Montréal, Canada, 1994.

[16] Bonnie E. John and David E. Kieras. The GOMS family of user interface
analysis techniques: Comparison and contrast. ACM Transactions on
Computer-Human Interaction, 3(Issue 4):320-351, December 1996.

[17] Object Modeling Group. Unified Modelling Language Specification, version 1.5,
March 2003.

[18] Philippe Palanque, Remi Bastide, and Valerie Senges. Validating interactive
system design through the verification of formal task and system models. In
Engineering for Human-Computer Interaction. Chapman & Hall, August 1995.

[19] Philippe Palanque and Fabio Paterno, editors. Formal methods in human
computer interaction. Springer, New York, London, 1998.

[20] Fabio Paterno. Model-Based Design and Evaluation of Interactive Applications.
Springer, 1999.

[21] Robert W. Reeder and Roy A. Maxion. User interface dependability through
goal-error prevention. In DSN ’05: Proceedings of the 2005 International
Conference on Dependable Systems and Networks (DSN’05), pages 60-69,
Washington, DC, USA, 2005. IEEE Computer Society.

[22] John Rushby. Using model checking to help discover mode confusions and other
automation surprises. Reliability Engineering and System Safety, 75(2):167—
177, February 2002.

Siraj Shaikh
Rectangle

BECKERT, BEUSTER

[23] Bettina Sucrow. Formal specification of human-computer interaction by graph
grammars under consideration of information resources. In Automated Software
Engineering, pages 28-35, 1997.

[24] B. Sufrin. Formal specification of a display editor. Science of Computer
Programming, pages 157-202, 1982.

[25] Jos Warmer and Anneke Kleppe. OCL: The constraint language of the UML.
Journal of Object-Oriented Programming, 12(1):10-13,28, March 1999.

[26] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Language:
Precise Modeling With UML. Addison-Wesley Professional, 1998.

[27] Peter Wright, Bob Fields, and Michael Harrison. Deriving human-error
tolerance requirements from task analysis. In IEEE International Conference
on Requirements Engineering, 1994.

73

Siraj Shaikh
Rectangle

FMIS 2006

Formal Models for Informal GUI Designs

Judy Bowen 2 and Steve Reeves?
Department of Computer Science
University of Waikato
Hamilton, New Zealand

Abstract

Many different methods exist for the design and implementation of software systems.
These methods may be fully formal, such as the use of formal specification languages
and refinement processes, or they may be totally informal, such as jotting design
ideas down on paper prior to coding, or they may be somewhere in between these
two extremes. Formal methods are naturally suited to underlying system behaviour
while user-centred approaches to user interface design fit comfortably with more
informal approaches. The challenge is to find ways of integrating user-centred design
methods with formal methods so that the benefits of both are fully realised. This
paper presents a way of capturing the intentions behind informal design artefacts
within a formal environment and then shows several applications of this approach.

Key words: Formal methods, user-centred design, GUIs,
refinement, informal design artefacts.

1 Introduction

When we are designing and building systems, particularly large and complex
systems, it is not unusual to work in a modular fashion. Different parts of
the system will be worked on at different times, perhaps by different groups
of software engineers, designers and programmers.

Separation of the design and implementation of a graphical user interface
(GUI) of a system from what we will refer to as the underlying system be-
haviour is a common and pragmatic approach for many applications. The
development of user interface management systems (UIMS) based on the log-
ical separation of system functionality and user interface (UI) is exemplified
by the Seeheim model [20]. The separation allows us to not only focus on the

! Thanks to the anonymous reviewers for DSV-IS 2006
2 Email: jab34@cs.waikato.ac.nz
3 Email: stever@cs.waikato.ac.nz
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

74

BOWEN AND REEVES

different concerns which different parts of the system development present,
but, more importantly, allows for different approaches and design techniques.

When we develop the underlying system functionality for an application we
are often concerned with issues such as correctness, reliability, robustness and
efficiency etc. which lend themselves to the techniques we call “formal”. Such
formal techniques include specifying requirements, validating and verifying
specifications and refinement methods. When we develop Uls, however, our
concerns are often more human-focussed (this is particularly true if we follow a
user-centred design (UCD) approach). The design techniques we adopt reflect
this and rely on more informal strategies such as prototyping, scenarios and
storyboards, iteration based on user-feedback, usability testing etc.

Whilst we can see the benefits of this separation of concerns and design
methods in terms of being able to adopt the most suitable development ap-
proach to different parts of the task, there are clearly some problems associated
with it. If our aim is to use a formal process to develop provably correct soft-
ware (which it is), then we must ensure that all parts of the system have been
designed in a way which satisfies this.

This gap between the formal and informal has been identified and discussed
many times, notably in 1990 by Thimbleby [24]. Several different approaches
have been taken over recent years by different groups of researchers to try and
bridge this gap. Much of the work that has been done falls into one of the
following categories:

* Development of new formal methods for Ul design. F.g. Modelling Uls
using new formalisms [7];

* Development of hybrid methods from existing formal methods and/or in-
formal design methods. F.¢g. Using temporal logic in conjunction with
interactors [17];

* Use of existing formal methods to describe Uls and UI behaviour. FE.g.
Matrix algebra for UI design [25];

* Replacing existing human-centred techniques with formal model-based meth-
ods. E.g. Using UI descriptions in Object-Z [23] to assess usability [12].

Whilst much of this work is demonstrably a step forward in bringing together
formal methods and UI design, the methods and techniques which have been
developed have failed, in the most part, to become mainstream.

One of the reasons for this seeming reluctance for either group to adopt
the new methods proposed is, of course, the reluctance of any group to change
working practices which are meeting their individual needs. Persuading users
of formal methods to adopt less formal, or new hybrid, methods has proved
as unsuccessful as encouraging Ul designers to abandon their human-centred
approach in favour of more formal approaches.

Rather than trying to change the methods used by different groups of soft-
ware developers, the approach we are taking with our research is to consider

Siraj Shaikh
Rectangle

BOWEN AND REEVES

the existing, diverse, methods being used and develop ways of formally linking
them together. In particular, because our interests lie in both using formal
methods and rigorous development techniques to develop our software, and
UCD approaches to UI design, our intention is to find ways of interpreting
the sorts of informal design artefacts produced in a UCD process within our
formal framework.

In this paper we will introduce a way of formally describing informal design
artefacts, called the presentation model. We will give some examples of the
use of the presentation model within a formal design context and then show
how we can extend this model with another formalism, finite state machines.
We can then begin to explore both the static and dynamic meanings of the
designs which form the basis of the model.

2 User-Centred Design Artefacts

The purpose of user-centred design is to ensure that the software we build,
and in particular the interface to that software, meets the expectations of
the intended users. To this end the processes used are designed to involve
users from an early stage to find out about not only the tasks they need to
perform with the software, but also things like the current working practices
of the users, their experience with similar software, internal company working
processes that will be affected by this new software, etc.

Techniques used early in a UCD process may include ethnographic studies
which allow the designers to understand not only the users, but also their
work environment and work processes. This may be followed by task analysis
methods to examine the users’ requirements of the system. Task analysis
has received a lot of attention from formal practitioners over the years, and
a number of models exist for this, as well as methods for developing Uls
from such models, e.g. [6], [18]. UCD practitioners may use scenarios and
personas to enhance the task analysis process and give details of specialised
requirements and user behaviours.

The actual design of the Ul may involve brainstorming sessions between
designers and users which will lead to the development of prototypes. These
prototypes are then tested by both users and design specialists and updated
in an iterative process before a final design is reached. Even this final design
is subject to amendment once the system has been implemented and subse-
quently undergone usability testing.

The key to UCD, therefore, is to ensure that the actual users of the system
are involved at all stages of the design process. The sorts of artefacts that
are generated during such processes reflect this collaborative way of working
and will include things like white-board design sessions with post-it notes
used to represent interface elements, textual narrative descriptions of things
like domain information and scenarios, task analysis models, user descriptions
and paper-based prototypes.

76

Siraj Shaikh
Rectangle

BOWEN AND REEVES

One of the problems we face when trying to capture UCD processes within
a formal software engineering context is that the artefacts produced are in-
tentionally informal. They aim to encourage users to feel able to participate
and change the design, and lo-fidelity artefacts, such as paper prototypes for
example, have been shown to be very successful for this purpose.

There have been several methods and tools developed which support pro-
totyping or enable the use of tablet PCs [14], collaborative whiteboards [21] or
desktop computers to generate prototypes in a manner similar to paper pro-
totyping [8]. It may be that some, or all, of these tools could be adapted or
extended to support the sort of work we are currently doing. However, as our
focus is currently on existing commonly used design techniques and artefacts,
we have deliberately chosen not to consider such tools here. Instead we focus
on lo-fidelity artefacts like paper-based prototypes.

3 Formal Methods and Refinement

When we state that we wish to use formal methods as the basis for our sys-
tem derivation we mean that we want to build models, at whatever level of
abstractness/concreteness is most natural and useful to the developers of the
system, which we can investigate with “mathematical” precision. So, typi-
cally, we want to build our models (write our specifications) in a language
which has well-defined properties: syntax, semantics and logic. Without the
first two properties we cannot (without a well-defined syntax) separate the
specifications from all the other artefacts, or (without a well-defined seman-
tics) know what a specification means even if we know, syntactically, that we
have one.

The third requirement, that we have a logic, is also clearly necessary: being
able to build a well-defined specification is a good start, but we also need to
be able to precisely investigate that specification, see what its assumptions
are, see what properties it has, see what implications for the system arise and
so on. For all these necessary things we must have a logic.

So, our requirements are broad, not very onerous and leave developers open
to choose whichever language they like to use (making decisions on grounds
of familiarity, suitable for the task etc.) as long as it has our three properties.

3.1 Refinement

The idea behind refinement is very simple and goes back to Wirth [26]. It is
based on the desire to be able to move between different models of a system
without having any negative impact on a user’s view or feel of the system
in terms of its functionality or usability. As a simple example, we might
move from a system that uses sets to one that uses arrays: here we move
from abstract to concrete, from a convenient and useful idea (sets) to an
implementation-oriented one (which probably includes too much detail).

77

Siraj Shaikh
Rectangle

BOWEN AND REEVES

This original idea behind refinement has been generalised so that we can
think about not just differing implementations but differing levels of abstrac-
tion of model, from specification to implementation.

The basic intuition behind refinement is [9]:

Principle of Substitutivity: it is acceptable to replace one program by an-
other, provided it is impossible for a user of the programs to observe that the
substitution has taken place. If a program can be acceptably substituted
by another, then the second program is said to be a refinement of the first.

4 Integration of Techniques

Integration of different languages and models within formal methods is not
unusual (indeed this activity has at least one whole conference devoted to
it, namely IFM [13]). The central idea is to use the differing features and
strengths of the different methods as appropriate. Sometimes it is enough to
just use different formalisms to specify different parts or different properties
of the system, but the best effect is seen when methods are fully integrated so
there are formal links between them allowing for a fully rigorous development.

Our aim is to formally link the formal and informal processes so that we get
all of the benefits of rigorous specifications and refinement, namely the ability
to prove properties of a system and ensure formally that we meet requirements
and end up with a correct implementation, while at the same time benefiting
from the informal design methods of a UCD process which ensures we satisfy
the user requirements and develop a usable interface.

Using formal methods in GUI design is not a new idea, and many dif-
ferent approaches to this have been taken. These may be along the lines of
formalising particular parts of the design process, such as task analysis [19],
or describing GUIs in a formal manner [10], or deriving implementations from
formal models [11],[7]. However, what we are trying to do is to look at an
existing design methodology, i.e. user-centred design, examine the types of
processes and artefacts that are used and find ways of incorporating these into
a formal process.

5 Presentation Model

The presentation model is used to formally capture the meaning of an informal
design artefact such as a scenario, storyboard or prototype. It is a deliberately
simple model because the informal artefacts it describes are themselves simple
and easy to understand. This is important as it makes it easier to encourage
others to adopt and use the model. When we talk about the meaning of a
design artefact we are talking about what the Ul described by the informal
artefact is supposed to do, i.e. if it were transformed into an implementation
what its behaviour would be. If we consider a paper-based prototype in isola-

78

Siraj Shaikh
Rectangle

BOWEN AND REEVES

tion its meaning may be ambiguous; it requires some supporting information
or context to make clear what is intended.

When a designer shows a prototype to a user, there is a discussion about
what the prototype will do when the parts shown are interacted with. This
forms what we call the narrative of the prototype, the accompanying story
which allows the user to understand how it will work and what the various
parts do. This allows a simulated interaction to take place which enables the
user and designer to evaluate the suitability of the proposed design. The pre-
sentation model is a formal model which describes an informal design artefact
in terms of the widgets of the design and captures their meaning. It is de-
liberately abstract and high-level. The presentation model is not intended to
replace the informal design artefact, rather it acts as a bridge between the
meaning captured by the design and the formal design process being used for
the system functionality. The syntax for presentation models is given next.

5.1 Syntax

(pmodel) ::= (declaration)(definition)
(declaration) ::= PModel{{ident)}",

WidgetName{ (ident) }*,
Category{{ident)}*, *
Behaviour{(ident)}*,
(definition) ::= {(pname)is (pexpr) }*
(pexpr) := {{widgetdescr)}* | (pname) : (pexpr) | (pname)
(pname) ::= (ident)
(widgetdescr) ::== ((widgetname), (category) , ({(behaviour)}*))
(widgetname) ::= (ident)
(category) ::= (ident)
(behaviour) ::= (ident)

{Q}™ indicates one or more Qs

{R}* indicates zero or more Rs

An example of a legal presentation model is then:

PModel pqr

Widgetname aCltrl bCtrl cSel

Category ActionControl SValSelector
Behaviour dAction eAction fAction

pis (aCtrl, ActionControl, (eAction fAction))

(
(bCtrl, ActionControl, (dAction))
(

qis (cSel, SValSelector, (eAction fAction))

4 The categories used are based on the work in [2]

79

Siraj Shaikh
Rectangle

BOWEN AND REEVES

risSp:q

This model describes a UI with two components, p and ¢ (where these may
be different windows, or different states of the UI). The entire UI (i.e. the
combination of p and ¢) is described by r and the : operator acts as a compo-
sition. p has two widgets, aCtrol and bCtrl, which are both ActionControls.
The behaviours associated with aCtrl are eAction and fAction and for widget
bCtrl the associated behaviour is dAction. ¢ has one widget, cSel, which is
a SValSelector with the behaviours eAction and fAction. Presentation model
r, therefore, is the combination of all of the widgets of p and ¢ and describes
the total possible behaviours of the Ul.

5.2 Semantics

We can now give the semantics of the model. Firstly, we can describe the
complete model of a design as an environment ENV'.

The environment is a mapping from the name (from the set Ide of identi-
fiers) of some presentation model and its parts to their respective values:

ENV = Ide — Value
Value = Const + P(Const x Const x P Const)
Const = {7 | v is an identifier}

We use semantic functions to build up the contents of the environment and
to describe its structure based on the given syntax.

[=] : (pmodel) — ENV

Dc : (declaration) — ENV

Df : (definition) — ENV — ENV
Ezpr : (pexpr) — ENV — ENV

[Dect Def]] = Df [Def [(De[[Decl])

Dc[PModel my .. w1 WidgetName v . . o Category ey .. €,3 Behaviour
Br .. Bra] = {mi = T} U = @} 2 Ufes = @312 UG = Gt

where {e;}¥ is shorthand for the set {e;, ey, . ., ex}

Df[D Ds]p = Df[Ds](Df[D]p)
Df[Pis{]p=p @ {P — Expr[¢]p}

where p represents the current environment.

Expr(E Es]lp = Expr[[E]]p U Expr[Es]p
Expr[: ¢]p = Expr([y]p U Ezpr(s]p
Ezpr[[(N C (b .))]]p— {(p(N) p(C) {p(b1) .. p(bn)})}
Expr([I]lp = p(I)

80

Siraj Shaikh
Rectangle

BOWEN AND REEVES

e — e e L

B TH R T o | BeD ey
el [i | I el
= - { I s L a4 T R
et bp . 1R Lostrerts Tavg: e franmss Ve A7 |
s : = = |
= T | o™ gt L = T 3 1T § \
- — e [" = Ty]
L. Ta wrotecss (B - ARy = =i | - = s]
|15 = i x
t 1. T Decssot | 2 . .T= Dewmrse . v LEcwsatt |
=l = Prcoact b - P ; B = P p T
Ldrs Gancel oy Do P e Sy §
Ll [= LamoE)] — - Ee——

Fig. 1. Design for Mobile Phone Application UI

Our presentation models consist of widgets with names, categories and be-
haviours. In our semantics we have shown how the syntax of the model creates
mappings from identifiers to constants in the environment (which represents
the design that the model is derived from). The presentation model semantics
is a conservative extension of set theory, that is, everything which is provable
about presentation models from the semantics is already provable in set the-
ory using the definitions given in the semantic equations. This then allows us
to rely on the existing sound logic of set theory to derive a necessarily sound
logic for our presentation models.

Next we provide an example of a Ul design and presentation model of that
design which we will use to illustrate the uses and extensions for presentation
models.

6 Example

The following example is an adaptation of an example given by Calvery et al.
in [5] and [4]. The example involves a home heating control system which is
accessible via several different devices, namely a home-based, wall-mounted
control panel, a web-server running on a standard PC, a PDA and a WAP-
enabled mobile phone. The control system supports the monitoring and con-
trol of temperatures in a number of different rooms as well as overall adherence
to ambient temperature levels. For the purposes of our example we use an
amended version of the mobile phone application UI which allows us to illus-
trate our particular points.

A proposed Ul design for the mobile phone version of the system is given in
Figure 1. This shows the four different screens which make up the UI for the
application which we label C'1, C'2, C'3 and C'4 respectively. The presentation

81

Siraj Shaikh
Rectangle

82

BOWEN AND REEVES

model for the mobile phone UI design follows (some detail has been omitted

for brevity):

PModel
Widgetname

Category
Behaviour

MPMenu is

MPBed is

MPLounge s
MPBath is
MPHeat 1s

MPHeat MPMenu MPBed MPLounge MPBath
BathSelect LoungeSelect BedSelect QuitOpt IncBathOpt
DecBathOpt IncLoungeOpt DecLoungeOpt IncBedOpt
DecBedOpt AcceptOpt CancelOpt BathTempDisp
BathRangeDisp LoungeTempDisp LoungeRangeDisp
BedTempDisp BedRangeDisp

ActCtrl SValSel SValRespdr

ShowBath ShowLounge ShowBed QuitApp IncBathTemp
DecBathTemp IncLoungeTemp DecLoungeTemp
IncBedTemp DecBedTemp StoreSettings ShowMenuPage
DispBathTemp DispBathRange DispBedTemp DispBedRange
DispLoungeTemp DispLoungeRange

(BathSelect, ActCtrl, (ShowBath))
(LoungeSelect, ActCtrl, (ShowLounge))
(BedSelect, ActCtrl, (ShowBed))

(QuitOpt, ActCtrl, (QuitApp))

(BedTempDisp, SValRespndr,(DispBedTemp))
(BedRangeDisp, SValRespndr, (DispBedRange))
(IncBedOpt, SValSel, (IncBedTemp))
(DecBedOpt, SValSel,(DecBedTemp))
(AcceptOpt, ActCtrl, (StoreSettings))
(CancelOpt, ActCtrl,(ShowMenuPage))

.. omitted

.. omitted

MPMenu : MPBath : MPLounge : MPBed

7 Using the Presentation Model

7.1 Presentation Models and Refinement

Our first use for the presentation model is to enable us to include the design of
the Ul in our formal refinement process. We have previously given a detailed
account of this process [3] and it is not our intention to repeat these details
here. However we will give an outline of the process and direct the interested

reader to [3].

We have talked about a relationship between the activities of our formal
and informal design processes. We start to define this at the first design activ-
ity for each method, i.e. requirements gathering for the formal specification
and determining user requirements for the Ul design. Rather than treating
these two activities independently we need to ensure that the information

Siraj Shaikh
Rectangle

BOWEN AND REEVES

gathered from each is used together to produce a specification and Ul require-
ments which are not only fully inclusive, but which share a vocabulary and
compliment each other. We create a formal specification for a system and
use naming conventions which indicate which of the given operations are user
operations, that is, which of the operations upon the system state should be
made available directly to the user via the UL

If we were to create a formal specification for the heating application,
based on the requirements given in [5] and using the specification language
Z [1], we would follow this convention and name the operations we describe
accordingly. For example, in order to describe the requirements of a user to
be able to increase the temperature in any of the rooms, we would expect to
see the following in our specification (using the Z idiom of promotion):

— Room
CurrentTemp : TEMP

CurrentTemp < MazTemp
CurrentTemp > MinTemp

TempControlSystem = [rooms : RID + Room)|

— dUpdateRoomTemp —IncreaseRoomTemp
A TempControlSystem ARoom
ARoom newTemp? : TEMP
rid? : RID newTemp > MinTemp
rid? € dom rooms newTemp < MaxzTemp
© Room = rooms rid? CurrentTemp’ = newTemp

rooms’ = rooms @ {rid? — ©Room’}

USER_IncRoomTemp = 3 ARoom e ® UpdateRoomTemp N
IncreaseRoom Temp

As part of our refinement process we need to ensure that all user operations
described in the specification have been described in the UI design. That is,
we should ensure that the system informally described by the GUI design is
a refinement of the specification. From the presentation model of the design
we can produce a Z description (using the framework for describing widget
categories in Z given in [2] as the basis). From the presentation model of the
mobile phone heating application we can derive such a 7 description. If we
focus on the requirement to increase the temperature of the bedroom we can
look at one part of the derived Z description which is:

&3

Siraj Shaikh
Rectangle

BOWEN AND REEVES

__IncBedTempOp __IncBedTempSelCtrl ___
A Bedroom 1CState : CONTROLSTATE
iActValue? : TEMP 1SelValue : TEMP
iAction? : ACTION iAction! : ACTION

. : 4
iAction? = IncBedTemp = tActValue!l : TEMP

bedTemp' = iActValue? iCState = Active =
iAction? # IncBedTemp = tAction! = IncBedTemp
bedTemp' = bedTemp iCState = NotActive =

1Action! = NoAction
1ActValue! = 1SelValue

ActivelncBedTemp = [IncBed TempSelCtrl | iCState = Active]
>> IncBedTempOp

The presentation model for this example describes a widget Bed TempDisplay
whose category is SValResponder. If we refer to [2] we see that to describe
such a widget in Z we must provide a schema with observations on active state
(which captures the notion of user interaction), selected values and behaviours,
and then link this (using the Z piping notation) to an operation schema which
describes the associated behaviour (in this case setting the temperature to a
new value).

We can now use the standard simulation techniques (which are based on
[27] and [9]) to show that a refinement holds between the UI design and the
specification.

7.2 Presentation Models and Design Equivalence

Following on from the use of presentation models in refinement we have de-
rived a notion of equivalence between designs, based again on the presentation
model. The intention here is to be able to take different UI designs (for the
same system) and using the presentation models of these designs determine if
they can be considered in some way equivalent.

Design equivalence is important during a refinement process, where rapid
iteration of designs means it may be more practical to require proof of re-
finement back to the specification only when the design changes significantly,
i.e. when it is no longer functionally equivalent to the previous version of the
design. We define this notion of functional equivalence next.

The functionality of a design is given by the set of behaviours of the pre-
sentation model of that design. So if we wish to compare two different UI
designs to determine whether or not they have the same functionality, then
we can simply compare the corresponding behaviour sets of their presentation
models. Formally we state:

84

Siraj Shaikh
Rectangle

BOWEN AND REEVES

Definition 7.1 If DOne and DTwo are Ul designs and PMOne and PMTwo
are their corresponding presentation models then:

DOne =pyne DTwo =4 Behaviours|PMOne] = Behaviours| PMTwo]
Behaviours[P] =4 {[P]b | b € act(P)}

act(P) is a syntactic function that returns all identifiers for behaviours in P.

Design equivalence is also important in cases where we are designing several
interfaces for different versions of a system, as we are in the home heating
system example. We want to be sure that the different versions of the system
provide the user with the same functionality. Again, we could prove this by
using refinement techniques from each of the different system designs back
to the specification. However, design equivalence provides a weaker approach
to refinement which allows us to ensure that the intended behaviour (both
system functional behaviour and Ul functional behaviour) is provided by all
of the Uls.

As well as functional equivalence we have considered other types of equiv-
alence which exist between designs, namely Component Equivalence and Iso-
morphism. We will not go into the details of these types of equivalence here
as they are beyond the scope of this paper.

7.8 Presentation Models and Design Consistency

The third use of presentation models we present here is their use in ensuring
consistency between designs. Consistency is an important principle of UI
design. Shneiderman [22] includes consistency as one of his eight golden rules
for interface design:

Strive for consistency.

Consistent sequences of actions should be required in similar situations;
identical terminology should be used in prompts, menus, and help screens;
and consistent commands should be employed throughout.

An application may consist of numerous different screens and dialogues, so
maintaining consistency throughout is not a trivial task. One of the things we
can ensure, using the presentation model, is that controls which have the same
function have the same name (so the user does not have to remember that in
one part of the interface they use Quit to exit the interface and in another
they use Close). Conversely we can also check, again using the model, that
controls with the same name have the same function and this ensures that the
user always knows what to expect when they encounter such a control.

8 Limitations and Extensions

We have provided some examples of how we can use presentation models of
informal designs to not only help with our aim of integration of informal

&5

Siraj Shaikh
Rectangle

BOWEN AND REEVES

design artefacts into our formal process (via the refinement mechanism and
equivalence), but also in dealing with design concerns such as consistency.

There is, however, more to say on the subject of refinement. While we
may be able to prove (or disprove) that particular functionalities are included
in a Ul design (because they are a behaviour of one of the widgets) this is not
enough to imply refinement.

As we have already stated, a Ul may consist of many different windows
and dialogues. The mechanics of moving between these different windows or
dialogues are included in the Ul-functionality of the design (these are the be-
haviours which do not correspond to underlying system functions, but instead
are used to change the state of the UI). For a refinement to hold between a
specification and a design we need to ensure that not only do the required
system functions exist in some part of the Ul design, but also that they are
reachable via some UI function.

Proving the property of reachability in a Ul is a common concern in much
of the early work on using formal methods with Uls. Rather than trying to
adapt and incorporate an existing technique for this into our process, we want
to be able to use our presentation model for this purpose also.

The problem with trying to capture the idea of dynamic change of the Ul
via the presentation model is that that the model gives us a static view of the
design. It describes a total environment given by the design (which we can
consider to be all of the possibilities of that design), but the (deliberately)
simple use of a triple for each widget does not hold enough information to
extend its use to dynamic behaviour. One possible solution to this would be
to extend the model with additional information. However, we want to avoid
making it so complex that it becomes a burden upon designers or formal
practitioners to learn and use. We have decided to use another common
formalism, in conjunction with the presentation model, in order to be able to
prove these more dynamic properties. The formalism that we have chosen is
that of Finite State Machines (FSM).

FSM have been used previously for GUI modelling in both design (as early
as the late 1960’s [16]) and as a way of evaluating interfaces [15]. One of the
drawbacks with using FSM in this way is the known problem of state explosion,
where the number of states of the machine becomes intractably large. Given
the complexity of modern Uls this is certainly a concern and potential problem
whenever we try and use FSM to model GUIs or GUI behaviour. However,
because we already have an abstraction of the Ul (the presentation model) we
can use this in conjunction with a FSM and in most cases we produce a FSM
which require only a very small number of states. We produce a FSM which is
at a high level of abstraction and decorate it with presentation models which
provide the lower-level meaning.

Our FSM consists of: a finite set of states, (); a finite set of input labels,
>"; a transition function, ¢, which takes a state and an input label and returns
a state (¢ — a — ¢'); a start state, g, one of the states in). The FSM is

86

Siraj Shaikh
Rectangle

BOWEN AND REEVES

MPHeat

MPMenu

ShowMenuPage

ShowLounge

MPBath
MPLounge

Fig. 2. PIM for MPHeat Presentation Model

then a four tuple (@, >, 9, qo)-

Each of the states in @) is associated with the name of a presentation model
in the overall model which the FSM describes. When the FSM is in a particular
state then the presentation model associated with that state is the currently
active one, i.e. the part of the Ul described in that model is visible to the user
and available for interaction. We can clearly extend the definition of FSM to a
quintuple and add a mapping from state names to presentation model names
to formally show this association. The input labels in) are themselves the
names of behaviours taken from the behaviour sets of the presentation models.
In this way we can associate the Ul functionality of parts of the design with
the dynamic behaviour which makes available different parts of the interface
to the user. We call the combination of presentation model and FSM in this
way a presentation and interaction model (PIM).

We give a definition of well-formedness for our FSM as follows:

A PIM of a presentation model is well-formed iff the labels on transitions
out of any state are the names of behaviours which exist in the behaviour
set of the presentation model which is associated with that state.

Using the notation for our FSM we can give this more formally as:
V(g t,q"):0e3b € act(qprroder) @t = b

where qpproqer is the presentation model associated with state q.

If we return again to the design of the mobile phone-based application for
the heating example, given in Figure 1, we can see that before we can consider
the reachability of functions of this UI we need to capture the way in which we
move from one part of the interface to another. It is common for prototypes to
be annotated to include this sort of information (or in the case of storyboards
this is implicit in the flow of the diagrams).

We capture this implied dynamic behaviour between parts of the UI using a
FSM which we decorate with parts of the presentation model to give meaning.
Figure 2 gives the PIM for the design of Figure 1.

Now, in order to show that a particular behaviour is reachable we first

87

Siraj Shaikh
Rectangle

BOWEN AND REEVES

need to show that the part of the Ul it is in (i.e. the component presentation
model which includes this behaviour in its set of behaviours) is itself reachable
in the FSM, and this can be shown using standard FSM methods.

9 Conclusion

In this paper we have described how to aid the integration of formal methods
with informal UI design methods. This approach involves creating a formal
model of informal design artefacts in a way which allows us to then use them
in formal processes.

We have described the presentation model, which formally captures an
informal UI design, and discussed how we can use this to include designs in
a formal refinement process as well as for design equivalence and consistency
checking. The presentation model allows us to capture static properties of a
UI design and we have subsequently shown how we can use this with another
formalism, FSM, to capture dynamic Ul behaviour based on Ul functions
which change the available functionality of the UI for a user, giving PIMs.

The main advantage we propose for the presentation model and the meth-
ods we have shown is that they work in conjunction with existing methods
being used by formal practitioners and designers. We do not require that
these groups abandon their existing methods and techniques, but rather en-
hance these with a relatively straight-forward formalism and set of techniques
which work alongside, rather than replace, their existing methods.

This paper is designed to give an overview of our work and techniques,
rather than going into detail about one particular part of it. We have described
our general work in this area and where appropriate we have referred the reader
to more detailed accounts in prior publications.

Considerably more work has been done in the area of formal methods and
UI design than we are able to give account of in this paper. We have tried to
reference appropriate works, and explain the difference in our approach where
relevant, but these references should by no means be considered an exhaustive
list.

References

[1] ISO/IEC 13568. Information Technology—Z Formal Specification Notation—
Syntazx, Type System and Semantics. Prentice-Hall International series in
computer science. ISO/IEC, first edition, 2002.

[2] Judy Bowen. Formal specification of user interface design guidelines. Masters
thesis, Computer Science Department, University of Waikato, 2005.

[3] Judy Bowen and Steve Reeves. Formal refinement of informal GUI design
artefacts. In Proceedings of the Australian Software Engineering Conference
(ASWEC’06), pages 221-230. IEEE, 2006.

88

Siraj Shaikh
Rectangle

BOWEN AND REEVES

[4] G. Calvary, J. Coutaz, and D. Thevenin. Supporting context changes for plastic
user interfaces: A process and a mechanism. In A. Blandford, J. Vanderdonckt,
and P. Gray, editors, Joint Proceedings of HCI’2001 and IHM 2001, pages 349—
363. Springer-Verlag, 2001.

[5] Gaelle Calvary, Joelle Coutaz, and David Thevenin. A unifying reference
framework for the development of plastic user interfaces. In EFHCI ’01:
Proceedings of the 8th IFIP International Conference on FEngineering for
Human-Computer Interaction, pages 173-192, London, UK, 2001. Springer-
Verlag.

[6] Francesco Correani, Giulio Mori, and Fabio Paterno. Supporting flexible
development of multi-device interfaces. In EHCI/DS- VIS, pages 346-362, 2004.

[7] Antony Courtney. Functionally modeled user interfaces. In Interactive Systems.
Design, Specification, and Verification. 10th International Workshop DSV-
IS 2003, Funchal, Madeira Island (Portugal) J. Joaquim, N. Jardim Nunes,
J. Falcao e Cunha (ed.), pages 107-123. Springer Verlag Lecture Notes in
Computer Science LNCS, 2003.

[8] Adrien Coyette, Stéphane Faulkner, Manuel Kolp, Quentin Limbourg, and Jean
Vanderdonckt. Sketchixml: towards a multi-agent design tool for sketching user
interfaces based on usixml. In TAMODIA ’0j: Proceedings of the 3rd annual
conference on Task models and diagrams, pages 75-82, New York, NY, USA,
2004. ACM Press.

[9] John Derrick and Eerke Boiten. Refinement in Z and Object-Z: Foundations
and Advanced Applications. Formal Approaches to Computing and Information
Technology. Springer, May 2001.

[10] David J. Duke, Bob Fields, and Michael D. Harrison. A case study in the
specification and analysis of design alternatives for a user interface. Formal
Asp. Comput., 11(2):107-131, 1999.

[11] D. F. Gieskens and J. D. Foley. Controlling user interface objects through pre-
and postconditions. In Proc. of CHI-92, pages 189-194, Monterey, CA, 1992.

[12] A. Hussey, I. MacColl, and D. Carrington. Assessing usability from formal user-
interface designs. Technical Report TR00-15, Software Verification Research
Centre, The University of Queensland, 2000.

[13] IFMO5. http://www.win.tue.nl/ifm/, 2005.

[14] J. Landay. Silk: Sketching interfaces like krazy. In Human Factors in
Computing Systems (Conference Companion), ACM CHI 96, Vancouver,
Canada, April 153-18, pages 398 — 399, 1996.

[15] A. Paiva, N. Tillmann, J. Faria, and R. Vidal. Modeling and testing hierarchical
GUlIs. In D. Beauquier, E. Borger, and A. Slissenko, editors, ASMO05. Universite
de Paris, 2005.

&9

Siraj Shaikh
Rectangle

BOWEN AND REEVES

[16] David L. Parnas. On the use of transition diagrams in the design of a user
interface for an interactive computer system. In Proceedings of the 1969 24th
national conference, pages 379-385. ACM Press, 1969.

[17] F. M. Paterno, M.S. Sciacchitano, and J. Lowgren. A user interface evaluation
mapping physical user actions to task-driven formal specification. In Design,
Specification and Verification of Interactive Systems, pages 155—173. Springer
Verlag, 1995.

[18] Fabio Paterno. Task models in interactive software systems. Handbook of
Software Engineering and Knowledge Engineering, 2001.

[19] Fabio Paterno. Towards a UML for interactive systems. In EHCI '01:
Proceedings of the 8th IFIP International Conference on FEngineering for
Human-Computer Interaction, pages 7-18, London, UK, 2001. Springer-Verlag.

[20] G. E. Pfaff. User Interface Management Systems. Springer-Verlag New York,
Inc., 1985.

[21] Beryl Plimmer and Mark Apperley. Computer-aided sketching to capture
preliminary design. In CRPIT ’02: Third Australasian conference on User
interfaces, pages 9-12, Darlinghurst, Australia, Australia, 2002. Australian
Computer Society, Inc.

[22] Ben Shneiderman. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison Wesley Longman Inc, 3rd edition, 1998.

[23] Graeme Smith. The Object-Z Specification Language. Kluwer Academic
Publishers, 2000.

[24] H. Thimbleby. Design of interactive systems. The Software Engineer’s
Reference Book, 1990.

[25] Harold Thimbleby. User interface design with matrix algebra. ACM Trans.
Comput.-Hum. Interact., 11(2):181-236, 2004.

[26] Niklaus Wirth. Program development by stepwise refinement. Commaunications
of the ACM, 14(4):221-227, April 1971.

[27] J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof.
Prentice Hall, 1996.

90

Siraj Shaikh
Rectangle

FMIS 2006 91

Towards a Common Semantic Foundation for
Use Cases and Task Models

Daniel Sinnig ®'? Patrice Chalin 3 Ferhat Khendek "#

& Department of Computer Science and Software Engineering
Concordia University
Montreal, Canada

> Department of Electrical and Computer Engineering
Concordia University
Montreal, Canada

Abstract

Use cases are the notation of choice for functional requirements documentation,
whereas task models are used as a starting point for user interface design. In this
paper, we motivate the need for an integrated development methodology in order
to narrow the conceptual gap that exists between software engineering and user
interface design. A prerequisite is the definition of a common semantic framework.
With respect to the definition of a suitable semantic domain, we discuss core re-
quirements and review related work. A preliminary approach based on (sets of)
partially ordered sets is presented. A mapping from CTT task models and use case
graphs to the before-mentioned formalism is proposed.

Key words: Use Cases, Task Models, Scenarios, Semantics, Posets

Introduction

Unfortunately in current practice, functional requirements specification and
UI design are neither harmonized nor coordinated. Instead of having a unique
process, where Ul design follows as a logical progression from functional re-
quirements specification, both entities are treated rather independently. In
particular, it has been noted that most UI design methods are not very well

1 This work is partially supported by the National Sciences and Engineering Research

Council of Canada.

2 Email: d_sinnig@encs.concordia.ca
3 Email: chalin@encs.concordia.ca

4 Email: khendek®@ece.concordia.ca

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

SINNIG

integrated with standard software engineering practices [23]. In fact, UI de-
sign and the engineering of functional requirements are often carried out by
different people following different processes.

There exists a relatively large conceptual gap between software engineering
and UI development with both disciplines having their own models, lifecycles
and theories. The following two issues follow directly as a result of this lack
of integration:

* Developing Ul-related models and software engineering models indepen-
dently neglects existing overlaps, gives rise to redundancies and increases
the maintenance overhead.

e Deriving the implementation from Ul-related models and software engineer-
ing models towards the end of the lifecycle is problematic as both processes
do not commence from the same specification and thus may result in incon-
sistent designs.

In this paper, we present preliminary results from an ongoing research
project which has as a main goal: bridging the conceptual gap between soft-
ware engineering and Ul design by formally integrating use cases and task
models. While use cases are the method of choice for the purpose of functional
requirements documentation [4], Ul design typically starts with the identifi-
cation of user tasks, and environmental requirements [20]. None-the-less, use
cases and task models share many similarities. We demonstrate this (in part)
by the presentation of a common semantic framework for both models.

The remainder of this paper is structured as follows. Section 2 gives an
informal introduction to our framework. In Section 3 we review and compare
use cases and task models. Section 4 discusses related work with respect to
the definition of semantics of scenario-based notations. It is also in this section
that we outline core requirements for a common semantic model and present
our approach. We conclude and provide an outlook of future work in Section
5.

2 Overall Framework

Our overall research goal has been to define an integrated methodology for
the development of use cases and task models within an overall software en-
gineering process. A key objective of this initiative is the definition of a
formal framework for handling use cases and task models at the requirements
and design levels. The cornerstone for such a formal framework is a common
semantic domain for both notations.

The common semantic domain is the essential basis for the formal defin-
ition of a satisfiability relation. Such a relation allows us to make (formal)
semantic links between successive refinements of use cases and task models.
Refinements, and proofs of satisfiability, would ideally be aided by tools, sup-
porting the verification. Such tools typically follow two main approaches:

92

Siraj Shaikh
Rectangle

SINNIG

Formal
Framework

Use Case Models

Task Models

Fig. 1. Relating Use Cases and Task Models within a Formal Framework

Automatic verification (i.e. model-checking, automatic theorem proving) and
manual verification (interactive theorem proving). But even without tools, an
informal application of the satisfiability relation can serve as a rigorous basis
for identifying simple traceability links (as is commonly done in software engi-
neering) among the artifacts. Figure 1 visualizes our idea of having a general
notion of satisfiability that applies equally well between artifacts of a similar
nature (e.g. two use cases) as it does between use cases and task models.

3 Background

In this section we remind the reader of the key characteristics of use cases
and task models. For each notation we provide definitions, and an illustrative
example. Finally, both notations are compared and main commonalities and
differences are contrasted.

3.1 Use Case Models

Use cases were introduced roughly 15 years ago by Jacobson. He defined a
use case as a “specific way of using the system by using some part of the func-
tionality” [8]. More recent popularization of use cases is often attributed by
Cockburn [4]. Use case modeling is gradually making its way into mainstream
practice which sees it as a key activity in its software development process (e.g.
Rational Unified Process) and as a result, there is accumulating evidence of

93

Siraj Shaikh
Rectangle

SINNIG

Use Case: Order Product

Goal: Customer places an order for a specific product.
Level: User-goal

Primary Actor: Customer

Pre-conditions: The primary actor is logged into the systemn

Main Success Scenario:

1. Customer actor indicates that he/she wants to search for a specific product.
Customer selects the product category and optionally the desired brand and model.
System displays search results that match the customer supplied criteria.

Customer selects a specific product and then specifies the desired quantity.

System confirms availability of the product (in the requested quantity) and displays the

purchase summary.

6. Customer selects the method of payment and enters the corresponding account
information.

7. System interacts with the payment authorization system to carry out the payment.

8. System informs the Primary actor that the order has been confirmed.

9. Customer acknowledges. {Use case ends.}

G w1

Extension Points:

*a. Customer indicates that he/she wishes to cancel the order
*al. {Use case ends}

4a. Customer indicates that he/she wishes to do another product search:
4al. Use case {Use case resumes ar step 1}.

5a. The desired product is not available in sufficient quantities.
5al. System informs the customer that product is not available in desired quantity.
5a2. {Use case ends.}

8a.The payment information is invalid:
8al. System informs the customer that payment information provided is invalid.
8a2. {Use case resumes at step 0}

Fig. 2. Example Use Case for “Order Product”

significant benefits to customers and developers [14].

A use case captures the interaction between actors and the system under
development. It is organized as a collection of related success and failure sce-
narios that are all bound to the same goal of the primary actor [11]. Use
cases are typically employed as a specification technique for capturing func-
tional requirements. They document the majority of software and system
requirements and as such, serve as a contract (of the envisioned system be-
havior) between stakeholders [4]. In current practice, use cases are promoted
as structured textual constructs written in prose language. While the use of
narrative languages makes use cases modeling an attractive tool to facilitate
communication among stakeholders, prose language is well known to be prone
to ambiguities and leaves little room for advanced tool support.

As a concrete example of a use case, Figure 2 presents a detailed user-goal
level use case for “Ordering a Product”. A use case starts with a “header”
section containing various properties of the use case. The core part of a use
case is its main success scenario, which follows immediately after the header.
The main success scenario consists of a sequence of interaction steps between
the user and the system. The interaction steps indicate the most common

94

Siraj Shaikh
Rectangle

SINNIG
er frodi
&3 v
Open Order Product Functionality @ Funitional End Functionality
Loal rP duct i
‘rovelyct D\smav Resu\ts
B L
Setect Product Specify Quantity SubmtOrde D<Su|aqurrhase Sum. D\splav’Ou uf Stock
Select Product Category [Refine Produet Spec.] Submit Search Parameters - 0; g@
s s
Pre aym fo. Display PaymentE. Display Confirmation
o—— W
Select Brand Select Series E s %

Select Method of Payment Enter Account Information Submit Payment Information

Fig. 3. “Order Product” Task Model

way in which the primary actor can reach his/her goal by using the system.

The use case is completed by specifying the use case extensions. These
extensions constitute alternative scenarios which may or may not lead to the
fulfillment of the use case goal. They represent alternative (and sometimes
exceptional) behavior (relative to the main success scenario) and are indispens-
able to capturing full system behavior. Each extension starts with a condition
(relative to one or more steps of the main success scenario), which makes the
extension relevant and causes the main scenario to “branch” to the alternative
scenario. The condition is followed by a sequence of action steps, which may
lead to the fulfillment or the abandonment of the use case goal and/or further
extensions. From a requirements point of view, exhaustive modeling of use
case extensions is an effective requirement elicitation device.

3.2 Task Models

User task modeling is by now a well understood technique supporting user-
centered Ul design [18]. In most UI development approaches, the task set is
the primary input to the Ul design stage. User task models describe the tasks
that users perform using the application, as well as how the tasks are related
to each other. The origin of most task modeling approaches can be traced
back to activity theory [10], where a human operator carries out activities to
change part of the environment (artifacts) in order to achieve a certain goal
[5].

Like use cases, task models describe the user’s interaction with the sys-
tem. The primary purpose of task models is to systematically capture the way
users achieve a goal when interacting with the system [24]. Different presen-
tations of task models exist, ranging from narrative task descriptions, work
flow diagrams to formal hierarchical task descriptions.

Figure 3 shows an adapted ConcurTaskTreesEnvironment (CTTE) [16]

95

Siraj Shaikh
Rectangle

SINNIG

visualization of the user task model. CTTE is a tool for graphical modeling
and analyzing ConcurTaskTrees (CTT) models [17]. The figure illustrates the
hierarchical break down and the temporal relationships between tasks involved
in the “Order Product” functionality (depicted in the use case of Section 3.1).
More precisely the depicted task model specifies how the user makes use of
the system to achieve his/her goal but also indicates how the system supports
the user tasks. An indication of task types is given by the used symbol to
represent tasks. The task model is organized as a directed graph. Tasks are
hierarchically decomposed into sub-tasks and atomic actions. Leaf tasks are
also called actions, since they are the task that actually carried out by the
user or the system. The execution order of tasks is determined by temporal
operators that are defined between peer tasks. Various temporal operators
exist; the most popular are: enabling (>>), choice ([]), concurrency (||), and
disabling ([>). A complete list of the CTT operators together with definition
of their interpretation can be found in [17].

We note that the binary temporal operator used between the tasks “Dis-
play Purchase Summary” and “Display out of Stock” and between the tasks
“Display Confirmation” and “Display Payment Error” is not part of CTT. We
have introduced the operator as an extension to CTT. It is called the Abort
Choice operator and is represented by the symbol ([|4) and the STOP sign
hovering over its right operand. The interpretation of the Abort Choice op-
erator is similar to the build-in Choice operator, in the sense that either the
task specified by the first operand or the task specified by the second operand
is executed. However, after the execution of the second operator all tasks of
the model become disabled. Hence, no more tasks can be executed and the
scenario ends.

Main motivation for the introduction of this temporal operator was the
fact that without it we were not able to conveniently implement the flow
specified in the “Order Product” use case as a CTT task model. Particularly
problematic are the use case steps which prematurely lead to termination.
The only way to simulate such an effect in a CTT task model is to create
several main alternative branches in the task tree. Omne branch represents
the case when the “Order Product” is completely performed, whereas the
other branches represent cases when the task terminates prematurely. Such a
modeling however, creates a significant amount of duplication (since identical
starting tasks would be repeated in each brand) and unnecessarily increases
the complexity of the visualization of the task tree.

3.8 Use Cases vs. Task Models: A Comparison

In the previous two sections, the main characteristics of use cases and task
models were discussed. In this section, we compare both approaches and
outline noteworthy differences and commonalities.

Both, use cases and task models, belong to the family of scenario-based no-

96

Siraj Shaikh
Rectangle

SINNIG

tations and as such capture sets of usage scenarios of the system. On the one
hand, a use case specifies system behavior by means of a main success scenario
and any corresponding extensions. On the other hand, a task model specifies
system interaction within a single “monolithic” task tree. In theory, both
notations can be used to describe the same information. In practice however,
use cases are mainly employed to document functional requirements whereas
task models are used to describe Ul requirements/design details. Taking this
perspective, use cases capture requirements at a higher level of abstraction
whereas task models are more detailed. Hence, the atomic actions of the task
model are often lower level UI details that are irrelevant (actually contraindi-
cated [4]) in the context of a use case.

The above mentioned difference is manifest in the use case and task model
provided as examples. Compared to the “Order Product” use case the corre-
sponding “Order Product” task model has more UI details as it contains steps
that are pertinent to a graphical Ul. For example the task model contains
additional tasks which deal with the submission of selected or entered values
(e.g. “Submit Search Parameters” or “Submit Payment Information”). These
steps are not specified in the corresponding use case, as they are geared to a
UI which requires an extra submission step as a confirmation for a data input.
In addition, some of the use case steps (which are the smallest possible units
of a use case) have been split into even smaller action tasks in the task model.
For example, use case step 2 corresponds to one connected user activity, which
however needs to be supported by three UI elements capturing the input of
the Product Category, Series and Brand.

In many cases however, a use case will contain (behavioral) information
that is not present in the task model. Task models concentrate on aspects
that are relevant for UI design and as such, their usage scenarios are strictly
depicted as input-output relations between the user and the system. Inter-
actions with secondary actors (which are specified in the use case model) are
omitted since they are irrelevant for UI design. An example of this is use case
step 7 (“System interacts with the payment authorization system to carry out
the payment”) of the “Order Product” use case of Figure 2.

4 Semantic Domains for Use Cases and Task Models

In this section we begin with a review of formalism used for scenario-based
notations, and thus, those most likely to serve as a common foundation for
use cases and task models. This is followed by a discussion of the requirements
that would need to be addressed by a common semantic framework for use
cases and task models. Finally, we present our proposed semantic domain,
which is based on partial order sets.

97

Siraj Shaikh
Rectangle

SINNIG

4.1 Related work

Within the domain of scenario-based notations the behavioral aspects of a sys-
tem (capturing the ordering and the progression of events) play a pivotal role.
While several different formalisms have been proposed for scenario-based nota-
tions, in what follows we briefly discuss three prominent approaches, namely:
process algebras, partial order sets and graph structures.

A formalism that has been widely used to define interleaving semantics of
scenario-based notations is process algebras. In this approach, the behavior of
a system is modeled by a set of (possibly concurrently running) processes. The
formalism itself is presented as a formal calculus (which defines terms of al-
gebra) with associated “deduction/transformation” rules for reasoning about
algebraic specifications. The International Telecommunication Union (ITU)
has published a recommendation for the formal semantics of basic Message
Sequence Charts (MSCs) based on the Algebra of Communicating Processes
(ACP) [2][6]. This work is a continuation of preliminary research first estab-
lished by Mauw et. Reniers [13]. In more recent work, Rui and Butler also
suggest a process algebraic semantics for use case models, with the overall
goal of formalizing use case refactoring [22][25]. In their approach, scenarios
are represented as basic MSCs—as suggested by [21]. In Rui’s proposal, he
assigns meaning to a particular use case scenario (episode) by partially adapt-
ing the ITU MSC semantics. In addition, semantics are defined for related
scenarios of the same use case as well as for related use cases. The follow-
ing use case relations are formally defined: includes, extends, generalization,
proceeds, similar, and equivalence.

Formalisms suitable for the definition of non-interleaving semantics are
based on partial orders. For example, Zheng et. al. propose a non-interleaving
semantics for timed MSC 2000 [7] based on timed labeled partial order sets
(Iposets) [26]. Partial order semantics for (regular, un-timed) MSCs have been
proposed by Alur [1] and Katoen and Lambert [9]. Alur et. al. propose a
semantics for a subset of MSCs which only allow message events as possible
MSC events types. In contrast, the semantics of Katoen and Lambert is more
complete. They map MSCs to a set of partial order multi-sets (pomsets). A
pomset is a so-called isomorphic class of a corresponding lposet. A pomset
contains all objects that can be derived by a bijective projection from a base
Iposet. Approaches based on pomsets are very similar to approaches based on
Iposets.

Mizouni et. al. propose use case graphs as an intermediate notation for use
cases [15]. Use case graphs are directed, potentially cyclic graphs whose edges
represent use case actions and nodes represent system states. This allows for
a natural representation of the order in which actions are to be performed. In
order to integrate several use cases into a single specification, Mizouni et. al.
describe an algorithm for transforming a set of (related) use case graphs (each
representing one use case) into an extended finite state machine (EFSM). The

98

Siraj Shaikh
Rectangle

SINNIG

merging of the graphs is done on the basis of common states within the use
case specifications.

The semantic definition proposed in this paper was originally inspired by
the Iposet approach proposed by Zheng et. al. In addition, similar to the work
of Mizouni et. al., we employ use case graphs as an intermediate notation
for use cases. Before we present our approach, we discuss some of the core
requirements that need to be addressed by any formalism that is to be used
to model both use cases and task models.

4.2 Requirements for a Semantic Framework

In Section 3 we reviewed key characteristics of use cases and task models and
discussed their current (and specialized) areas of application. In this section,
we will re-consider this information in order to compile a set of requirements
that would be particular to any common semantic framework for use cases and
task models. Both notations are used to specify scenarios that indicate how the
system is used. Technically a scenario consists of a, possibly infinite, sequence
of events. Therefore, we require that a semantic model for use cases and task
models formally captures sets of usage scenarios. It should be possible to
mechanically extract valid usage scenarios from formal specifications. Also,
given a specification and a scenario, it should be possible to unambiguously
decide whether the scenario is valid or not, relative to the given specification.

In task modeling (e.g. CTT), one often distinguishes between different task
types. Examples are: “data input”, “data output”, “editing”, “modification”,
or “submit”. In the corresponding semantic model events should be distin-
guishable by their types as well. Based on the typing, the sequencing of
events may be further constrained. An example of such a constraint is that
an event representing the entry of information (“data input”) must precede
an event of submitting the very same data (“submit”). Of the formalisms
we surveyed in Section 4.1, the approach based on labeled partial order sets
formalism also distinguishes between different types of events that can occur
during a run of a MSC. (In particular, it is the purpose of the labeling function
to assign a type to each MSC event.)

In use case modeling, state conditions often constrain the execution of use
case steps. For example the pre-condition attribute of a use case denotes the
set of states in which the use case is to be executed. In addition, every use case
extension is triggered by a condition that must hold before the steps defined
in the extension are executed. In order to be able to evaluate conditions, the
semantic model must provide means to capture the notion of the state
and should be able to map state conditions to the appearance of events.

So far we have bound the requirements for the semantic model to the in-
trinsic characteristics of use cases and task models. The next requirement,
however, is more tightly related to the software development process within
which use cases and task models are to be crafted. One view of a software

99

Siraj Shaikh
Rectangle

SINNIG

development process is as a series of “disciplines” during which models are it-
eratively transformed/refined until an implementation level has been reached.
Use case and task modeling are part of such a lifecycle. Therefore, a common
semantic model should easily support refinement.

This last requirement is directly related to one’s choice of concurrency mod-
els. In interleaving models, the concept of true concurrency is omitted and
concurrent system behavior is said to be equivalent to the non-deterministic
choice of all possible (interleaved) sequential executions. As it turns out, in-
terleaving approaches typically do not support arbitrary refinement of events
(or actions) into sub-events (or sub-actions). The main reason is that, in an
interleaving model, “exactly what is interleaved depends on which events of a
process one takes to be atomic” [19]. Therefore, if a formerly atomic action
is further refined, new interleavings among the sub-actions are introduced,
which were not taken into account prior the refinement. Hence most of the
equivalence relations (e.g. trace equivalence and bissimulation equivalence)
are not preserved under arbitrary refinement [3]. This problem does not occur
in non-interleaving concurrency models (also referred to as partial order se-
mantics or true concurrency semantics) because the concept of concurrency is
fundamental. System behavior is represented in terms of causally inter-related
events based on a partial order relation. Events, that are not causally related,
are interpreted as concurrent.

4.8 Semantic Domain Based on Sets of Posets

In this section, we illustrate an approach to semantics in which we demonstrate
how CTT task models and use cases can be mapped to sets of partially ordered
sets. We start by reiterating the definition of a partially ordered set (poset)
and then define some operators over posets. Finally, we will describe semantics
functions that will define a mapping from use cases and task models into sets
of posets.

4.3.1 Mathematical Preliminaries (and Notation)

Definition 4.1 For our purposes, a partially ordered set (poset) is a tuple
(E, <), where
E : is a set of events, and

<C E x E :is a partial order relation (reflexive, anti-symmetric, transi-
tive) defined on E. This relation specifies the casual order of events.

In order to be able to compose posets we define the following operations:

Definition 4.2 The binary operations: sequential composition (.) and paral-
lel composition (]|) of two posets p and ¢ are defined as next. Note that R*
denotes the reflexive, transitive closure of R.

100

Siraj Shaikh
Rectangle

SINNIG

Let p = (E,,<,) and ¢ = (E,, <,) with E, N E, = () then:

p-q= (B, UE,, (<, U<, U{(ep eq)| € € Ep and e € Ey})*)
qu = (Ep U E,, <p U Sq)

In our approach we define semantics for use cases and task models using
the following operations over sets of posets.

Definition 4.3 For two sets of posets P and @), sequential composition (.),
parallel composition (||), and alternative composition (#) are defined as fol-
lows:

P.Q = {pig;j | pi € P and qg; € Q}
PllQ = {pillg; | pi € P and g; € Q}
P#Q =PUQ

Also fundamental to our model is the notion of a trace. Next we define
the set of traces for a given poset, and for a given set of posets.

Definition 4.4 A trace t of a poset p = (E, <) is defined as a (possibly
infinite) sequence of events from E such that

V(4,7 in the index set of t). i < j = —(t(j) < t(4)) and
Ut@) = E

where ¢(i) denotes the i event of the trace.

Definition 4.5 The set of all traces of a poset p is defined as tr(p) = {t | t
is a trace of p}.

Definition 4.6 The set of all traces of a set of posets P is defined as:

Tr(P) = | tr(p)
pi€P
Using the set of all traces as a basis, we can define refinement among two
sets of posets through trace inclusion.

Definition 4.7 A set of posets () is a refinement of a set of posets P if, and
only if:

Tr(Q) C Tr(P)

4.3.2 Mapping CTT Task Models to Sets of Posets
We now briefly outline how CTT task models can be mapped to sets of posets.
The mapping process consists of two steps: (1) conversion of a CTT task tree
into a task expression; (2) application of a mapping function that relates the
task expression to a corresponding set of posets.

In order to derive a task expression from the task model we first create a
corresponding expression tree. In general, an expression tree is a tree whose
leaves are operands and whose inner nodes are operators. In this case, the

101

Siraj Shaikh
Rectangle

SINNIG

operands of the expression tree are actions (tasks at the leaf-level) and the
operators are the temporal relations defined in CTT. In CTT, all temporal
relations are defined as either binary operators (e.g. enabling, disabling) or
unary operators (i.e. iteration, option). Hence in the expression tree all inner
nodes have between one and two children. Since the conversion of trees to
expressions is fairly conventional, it will not be described any further.

The next step consists of mapping that task expression into a correspond-
ing set of posets. Action tasks correspond to the elements of the poset. Com-
posite tasks are represented by sets of posets, which have been composed using
the composition operators, defined in Section 4.3.1. Our (compositional) se-
mantic function is defined in the common denotational style.

Definition 4.8 The semantic function M is inductively defined over the pos-
sible terms within CTT task expressions, with the following interpretations:

M([t] = {{t}, {(t,)})} //atomic action

M[t1 >> t5] = M[t1] . M[ts] //enabling

M(ty || to] = M[t1] || M[t2] //concurrent execution

M(ty [] to] = M[t1] # M(to] //choice

Mt +t2] = (M[t] . M[to]) # (M[to] - M[t1]) //order independency
M{[toP] = M[t] # (0,0) //optional execution

M[t] = {(0,0), M[t], M[t].MIt]), (Mt M) Mt]), ...} //itera-

tion

Note that if the CTT task expression contains the temporal operators
Disabling ([>), Suspend/Resume (|>) or the newly introduced operator Abort
Choice ([Ja) it needs to be transformed into an equivalent task expression
which does not involve these operators, prior to the application of the mapping
function.

A simple example illustrates how a task model of a “Search” task (illus-
trated in Figure 4) is mapped into a corresponding set of posets. In order
to perform a search, the user first enters the search string. Next the user
either directly submits the search parameter or further refines the search cri-
teria. The “Refine” task consists of the sequential execution of the “Select
Category” task and the “Select Sub-Category” task, and may be interrupted
(and disabled) at any time by executing the “Submit” task. We employed the
binary disabling ([>) operator to specify the desired behavior. The meaning
of the operator is defined as follows: both tasks specified by its operands are
enabled concurrently. As soon as the first (sub) task specified by the second
operand (in this case, the “Submit” task) is executed, the task specified by
the first operand (in this case the “Refine” task) becomes disabled.

From the task model we can derive the following task expression:

t1 >> ((tg >> t3)[> t4)

Note that the various tasks are represented by using the identifiers (¢, to, 3, t4).
Next we have to transform the task expression into an equivalent task expres-

102

Siraj Shaikh
Rectangle

103

SINNIG

&2

[=F: | (M

o »» e b &

Enter Search String efin Submit
ty ty
Select Category Select Sub-Category
t; ts

Fig. 4. “Search” Task

sion, which does not make use of the disabling operator. This can be done
by examining the set of possible scenarios that can be extracted from the
specification. In our example we have the choice between the following three
scenarios:

(i) The user enters and submits the search string (t; >> t4).

(ii) The user enters the search string, selects a category and then submits the
search parameter (t; >> ty >> t4).

(iii) The user enters the search string and selects a category as well as a
sub-category before submitting (¢; >> to >> t3 >> ty4).

Consequently the task expression can be rewritten as follows:
(t1 >> ty)[|(t1 >> tg >> tg)[|(t1 >> ta >> t3 >> ty)

The task expression is now in elementary form and hence we can apply our
semantic function M. According to its recursive definition, the application
can be broken down into the following steps:

Mty >> tq)[|(t1 >> to >> tg)[[(t1 >> ta >> t3 >> t4)]
= M[t; >> ty] # Mty >> to >> 4] # M[[t1 >> ta >> t3 >> 14]
= M[t:]- M[ts] # M[t1] M{[to] Mta] # M[t1]. M[t2]. M[t3].M]t4]
= {({ts, ta}, {(t1, L) }")} U
{({ta, 12, ta}, {(t1, 22), (2, 1)})} U
{{t1, 12, 15, ta}, { (81, 12), (2, 83), (3, 14)}7) }

As a result we obtain a set of three posets, where each poset represents one
of the scenarios discussed before.

Siraj Shaikh
Rectangle

104

SINNIG

4.3.3 Transforming Use Cases to Sets of Posets

In this section we discuss how use cases can be transformed into sets of posets.
The transformation consists of two parts. First the textual use case is trans-
formed into an intermediate graph form, which we will refer to as the use case
graph. Next, based on the use case graph a corresponding set of posets is
iteratively constructed.

Definition 4.9 A use case graph is a labeled transition system
U= (Qa qo, 4y, T) where,

Q@ is a finite set of states

qo € @ is the initial state

qr € Q is the final state

T C Q x @ is the transition relation.

Similar to the work of Mizouni et. al [15] (discussed in Section 4.1), the
transitions of the labeled transition system represent use case steps, whereas
the nodes represent states. The composition of the use case graph from the
actual use case depends on the flow constructs, which are implicitly or explic-
itly entailed in the use case. Examples of such flow constructs are: jumps (e.g.
use case resumes at step X), sequencing information (e.g. the numbering of
use case steps), or branches to use case extensions. It is to be noted that if
the use case is captured in purely narrative form the derivation of the use case
graph will be a manual activity.

Based on the use case graph a set of posets is constructed. The construc-
tion can be performed mechanically using the following two steps: First, we
assign a set of posets to each transition in the use case graph. Typically the
set of posets consists of a single poset, which in turn defines a single event
representing the execution of the corresponding use case step. Second, the
use case graph is iteratively transformed into a labeled transition system that
only consists of an initial state and a final state. With each iteration one node
of the use case graph is eliminated and a new transition is defined between
its incoming node(s) and its outgoing node(s). Similar to the first step, a set
of posets is assigned to the newly inserted transition. This set of posets is
the result of the composition of the sets of posets attached to the incoming
transition and the outgoing transition. At this point it no longer represents
a single use case step, but a composition of use case steps. Special care must
be taken if the eliminated node contains a self loop or if there already exists
a transition from the incoming node to the outgoing node.

Once the graph consists of only the initial and the final state, the set of
posets associated to the transition between the two states denotes the set of
posets representing the original use case graph. We note that the main idea of
the presented algorithm stems from the well-known algorithm that transforms
a deterministic finite automaton (DFA) into an equivalent regular expression.
However, instead of step-wise composition of regular expressions, we compose

Siraj Shaikh
Rectangle

SINNIG

sets of posets. We refer the reader to [12] for more details.

In the next and final Section we conclude by summarizing the main ideas of
this paper. The proposed semantic domain is related back to our enumerated
requirements and an outlook to future avenues is given.

5 Conclusion and Future Work

In this paper we highlighted the need for an integrated methodology for devel-
oping use cases and task models. This methodology would rest upon a common
semantic framework. In theory, both notations can be used to describe the
same information. However, in practice, use cases are mainly employed to
document functional requirements whereas task models are used to describe
UI requirements and design decisions.

With respect to the definition of the semantic framework we reviewed
related work and formalisms. Based on the intrinsic characteristics of use cases
and task models, we compiled a list of four core requirements that should be
met by any formal framework: (1) capture of sets of usage scenarios, (2) offer
a distinction between different event types, (3) capture the notion of the state,
and (4) support for event refinement. We then presented our initial approach
which maps use cases and task models to partially ordered sets. Thus far, the
poset formalism, as presented in this paper, only meets the first and the last
requirement. Valid event sequences are specified by relating events using a
partial order relation. A scenario is said to be valid if a trace can be extracted
from the corresponding set of posets that resembles the event sequence of the
scenario. Regarding the requirement of supporting event refinement, we used
the poset formalism to specify non-interleaving semantics, which naturally
support refinement [3].

As future work, we will be tackling the remaining two requirements. For
example, the requirement of supporting different event types can be addressed
by defining a labeling function, which maps an event type to each element of
the poset. Additionally, rules to further restrict the definition of a valid trace
need to be introduced. An example of such rule may be the condition that
an event of type data input must always be followed by a corresponding event
of type submit. In the same manner as the labeling function assigns types
to events, a similar function can be defined to associate state conditions to
occurrence of events. For example: an event execution may be conditional
to the satisfaction of a pre-condition; furthermore, the event execution may
result in a state satisfying a certain post condition.

Another future avenue deals with the definition of a satisfiability relation
for use case and task model specifications. A natural definition of satisfiability
with respect to the used formalism can be formulated through refinement. In
this paper we formally defined refinement between two sets of posets based
trace inclusion. In this vein, a specification satisfies another specification, if
the corresponding set of posets of the former specification is a refinement of

105

Siraj Shaikh
Rectangle

SINNIG

the set of posets representing the latter specification. Our ongoing efforts aim
at further investigating the definition of a suitable satisfiability relation but
also focus on tool support for the actual verification process.

References

[1] Alur, R., G. Holzmann, and D. Peled, An Analyzer for Message Sequence
Charts, in Proc. of TACAS’96, (1996) pp. 35-48.

[2] Baeten, J., and W. Weijland, Process Algebra, Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press., Cambridge (1990).

[3] Castellano, L. and G. de Michelis, Concurrency vs. interleaving: introductive
example. Bulletin of the EATCS, 31, February, (1987) pp 12-25.

[4] Cockburn, A., Writing Effective Use Cases, Addison-Wesley, (2001).

[5] Dittmar, A. and P. Forbrig, Higher-Order Task Models, in Proceedings of
Design, Specification and Verification of Interactive Systems 20083.

[6] ITU-T, Recommendation Z.120- Message Sequence Charts, Geneva, 1996.
[7] ITU-T, Recommendation Z.120- Message Sequence Charts, Geneva, 1999.

[8] Jacobson, 1., P. Jonsson, M. Christerson, and G. Overgaard, Object-Oriented
Software Engineering - A Use Case Driven Approach, Addison Wesley Longman,
Upper Saddle River, N.J., 1992.

[9] Katoen, J. and L. Lambert, Pomsets for Message Sequence Charts, in Proc. of
SAM’98, 1998.

[10] Kuutti, K., Activity Theory as a Potential Framework for Human-Computer
Interaction Research. In Context and Consciousness: Activity Theory and
Human Computer Interaction, MIT Press, 1996.

[11] Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process, second edition, Prentice-Hall,
2002.

[12] Linz, P., An Introduction to Formal Languages and Automata, Jones and
Bartlett Publishers, Second edition, pp. 83-86, 1997.

[13] Mauw, S., and M.A. Reniers, An Algebraic Semantic of Basic Message Sequence
Charts, In the Computer Journal, Vol. 37, No. 4, 1994.

[14] Merrick P., and P. Barrow, The Rationale for OO Associations in Use Case
Modelling, In Journal of Object Technology, Vol. 4, No. 9, 2005.

[15] Mizouni, R., A. Salah, R. Dssouli, and B. Parreaux, Integrating Scenarios with
Explicit Loops, in Proceedings of NOTERE 2004, Essaidia Morocco, June 2004.

106

Siraj Shaikh
Rectangle

SINNIG

[16] Mori, G., F. Paterno and C. Santoro, CTTE: Support for Developing and
Analyzing Task Models for Interactive System Design, in IEEE Transactions
on Software Engineering, August 2002, pp. 797-813, 2002.

[17] Paterno, F., Model-Based Design and Evaluation of Interactive Applications,
Springer, 2000.

[18] Paterno, F., Towards a UML for Interactive Systems, in Proceedings of EHCI
2001, Toronto, Canada, pp. 7-18, 2001.

[19] Pratt, V.P., Modeling Concurrency with Partial Orders, International Journal
of Parallel Programming, 15(1), pp. 33-71, February 1986.

[20] Pressman, R., Software Engineering - A Practitioner’s Approach, 6th Edition,
Mc Graw Hill, 2005.

[21] Regnell, B., M. Andersson, and J. Bergstrand, A Hierarchical Use Case Model
with Graphical Representation, Proceedings of ECBS’96, IEEE International
Symposium and Workshop on Engineering of Computer-Based Systems, March
1996.

[22] Rui, K., A Process Algebraic Semantics for Refactoring Use Case Models,
Doctoral Proposal, Concordia University, 2004.

[23] Seffah, A., M. Metzger, and D. Engelberg, Software and Usability Engineering:
Prevalent Myths, Obstacles and Integration Avenues. In Human-Centered
Software Engineering -Integrating Usability in the Software Development
Lifecycle, Springer, 2005.

[24] Souchon, N.; Q. Limbourg, and J. Vanderdonckt, Task Modelling in Multiple
Contexts of Use, in Proceedings of Design, Specification and Verification of
Interactive Systems, Rostock, Germany, pp. 59-73, 2002.

[25] Xu, J., W. Yu, K. Rui, and G. Butler, Use Case Refactoring: A Tool and a Case
Study, in Proceedings of APSEC 2004, Busan, Korea, pp. 484-491.

[26] Zheng, T., F. Khendek and B. Parreaux, Refining Timed MSCs, in SDL 2003:
System Design, Lecture Notes in Computer Science, Volume 2708/2003, pp.
234-250.

Siraj Shaikh
Rectangle

FMIS 2006 108

Towards a Coordination Model for
Interactive Systems

Marco Antonio Barbosa* Luis Soares Barbosa >4

José Creissac Campos?

DI-CCTC - Universidade do Minho
Braga, Portugal

Abstract

When modelling complex interactive systems, traditional interactor-based approaches
suffer from lack of expressiveness regarding the composition of the different inter-
actors present in the user interface model into a coherent system. In this paper we
investigate an alternative approach to the composition of interactors for the specifi-
cation of complex interactive systems which is based on the coordination paradigm.
We layout the fundations for the work and present an illustrative example. Lines
for future work are identified.

Key words: Interactors, Coordination models, Configuration.

1 Introduction

Interactive systems can be seen as a special case of the more general class of
reactive systems. However, interactive systems have specificities that present
new challenges when considering modelling and reasoning about them. One
major aspect is the need to consider interaction with the user, and not only
between components of the user interface.

The notion of interactor has long been proposed as an approach to struc-
turing and organizing models of interactive systems. Different authors use
different flavours of interactors. A common trait being the view of interactors

! Email: marco.antonio@di.uminho.pt
2 Email: 1sb@di.uminho.pt
3 Email: jose.campos@di.uminho.pt
Research carried out in the context of the PURE Project supported by Fct, the Por-
tuguese Foundation for Science and Technology, under contract POSI/ICHS/44304/2002.
5 Research carried out in the context of the IVY Project supported by FcT, the Portuguese
Foundation for Science and Technology, and FEDER, the European regional development
fund, under contract POSC/EIA/56646/2004.

This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

4

BARBOSA, BARBOSA AND CAMPOS

as components capable, not only of communicating between themselves, but
also of conveying information to the user(s).

Two main flavours of interactors are York [11] and CNUCE [19] interac-
tors. York interactors are basically objects equipped with a rendering relation
that maps their internal state into some presentation medium. More than a
concrete specification formalism, they offer a framework for structuring the
user interface specifications, whatever formalism is being used. CNUCE in-
teractors (see Fig. 1) can be seen as blackbox components that communicate,
with each other, and with the user(s), through input and output ports (for
more on CNUCE interactors see section 3).

One main distinction between the two approaches is that with York inter-
actors state can be specified explicitly (cf. MAL interactors [9]), while with
CNUCE interactors state is only referred two indirectly through the interac-
tor’s ports. Whatever the approach, modelling complex interactive systems
entails creating architectures of interconnected interactors. In the case of York
interactors, there is no prescription about how that should be accomplished
(it will depend on the particular specification approach being used). In the
case of CNUCE interactors, specifications are built by connecting the different
ports into an adequate architecture by means of synchronous channels. In-
teractor behaviour is modelled in LOTOS by expressing the relation between
input and output ports.

Managing the coordination between the different interactors is typically
achieved by the introduction of additional interactors to express the control
logic for their communication. This, in turn, adds to the complexity of the
models. Ideally we should be able to express the logic of the coordination
between the different interactors in an as natural and simple way as possible.
In this paper we explore the application of the coordination paradigm to model
architectures of interactors. The approach is based on previous work of some
of the authors (see, [5,6]).

2 Coordination

The coordination paradigm [13,18] offers a promising way to address issues
related to the development of complex systems. Since the coordination com-
ponent is separate from the computational one, the former views the processes
comprising the latter as black boxes, whose internal implementation is hidden
from the outside world. Instead, the composition of components is defined in
terms of their (logical) interfaces which describe their externally observable
behavior. By hiding all system computation in the components, a system
can be described in terms of the observable behavior of its components and
their interactions. As such, component-based software modelling provides a
high-level abstract description of a system that allows for a clear separation
of concerns between the coordination and the computational aspects.
Closely related to the concept of coordination is that of configuration and

109

Siraj Shaikh
Rectangle

BARBOSA, BARBOSA AND CAMPOS

architectural description. They view a system as comprising components and
interconnections, and aim at separating structural description of components
from component behaviour. Furthermore, they support the formation of com-
plex components as compositions of more elementary components. Finally,
they understand changing the state of some system as an activity performed
at the level of interconnecting components rather than within the internal
purely computational functionality of some component.

Our approach is based on the coordination model REO [2], a subset of
REO, to be more exact. A more formal treatment of the semantics of our
approach is shown in [5,6] where we describe an exogenous coordination model
wherein complex coordinators, called “connectors” are compositionally built
out of simpler ones. This implies that not only should it be generally possible
to produce different systems by composing the same set of components in
different ways (creating different configurations), but also that the difference
between two systems composed out of the same set of components must arise
out of the actual rules that comprise their two different compositions, i.e.,
their glue code. In such a context we may specify different configurations
for a given scenario only by constructing different connectors and patterns of
interactions.

Another feature of this work is that our approach takes advantage of the
authors’ previous work on named generic process algebra [3,21]. Such work
provides a more general and adaptable approach to the design of complex
systems using process algebras. For example, some applications may require
similar constructs coexisting with different interaction disciplines (see section
4.2).

Using process algebra to model interactors is not new, and we may refer to
the usage of LOTOS in [19] and CSP in [10] (just to name a few). However,
our generic approach provides a more flexible way to represent interactors
by proposing a clear separation between structural aspects and interaction
disciplines.

3 CNUCE Interactors

Paterno views interactors (CNUCE interactors — see Fig. 1) as blackbox en-
tities which communicate through a public interface identified by ports with
opposite polarity (i.e., either input or output). Ports are divided into differ-
ent categories. There are ports to communicate with the users (somewhat
equivalent to the rendering relation in York interactors) and ports to commu-
nicate with the underlying application functional core. There are also triggers,
needed to synchronize the flow of information from input to output ports.

Specifications are built by connecting the ports of different interactors
into an adequate architecture by means of synchronous channels. Interactor
behaviour is modelled in LOTOS by expressing the relation between input
and output ports.

110

Siraj Shaikh
Rectangle

BARBOSA, BARBOSA AND CAMPOS

Application side
output_receive #‘ Ainput_send

A

output_trigger input_trigger

Y

-
-

output_send y ﬂr input_receive
User side

Fig. 1. CNUCE Interactors

An interactor can generate data in two directions: towards the user, and
towards the application. This means that interactor behaviour is divided into
two distinct parts: the external one, which contributes to the definition of
the appearance, and the internal one, which consists of sending data to other
interactors or application processes. Hence, an interactor is defined by a couple
of functions: F'I is associated with the internal behaviour (the information flow
from the user towards the application side); F'O is associated with the external
behaviour (the information flow from the application towards the user side).

An interactor I, with input_receive ports I,,,, to I,,,, , input_send ports Inp;
to Inp;, output_receive ports I, to I, and output_send ports Out; to Out.,
is defined as (with ® representing the absence of information)

I =(FI,FO), where:

FI: (I, x Bool xT)— (InpU ®) x If

with I, = Ly, X ... X Iy, If = 1If; X ... X Ify, Inp = Inpy X ... X Inp,
FO : (I. x If x Bool x T') — (Out U ®)

with I. =1, x ... x ., and Out = Outy x ... x Out,

As can be seen I, If,Inp, 1., and Out are domains defined by Cartesian
products of subdomains. This is mainly because an interactor can receive
(and generate) different data types from (to) collections of channels.

In the definition of F'O, I. represents the domain describing the output
entities which it receives from the outside. Out is the type which describes
the external appearance which can be generated, and If is the data type which
the input part of the interactor passes to the output part for echoing. T, in
both the F'I and FO definitions, is the time that can be considered as a one-
dimensional quantity, made up of points, where each point is associated with
a value. At moment ¢, F'O is applied to data from I. and to an element in
domain [f produced by F'I at moment ¢ — 1.

For interactors without explicit triggers (interactors that generate mean-
ingful results whenever they receive any input), the Boolean in the above can
be ignored.

Generally speaking the main difference between the two functions describ-
ing one interactor is that the external function receives input data from the

111

Siraj Shaikh
Rectangle

BARBOSA, BARBOSA AND CAMPOS

input part of the interactor (in order to echo the current measure value) as
well as from the outside. This indicates that the presentation of an interactor
is defined by the information it receives from higher levels (levels closer to the
application) and the feedback information generated by the users’ input.

4 Interactors and coordination

The main aspects of the CNUCE model of interactors can be summarized
as follows: interactors are seen as black-box entities communicating through
identified ports (input/output), a notion of discrete time and synchronization
constraints (involving a notion of trigger) are included in the model, and
composition is used in order to construct complex interactive systems from
simple components. Such features resemble previous work on coordination
models by some of the authors [6,5].

The goal of this paper is to provide an alternative model for expressing the
composition of interactors. Central to our approach to the rigorous represen-
tation of interactors is the notion of configuration. This captures the intuition
that interactors may be seen as components which cooperate through their
specific interfaces using connectors as the unique communication mechanism,
i.e., interactors do not directly interact among themselves. Such idea of con-
nector abstracts the idea of an intermediate glue code to handle interaction.

In order to represent a configuration we need a notion of a) interactor’s
interface, b) what connectors are and how they compose, and ¢) how interac-
tors” interfaces and connectors interact in a configuration. These points are
tackled in the following sub-sections.

4.1 Interfaces

In exogenous coordination models, like [2] or [5], components are black box
entities accessed by purely syntactic interfaces. The role of an interface is
restricted to keeping track of port names and, possibly, of admissible types for
data items flowing through them®. Such a notion of components interface is
perfectly extensible with the notion of CNUCE interactors. So, let us define
an interface as

Definition 4.1 An interface for a component C' is specified by a port signa-
ture, sig(C) over D, given by a port name and a polarity annotation (either
in(put) or out(put)), and a use pattern, use(C'), given by a process term over
port names.

Typically the behaviour of a component’s interface can be expressed us-
ing transition systems [16], regular-expressions [20] or process algebras [1].
Process algebra, in particular, provides an expressive setting for representing

6 In the sequel, however, we assume a unique, general data domain, denoted by D, as the
type of all data values flowing in an application.

112

Siraj Shaikh
Rectangle

BARBOSA, BARBOSA AND CAMPOS

behavioural patterns and establish/verify their properties in a compositional
way. Some flexibility, however, is required with respect to the underlying
interaction discipline (captured in this work by 6). Actually, different such
disciplines have to be used, at the same time, to capture different aspects of
component coordination. For example the discipline governing the composi-
tion of software connectors (to build the overall glue code) differs from the
one used to capture the interaction between the connectors and the relevant
components’ interfaces. Meeting this goal entails the need for a generic way
to design process algebras.

The model proposed in this work resorts to the rigorous discipline of
process calculi, namely the calculational style presented in [3] to express both
component and connectors behaviour.

4.2 Generic Process Algebra

References [3,4] introduced a denotational approach to the design of process
algebras in which processes are identified with inhabitants of a final coalge-
bra [15] and their combinators defined by coinductive extension (of "one-step’
behaviour generator functions). The universality of such constructions entails
both definitional and proof principles on top of which the development of the
whole calculus is based.

As we shall see in the following our generic approach to process algebras
maintains the basic combinators present in classical processes algebras as CCS,
CSP or LOTOS. The fundamental point to be noted is the presence of a
more flexible way to represent an interaction discipline which parametric on
0. Technically, an interaction discipline is modeled as an Abelian positive
monoid (Act; 0, 1) with a zero element 0. The intuition is that § determines
the interaction discipline whereas 0 represents the absence of interaction: for
all a € Act, af0 = 0. On the other hand, being a positive monoid entails
aba’ = 1iff a = a’ = 1. A typical example of an interaction structure captures
action co-occurrence as in CSP, in which case 0 is defined as afb = (a, b), for
all a,b € Act. Another example is provided by the action complement match
used in CCS [17], i.e., aba = T.

Definition 4.2 Let P be the set of port identifiers and S stand for (the
specification of) a component. Its use pattern, denoted by use(S) is given by
a process expression over Act £ PP, given by the following grammar:

P:=0|aP|P+P|PQP|P||P|P,P|P|P|
o P |fix (x = P)

where « is an element of Act (i.e., a set of port identifiers) and o is a substi-
tution.

Notice that choosing Act as a set of port identifiers allows for the synchro-
nous activation of several ports in a single computational step.

113

Siraj Shaikh
Rectangle

114

BARBOSA, BARBOSA AND CAMPOS

Combinators 0, ., +, ®, |||, and |, represent inactive process, prefix, non-
deterministic choice, synchronous product, interleaving, and parallel composi-
tion, respectively. Renaming is given by term substitution. The fix (X = P)
is a fixed point construction, which, as usual, can be abbreviated in an explicit
recursive definition. Sequential composition, as in CSP [14], is given by ‘;” and
requires its first argument to be a terminating process.

The semantics of such expressions is fairly standard, but for the parame-
trization of all forms of parallel composition (i.e., ® and |) by an interaction
discipline as discussed above. The reader is referred to [21] for the full details.

Definition 4.3 The joint behaviour of a collection {S;| 7 € n} of components
is given by

use(Sy) | ... | use(S,)

where the interaction discipline is fixed by 8 = U , i.e., the synchronisation of
actions in « and [corresponds to the simultaneous realization of all of them.

This joint behaviour is computed by the application of Milner’s expan-
sion law 7, while obeying the interaction discipline given by 6. The following
example illustrates this construction.

Example 4.4 Consider a component C with two ports a and b whose use
pattern is restricted to the activation of either a or b, forbidding their simul-
taneous occurrence. The expected behaviour is captured by

use(Ch) = fix (v = a.x + b.x)

Now consider another component, C5, with ports ¢ and d whose behaviour is
given by the co-occurrence of actions in both ports. Therefore,

use(Cy) = fix (' = cd.a’), where, cd 2 {c,d}
According to definition 4.3, the joint behaviour of C and C} is
use(Ch) | use(Cy) = fix (x = acd.x + bed.x + a.x + b + cd.x)

As a final example, consider still another component Cj, with ports e and f
activated in strict order, e.g., first input e and then output f

use(C3) = fix (y = e.f.y)
Clearly, expansion leads to

use(Sy) | use(Ss)
= fix (r = cdx + e.f.x + cde.f.x + cde.cdf . x + ecdf + -+ cdf.x)

7 This law, which states that a process is always equivalent to the non deterministic choice
of its derivatives, is a fundamental result in interleaving models for concurrency.

Siraj Shaikh
Rectangle

BARBOSA, BARBOSA AND CAMPOS

4.8 Connectors

Our approach resorts to connectors as the only inter-component communi-
cation mechanism. This allows a clean, flexible, and expressive model for
construction of the glue code for component composition which also supports
exogenous coordination.

Connectors are glueing devices between services which ensure the flow of
data and the meet of synchronization constraints. Their specification builds
on top of our previous work on component interconnection [5], extended with
an explicit annotation of activation, or use, patterns for their ports.

Ports are interface points through which messages flow. Each port has an
interaction polarity (either input or output). Another particular characteristic
is the capability to construct complex connectors out of simpler ones using a
set of combinators.

Let C be a connector with m input and n output ports. Assume, again,
D as a generic type of data values and P as a set of (unique) port identifiers
Formally, the behaviour of a connector may be given by

Definition 4.5 The specification of a connector C is given by a relation
data.[C] : D™——=D" which records the flow of data, and a process ex-
pression port.[C] which gives the pattern of port activation.

The model provides a set of basic connectors and combinators which allow
us to construct more elaborated connectors and define more complex patterns
of coordination and interaction. In the following let us consider some of these
basic connectors. For more connectors and a more formal treatment of them
we refer to [5,6].

4.3.1 Synchronous channel.

The synchronous channel has two ports of opposite polarity. This connector
forces input and output to become mutually blocking, in the sense that any
of them must wait for the other to be completed.

data.[e——e] = Idp and port.[e——=e] = fix (z = ab.x)

I[ts semantics is simply the identity relation on data domain D and its behav-
iour is captured by the simultaneous activation of its two ports.

4.3.2 Drain.

A drain has two input, but no output, ports. Therefore, it loses any data
item crossing its boundaries. A drain is synchronous if both write operations
are requested to succeed at the same time (which implies that each write
attempt remains pending until another write occurs in the other end-point).
It is asynchronous if, on the other hand, write operations in the two ports do

115

Siraj Shaikh
Rectangle

116

BARBOSA, BARBOSA AND CAMPOS
not coincide. The formal definitions are, respectively,
data.[e—"—e] =D x D and port.[e—"—e] = fix (r =ab.x)
and,

data.[e—"—e] =D x D and port.[e+—"—e] = fix (z =a.x + b.z)

This is a channel with a buffer of a single position.

data.[e——e] = Idp and port.[er——=e] = fix (z = a.b.x)

4.4 Combinators

Connectors can be combined to build more complex glueing code. The follow-
ing are the required combinators.

4.4.1 Aggregation.
This combinator places its arguments side-by-side, with no direct interaction
between them.

port.[C; B Cs] = port.[Cy] | port.[Cs], with 6§ =U (1)

4.4.2 Hook.

This combinator encodes a feedback mechanism, drawing a direct connection
between an output and an input port. Formally, port.[C ‘1{] is obtained from
port.[C], by deleting references to ports i and j. To be well-formed it is
required that ¢ and j appear in different factors of some form of parallel
composition (|||, ®, or |).

4.4.8 Join.

Its effect is to plug ports with same polarity. The aggregation of output ports
is done by a right join (C ; > z), where C is a connector, and i and j are
ports and z is a fresh name used to identify the new port. Port z receives
asynchronously messages sent by either ¢ or 5. When messages are sent at the
same time the combinator chooses one of them in a nondeterministic way. On
the other hand, aggregation of input ports resorts to a left join (z <§» C). This
behaves like a broadcaster sending synchronously messages from z to both
¢ and j. Formally, at a behavioural level, both operators effect is that of a
renaming operation

port.[(C i > n)] = port.[(n <) C)] = {n «— i,n — j}port.[C]

Siraj Shaikh
Rectangle

BARBOSA, BARBOSA AND CAMPOS

4.5 Configurations

Finally, let us complete the whole picture providing a notion of configuration.
A configuration is simply a collection of components, characterized by their
interfaces, interconnected through a connector network built from elementary
connectors using the combinators mentioned above. Formally,

Definition 4.6 A configuration involving a collection C' = {C;| ¢ € n} of
components is a tuple

(U,C, o) (2)

where U = use(C1) | use(Cs) | - -+ | use(C,,) is the (joint) use pattern for C', C
is a connector and ¢ a mapping of ports in C' to ports in C.

The relevant point concerning configurations is the semantics of the inter-
action between the connector’s port behaviour and the joint use patterns of
the involved components. This is captured by a synchronous product ® for a
quite peculiar 6, which is expected to capture the following requirements:

e Interaction is achieved by the simultaneous activation of identically named
ports.

e There is no interaction if the connector intends to activate ports which are
not linked to the ones offered by the interactors’ side. For example if a port
a of an interactor S is connected to the input end of a synchronous channel
whose output end is disconnected, no information can flow and port a will
never be activated.

e The dual situation is allowed, i.e., if the interactors’ side offers activation
of all ports plugged to the ones offered by the connectors’ side, their inter-
section is the resulting interaction.

e Moreover, and finally, activation of unplugged interactors’ ports is always
possible.

Formally, this is captured in the following definition.
Definition 4.7 The behaviour bh(I") of a configuration I' = (U, C, o) is given
by

bh(I') = oU ® port.[C] (3)

where 6 underlying the ® connective is given by
cnN (d Ufree) <= ¢ Cec

clcd = (4)
1] <~ otherwise

and free denotes the set of unplugged ports in U, i.e., not in the domain of
mapping o.

117

Siraj Shaikh
Rectangle

BARBOSA, BARBOSA AND CAMPOS

5 An Example

As an example let us consider a variation of an air traffic control system
presented in [12]. Our example (see Fig. 2) is centred in a scenario where
aircrafts A, and Az are on their final approach to the runway, aircraft A; is

Fig. 2. Air Traffic Control Configuration

on the runway waiting the response for its ‘accepted’ to take off requirement,
and the tower T is responsible for air traffic control. Aircraft A, and As are
on their “downwind leg” and are to be turned onto a heading towards the
runway. Before As can be turned it must reduce speed. This means that As
must reduce speed also to avoid loss of separation with Ay. Of course, Ay will
be allowed to land just after A; has taken off.

At this stage we are mainly interested in investigating how to combine
interactors in different ways for different scenarios. Investigating the appro-
priateness of each configuration would be the next step in the design process.

First we express the expected behaviour of the interactors involved in this
configuration.

interactor: A;
ports: slow!, turn!, accept
external behaviour:
use(A;) = fix (z = slow/.z + turnl.z + accept!.x), where 0 < i < 3.

Such a specification represents the three aircrafts involved in the scenario.
Each aircraft has three input ports (distinguished by the symbol:) available
for communication in a non-deterministic manner. The tower is represented
by interactor T.

interactor: T
ports: slow;, turn;, accept;
external behaviour:
use(T) = fix (x = slow;.x + turni.xz + accept;.x), where 0 < i < 3.

Once the interactors defined, the following step is to define how they will

118

Siraj Shaikh
Rectangle

BARBOSA, BARBOSA AND CAMPOS

[A T G,_ -
Aircraft Aircraft
(Aj) (A5)

Fig. 3. Air Traffic Control Configuration

cooperate, i.e., we need to represent how the whole system will behave. Such
is done by creating an architecture of interactors and connectors.

The scenario captured by Fig. 2 represents a critical situation where the
aircrafts must respond to actions appropriately or the safety will be danger-
ously compromised. So, let us consider a situation where 7" sends a message
accepted; to Ay, in order for A; to take off, the message slow, to A,, in for A
to slow before turning to the runway, and the message slows to Az in order for
Ajs decrease speed maintaining a safety distance to A,. In order to ensure that
the response to these actions will happens synchronously we may consider a
special connector, called synchronization barrier SB which enforces that all
messages are delivered to their destinations in a synchronous way.

Such a connector (see Fig. 3) is an aggregation among six synchronous
channels (cq, ..., ¢) and two synchronous drains (¢; and ¢g) which are com-
posed using hook and join combinators. This connector is computed start-
ing from the behaviours of the elementary connectors, e.g., port.[Je;] =
fix (x = ad'.x), till the behaviour of the whole connector is calculated:
port.[SB] = fix (x = abce'f' g .x)

The resulting behaviour of this connector means that the six ports must be
activated synchronously. It should be noted that, since we are not considering
timing issues at this stage, this synchronicity does not meant that the ports
are activated concurrently. In the current context, what we are stating is
that if one port is activated, then all the other must be activated, before the
connector can engage in a new interaction.

The configuration of such a scenario is given by

Cr, =(USC, C, os¢), where
USC = use(T) | use(Ay) | use(As) | use(As)
C = SB
oy, =f{a—Ab—Bc—Ce—F f —F 4G}

119

Siraj Shaikh
Rectangle

BARBOSA, BARBOSA AND CAMPOS

[Tower (T)]

slow, slow,

)
slow’,

Aircraft ’
(Az)

,
slow’;

Aircraft
(A)

(a) (b)

Aircraft

Aircraft
(As)

(Ag)

Fig. 4. Parallel and broadcaster connectors

For a cleaner notion let us consider A = accept;, B = slow,, C' = slows,
E' = accept], F' = slow), and G’ = slows}.

The result of the ® composition of USC and SB is the behaviour of con-
figuration C,. There is no need, however, to compute the complete expansion
of the parallel composition in USC' expression, which is

fix(x =ax+ - +eax+ flx+g.a+
a’x+---+bx+---+cw+ -+ abcex+ -+
ae'f' x4+ -4 be'fx+ 4 cefla+ 4 abeef o +
ac'f'g x+---+bef'gdx+- +cefgx+- +abceflgx+-+
effx+ega+fga+efqg.x)

because, according to interaction discipline (4), the only successful case of
composition with port.[SB] corresponds to the underlined alternative in the
expression above. Clearly, the f-composition of abce’f’g’ with abce’f'g" (from
the connector side) is abee’f’g’, while for all other cases it results in the empty
set (). Therefore, and finally,

bh(Cy,) = fix (x = abee'f'q" .x) (5)

Consider now the configuration in Fig. 4 (a) where T sends messages to
A and Ajz synchronously. We may specify a situation where T' can only send
a message for A, to slow down if it also sends a slow down message to As.
This is captured by

interactor: T’
ports: slows,, slows
external behaviour: use(T) = fix (x = slows.z + (slow,.slows.z))

Consider now a situation where 7" needs to send synchronously a message
to both Ay and As. A solution for this situation is pictured in Fig. 4 (b).

Siraj Shaikh
Rectangle

BARBOSA, BARBOSA AND CAMPOS

As a final remark is important to note that this work reports on the main
ideas of this approach only. The full specification of the calculi involved in
the development of the examples was not demonstrated in this paper. We
refer to [7] for a complete view of this approach applied to another kind of
application.

6 Conclusions and Future Work

When modelling complex interactive systems, traditional interactor-based ap-
proaches suffer from lack of expressiveness regarding the composition of the
different interactors present in the user interface model into a coherent sys-
tem. In this paper we have started exploring the application of a coordination
based approach to express the interconnection glue between interactors.

By using the notion of a black-box component, defined only by its inter-
face to the outside, this approach can be closely related to that of CNUCE
interactors. The definition of an interactor in CNUCE as I = (F'I, FO), is a
relation among input port to output ports, i.e., I : F'I — FO quite similar to
our approach where an interactor is given by a relation data.[C] : D™ — D™.
Although the definition does not clearly separate ports according to categories
(as is done in CNUCE interactors), this can be easily accomplished by using
syntactic annotation, as hinted at in the example. Nevertheless, the rendering
of information to users is one characteristic of interactors that has not been
fully explored in this paper. With the formal underpinning now in place, we
intend to explore this as the next step in this work.

Our approach promotes a clear separation of concerns between the speci-
fication of the individual components of the model (the interactors), and the
specification of how they are organized into an architecture, and how they
interact with each other. This separation of concerns was not as clear neither
in CNUCE interactors, or in the York based MAL interactors [9], but it is
fundamental to enable the modelling of complex systems in a more clear and
concise manner.

In the CNUCE model we have an explicit representation of time and a
trigger to regulate the synchronisation constraints. Although this aspect has
not been addressed here, in [6] a preliminary version of our approach was pre-
sented where time was also explicitly defined by a time stamp T representing,
in fact, not real time but a way to represent an order of data occurrence. In
the current model the notion of ‘time’ is implicitly represented by the sequence
in which the ports are activated, i.e., the sequence in which the data flows
thought the ports. For instance, if we have a synchronous channel, both ports
are activated ‘at same time’ i.e., ports are activated in an atomic way without
being interleaved by another operation while both operations have not been
well succeed. If we model an asynchronous channel between the activations
of both ports, then other port activations might succeed in between the two.
Another point to note is that with a parametric interaction discipline and the

121

Siraj Shaikh
Rectangle

BARBOSA, BARBOSA AND CAMPOS

rigour provided by the connectors, there is no need for triggers in our model.

The use of connectors allows for more flexibility in the design of complex
systems. This constitutes an advantage not only compared with CNUCE
models but with any model which uses simple channels as communication
medium. The capability to define a filter in the connectors without the need to
change the definition of an interactor can be a desirable feature. Or, as shown
in our example, we may construct different configurations from a scenario.
The theme of defining different architectures to achieve different interaction
effects in the user interface is also one that deserves further research.

As a final note, it should be point out that, when modelling complex
interactive systems, the need arises to express dynamic aspects of the user
interface, such as user interface components being created and destroyed, or
the interconnections between components being changed in runtime. This is
a complex area which we have not addressed here. A very preliminary work
in this direction was presented in [8]. In that work the basic connectors are
enriched with a special connector called orchestrator which is responsible to
handle the mobility and the dynamism of the system. We plan to explore this
aspect further, as it is one of the main drives for our research in identifying
alternative modelling notations for interactive systems.

References

[1] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
TOSEM, 6(3):213-249, 1997.

[2] F. Arbab. Reo: a channel-based coordination model for component
composition. Mathematical Structures in Comp. Sci., 14(3):329-366, 2004.

[3] L. S. Barbosa. Process calculi a la Bird-Meertens. In M. L. Andrea Corradini
and U. Montanari, editors, CMCS’01, volume 44.4, pages 47-66, Genova, April
2001. Elect. Notes in Theor. Comp. Sci., Elsevier.

[4] L. S. Barbosa and J. N. Oliveira. Coinductive interpreters for process calculi.
In Proc. of FLOPS’02, pages 183-197, Aizu, Japan, September 2002. Springer
Lect. Notes Comp. Sci. (2441).

[5] M. Barbosa and L. Barbosa. Specifying software connectors. In K. Araki and
Z. Liu, editors, Proc. First International Colloguim on Theoretical Aspects of
Computing (ICTAC’04), Guiyang, China, pages 53-68. Springer Lect. Notes
Comp. Sci. (3407), 2004.

[6] M. A. Barbosa and L. S. Barbosa. A relational model for component
interconnection. Journal of Universal Computer Science, 10(7):808-823, 2004.

[7] M. A. Barbosa and L. S. Barbosa. Configurations of web services.
In Proceedings of the 5th International Workshop on the Foundations of
Coordination Languages and Software Architectures (FOCLASA’06), Electr.
Notes Theor. Comput. Sci., Bonn, Germany, August 2006. Elsevier. To appear.

122

Siraj Shaikh
Rectangle

BARBOSA, BARBOSA AND CAMPOS

[8] M. A. Barbosa and L. S. Barbosa. An orchestrator for dynamic interconnection
of software components. In Proc. 2nd International Workshop on Methods
and Tools for Coordinating Concurrent, Distributed and Mobile Systems
(MTCoord’06), Electr. Notes Theor. Comput. Sci., Bologna, Italy, June 2006.
Elsevier. To appear.

[9] J. C. Campos and M. D. Harrison. Model checking interactor specifications.
Automated Software Engineering, 8(3/4):275-310, August 2001. ISSN: 0928-
8910.

[10] D. A. Duce, R. van Liere, and P. J. W. ten Hagen. An approach to hierarchical
input devices. Comput. Graph. Forum, 9(1):15-26, 1990.

[11] D. J. Duke and M. D. Harrison. Abstract interaction objects. Computer
Graphics Forum, 12(3):25-36, 1993.

[12] B. Fields, P. Wright, and M. Harrison. Time, tasks and errors. SIGCHI Bull.,
28(2):53-56, 1996.

[13] D. Gelernter and N. Carriero. Coordination languages and their significance.
Commun. ACM, 35(2):97-107, 1992.

[14] C. A. R. Hoare. Communicating Sequential Processes. Series in Computer
Science. Prentice-Hall International, 1985.

[15] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. FATCS
Bulletin, 62:222-159, 1997.

[16] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour analysis of software
architectures. In WICSAI1: Proc. of the TC2 First Working IFIP Conf. on
Software Architecture (WICSA1), pages 35-50. Kluwer, B.V., 1999.

[17] R. Milner. Communicating and Mobile Processes: the w-Calculus. Cambridge
University Press, 1999.

[18] G. Papadopoulos and F. Arbab. Coordination models and languages. In
Advances in Computers — The Engineering of Large Systems, volume 46, pages
329-400. 1998.

[19] F. D. Paterno. A Method for Formal Specification and Verification of Interactive
Systems. PhD thesis, Department of Computer Science, University of York,
1995. Available as Technical Report YCST 96/03.

[20] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE
Trans. Softw. Eng., 28(11):1056-1076, 2002.

[21] P. R. Ribeiro, M. A. Barbosa, and L. S. Barbosa. Generic process algebra: A
programming challenge. In Proc. 10th Brazilian Symposium on Programming
Languages, Itatiaia, Brasil, 2006.

123

Siraj Shaikh
Rectangle

FMIS 2006 124

Some Issues in Modeling the Performance of
Soft Keyboards with Scanning

Samit Bhattacharya 2

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India

Anupam Basu

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India

Debasis Samanta

School of Information Technology
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India

Souvik Bhattacherjee, Animesh Srivastava

Department of Computer Science and Informatics
Haldia Institute of Technology
Haldia, West Bengal, India

Abstract

Persons suffering from severe speech and motion impairments like quadriplegics
or cerebral palsy depend on augmentative communication systems for their daily
communication. One group of widely used augmentative communication system
consists of soft keyboards. Soft keyboards are on-screen representation of physical
keyboards. A user can compose text with a soft keyboard by selecting character keys
from the soft keyboard interface. Motion impaired users access soft keyboard keys
using access switches supported by scanning, which is successive highlighting of on-
screen items. To select an item on a scan enabled interface, the user has to activate
an access switch when the item is highlighted. While designing soft keyboards
for motion impaired users, it is necessary to make appropriate design choices from
multiple layouts and scanning mechanisms to improve user performance. However,

This paper has been presented at the
1st International Workshop on Formal Methods for Interactive Systems
URL: fmis.iist.unu.edu

BHATTACHARYA ET AL

each such design decision should be properly evaluated with the user which is a
difficult if not impossible task due to the disabilities of the user. One way to
alleviate this problem is to use an automatic performance evaluation model. In this
paper, we propose a model to automatically evaluate performance of soft keyboards
with scanning. The proposed model was developed based on an existing model. The
issues encountered during the development and application of the proposed model
are discussed in this paper.

Key words: Soft Keyboard, Fitts-Digraph model, Scanning,
Focus movement time.

1 Introduction

Text composition is perhaps the single most important task done with a com-
puter system. The traditional technique for text composition in a computer
system is through a physical keyboard like QWERTY. However, in many
cases, text entry using a physical keyboard becomes impossible. For example,
in small portable devices like PDAs, the small size of the device does not al-
low incorporating a physical keyboard for entering texts. Alternate strategies
have been devised for such situations. One of these is the use of soft (ware)
keyboards [12][24]. A soft keyboard refers to a software systems having an
on-screen representation of a physical keyboard. The soft keyboards can be
of two types, namely ambiguous and unambiguous. In ambiguous keyboards,
each soft keyboard key represents multiple characters while in unambiguous
keyboards, each key corresponds to a single character. In this paper, we con-
sider only unambiguous keyboards. The character keys of the soft keyboard
can be operated with touch, stylus or a conventional mouse.

Apart from being useful for mobile devices, another important application
of the soft keyboards is as augmentative communication aids for persons with
severe speech and motor impairments like quadriplegics, cerebral palsy etc.
[1][9]. Being devoid of their normal means of communication (viz. speech,
writing and gesture) due to their physical disabilities, these people depend
solely on such augmentative communication aids to express themselves [2][3].
With a soft keyboard, the disabled users can compose text letter-by-letter by
selecting character keys from the interface. However, their physical disabilities
prevent them from using touch or stylus or a conventional mouse to select the
character keys of the soft keyboard. Alternate mechanisms have been devised
to make the soft keyboard interfaces accessible to the disabled user.

The most common among these alternate access mechanisms constitute of
the access switches. Access switches (see for example, www.abilityhub.com)
are specially designed devices that require lesser motor control to operate. Any

L Corresponding author
2 Email:samit@cse.iitkgp.ernet.in

125

Siraj Shaikh
Rectangle

BHATTACHARYA ET AL

active body part of the user including hand, foot, mouth or head can be used
to operate such switches. Accordingly, there are different types of switches
with wide variation in shapes and sizes. The switch based access mechanism
is supported by scanning [19][22]. Scanning is the successive highlighting of
on-screen elements [6]. When the highlighter reaches the desired element, the
user activates an access switch to select that element. The switch activation
depends on the type of access switch. For example, in case of a hand operated
press switch, switch activation implies pressing and releasing the switch while
for eye operated switches, eye blink (s) are used to activate an access switch.

While designing soft keyboards for the disabled users, the designer is faced
with several design alternatives. First, s/he has to choose from a large num-
ber of alternative layouts. These alternate layouts result from the possible
ways in which the character keys of the soft keyboard can be organized on
the screen. While this is true for any soft keyboard, the numbers of possi-
ble designs choices to the designer of soft keyboards with scanning increases
significantly due to the wide variation in the scanning process itself. This
is so since the performance of a disabled user communicating through a soft
keyboard with scanning depends on both the layout and the scanning process.
Thus, to a designer of soft keyboard systems with scanning, each design al-
ternative consists of a layout and a scanning mechanism. Choosing from the
large number of design alternatives is very difficult. Apart from relying on the
intuition, the only choice left to the designer is to implement prototype sys-
tems and evaluate the prototypes with real users before finalizing on a design
alternative. However, evaluating prototype systems with real users is not an
easy task due to the following reasons.

o It is difficult to find sufficient number of disabled users for evaluation.

e It is difficult to generate sufficiently large usage data for analysis due to the
physical disabilities of the user.

These problems can be alleviated if there exists a model to automatically
evaluate the performance of soft keyboard interfaces with scanning. With such
a model, all the alternate designs can be evaluated automatically (without
requiring user involvment), thus aiding the designer in making an appropriate
choice.

Several issues are involved in the design of an automatic performance eval-
uation model of the soft keyboards with scanning. In this paper, those issues
are discussed along with the description of an automatic performance evalua-
tion model that we have developed. Section 2 of the paper presents the existing
automatic performance evaluation model developed for soft keyboards. This is
followed by a discussion in Section 3 on the applicability of the existing model
in predicting performance of soft keyboards with scanning. The model we
have developed is described in Section 4 of the paper. To evaluate our model,
we have also developed a soft keyboard which is described in Section 5. The
soft keyboard is developed in Bengali, a language belonging to the Indo-Aryan

126

Siraj Shaikh
Rectangle

BHATTACHARYA ET AL

language family spoken primarily in Eastern India and Bangladesh. The de-
velopment of Bengali soft keyboard gave rise to many language related issues
in automatic performance evaluation with the model. These are discussed in
Section 6. Section 7 presents the performance predicted by the model for the
soft keyboard. Section 8 is the concluding section of the paper.

2 Related Work

The soft keyboard performance evaluation model most cited in the literature
is the Fitts-Digraph model. The model was first proposed by Soukoreff and
MacKenzie [21]. In subsequent years, a number of works were carried out
on this model [12][15][24]. The model is comprised of the following three
components.

» The Fitts law [4][5][10][11] component to predict the movement (of finger
or stylus) time of the user among character keys on the soft keyboard. The
Fitts law predicts the time required to perform a motor movement from a
source character key k; to a target character key k; on the soft keyboard
interface using the following equation (Equation 1).

(1) MT,; = A+ B x loga(D; ;/W; + 1)

In Equation 1, MT;; is the movement time from the source to target
character key, A and B are constants, D; ; is the Cartesian distance between
the two character keys and W is the width of the target character key. To
measure the Cartesian distance D; ;, each character key on the soft keyboard
interface is assigned a co-ordinate. For example, if the co-ordinates of k; is
(xi, y;) and the co-ordinates of k; is (z;, y;), then D;; is measured using
the following equation (Equation 2).

(2) Dy = /(e — 2)? + (g — ws)?

» The Hick-Hymans law [7][8] to predict the time to visually search and lo-
cate the desired character key from the group of character keys present on
the interface. The Hick-Hymans law predicts the time with the following
equation (Equation 3).

(3) RT = A"+ B’ x logs(N)
In Equation 3, RT is the time to visually search and locate a character key

on the interface, A" and B’ are constants and N is the number of character
keys present on the interface.

e A language component in the form of a table for the relative frequencies of
letter pairs, or digraphs, in common English. In the performance model, the
probability of occurrence of each digraph is used. The digraph probability
is calculated by the following equation (Equation 4).

(4) Piy=fi/ Y. Y (fij)

i=1 j=1

127

Siraj Shaikh
Rectangle

BHATTACHARYA ET AL

In Equation 4, f;; is the digraph frequency of character keys k; and k;
obtained from the table and F;; is the probability of occurrence of the
digraph represented by the character keys k; and k;.

In the performance model, the above three components are combined to-
gether. The resulting performance model is represented by the following equa-
tion (Equation 5).

(5) Performance (in CPS or character/second) = 1/(RT + MT,,)

In Equation 5, MT,, represents the mean movement time between any pair
of character keys on the soft keyboard and is calculated using the following
equation (Equation 6).

(6) ZZP X MT;

=1 j5=1

Assuming that average word length in English is five characters (includ-
ing spaces), the performance of soft keyboard interfaces is often measured in
words per minute (WPM). The resulting modification needed in Equation 5
to measure performance in WPM is shown in Equation 7.

(7) Per formance(WPM) = CPS x 60/5

2.1 Assumptions and Constant Values used for Model Prediction

In the prediction of soft keyboard performance using Fitts-Diagraph model
(Equation 5), the users are assumed to be of two categories; novice and expert.
The novice users are characterized by the fact that they require non-zero time
to visually locate character key on the interface. Thus, their performance (in
CPS) is governed by Equation 5. On the other hand, expert users are assumed
to have complete familiarity with the interface layout and hence have a zero
visual search time. This leads to a modification of Equation 5 with RT set
to zero. Thus, the expert users performance is represented by the following
equation (Equation 8) instead of Equation 5.

(8) Performance (in CPS or character/second) = 1/MT,,

The constants A present in Fitts law (Equation 1) and A’ present in Hick-
Hymans law (Equation 3) are both set to zero in calculating performance.
Note that a special case has to be made for Equation 1 when ¢ = j. This is
when the user taps on the same character key successively (e.g., oo as in look).
In this case, the second term in Equation 1 is zero. In [14][26], 0.127 and 0.135
seconds were used as the value of A in such cases. In [24], the value 0.127
second was used. The influence of this number is small, however, due to the
low frequency of such cases. Moreover, the constant B present in Equation 3
was set to 0.2. In their original work, Soukoreff and MacKenzie [21] used the
value 1/4.9 for the constant B present in Equation 1. In [24], three values for
B (1/4.9, 1/6.0 and 1/8.0) were used to predict expert performance.

128

Siraj Shaikh
Rectangle

BHATTACHARYA ET AL

3 Applicability of the Model to the Soft Keyboards
with Scanning

The Fitts-Digraph model was developed to predict performance of an able-
bodied user. The basic assumption behind the model was that the interaction
was carried out by the user through substantial motor movement (movement
of finger or stylus). Accordingly, a major component of the model is the
movement time model represented by the Fitts law. This assumption does
not hold in the case of soft keyboards for motion impaired user. For the
motion impaired user, the interaction is carried out through alternate access
mechanism comprising of scanning and access switches.

3.1 The Scanning Mechanisms

There are a large number of scanning mechanisms developed to make com-
puter interfaces accessible to the motion impaired users. All these scanning
mechanisms can broadly be classified into two groups, namely co-ordinate
scanning and matriz scanning [17][23]. These are described below.

3.1.1 Co-ordinate Scanning

In co-ordinate scanning, the computer screen is assumed to represent a two-
dimensional co-ordinate system. Any element on it is treated as a point. To
get to a specific point, one or both of the axes of the co-ordinate systems are
moved automatically as if sweeping the entire screen area. The movement of
the axes can be rotational (either of the clockwise or anticlockwise direction)
or translational. Once an axis passes through the desired on-screen point, an
access switch is activated to stop the axis (axes) movement. Next, another
activation of the access switch is performed that starts an automatic cursor
movement towards the desired point. Once the cursor reaches the point, the
access switch is activated again to stop the cursor movement. Further switch
activations are done subsequently to select the point.

3.1.2 Matrix Scanning

In matrix scanning, the screen is assumed to represent a matrix. The items
that are present on the screen are individual cells of that matrix. The matrix
scanning can have the following five variants.

 Three level matrix scanning (block, row and column levels): In a three level
matrix scan technique, the on-screen items are divided into blocks. Each
block is further divided into a set of rows and each row is in turn divided
into a few columns. In this scheme, the system initially starts a block level
scan. During this process, the block that contains the desired item can be
selected by the user. Once a block is selected, the system begins a row
level scan inside the block. During the row level scanning, the row in which
the desired item lies is selected. Then the columns of the selected row are

129

Siraj Shaikh
Rectangle

BHATTACHARYA ET AL

scanned. When the scanning reaches the desired item, the item is selected.

¢ Two level matrix scanning (row and column levels): In this type of scanning,
the on-screen items are divided into rows and columns only. Here the system
initially performs the row level scan. Once the user selects the desired row,
the system performs the column level scan. When the scanning reaches the
desired item, the item is selected.

¢ Single level matrix scanning (column level): In the single level matrix scan
technique, the region of interest is broken into columns only. Each col-
umn represents an on-screen item. These columns are scanned periodically.
When the scanning reaches the column that holds the desired item, the item
is selected.

e Alternate selection mode: This is a variant of block-row-column scanning,
with the block and row concepts replaced by subset concepts. A subset of
items may not have a spatially coherent structure as that of block or rows.

* Diagonal selection mode: This is another three level scanning. In this case,
the major matrix (a block) is split into two triangular matrices based on
the main diagonal. In the first stage of the scanning, the two parts of the
matrix are periodically highlighted and the user selects the triangle where
the target column is located. Then a row scanning is applied for its rows
and so on.

Each of these broad categories of scanning can have numerous variations
in itself. These variations result from the use of different scan step (i.e. the
time to move the focus between two successive elements), number of access
switches (auto scanning with single switch versus guided scanning with mul-
tiple switches) and so on.

4 Incorporating Scanning in the Model

Thus, in a scanning and access switch based interaction, a highlighter (also
called focus) moves periodically and successively on the on-screen item. In
the context of soft keyboard, such on-screen items correspond to the charac-
ter keys present on the interface. The user waits until the desired character
key is highlighted and then activates the access switch to select the item. Use
of scanning and access switches implies that the Fitts law component in the
Fitts-Digraph model is not applicable to predict performance of motion im-
paired users. Clearly, in stead of (motor) movement time, the model should
incorporate a component that calculates the focus movement time, i.e. the
time to move the focus (highlighter) from the source to target character key.

4.1 Assumptions about the Soft Keyboard Layout

In this paper, we propose a modification of the Fitts-Digraph model to account
for a particular type of scanning, namely three level matriz scanning. In the

130

Siraj Shaikh
Rectangle

BHATTACHARYA ET AL

Event Time Taken

The block b containing k is highlighted | Teor_BrK
again

Focus moves from b to the block ¥/ Ty_y

User selects b’ and the row level scan- | Tsrx—row
ning in ¢’ starts

Focus moves from the first row to ' in | T}_,
the block v/

User selects ' and column level scan- | Trow—_cor
ning in r’ starts

Focus moves from the first column in »" | T7_.
to

User selects ¢ once ¢ is focused TserL

Table 1
The events that take place in selecting k" after selecting k

modification, we have replaced the Fitts law component of the Fitts-Digraph
model with a focus movement time component. The basic assumption made
behind the formulation of the focus movement time is that the character keys
of the soft keyboard are organized into a three dimensional matrix comprising
of blocks, rows and columns. Each block is assigned an integer according to
the order of scan with the block assigned the highest integer getting the focus
last before the focus goes back to the first block again. Thus, if there are four
blocks then the first block that gets the focus when the system starts will be
assigned the integer 1, the next block getting the focus will be assigned the
number 2 and so on. Similarly, each row in a block and each column in a row
are assigned integer according to the order of scan. Moreover, when a column
(key) is selected, the scanning mechanism returns to block scanning (i.e. the
blocks are scanned again).

4.2 Calculating Focus Movement Time

With the scheme described in the previous section, each key in the keyboard
is represented by a triplet of the form (b, r, c) where b is the block number, r
is the row number and c¢ is the column number of the key. Now, let there be
two different keys k and k' on the soft keyboard represented by the triplets
(b,r,cy and (b',r', ') respectively. Then once the key k is selected by the user,
the events shown in Table 1 take place before the key k' is selected.

With a proper implementation, the quantities Toor—prx (i.e. the time
taken to make a transition from column level scanning to block level scanning),

131

Siraj Shaikh
Rectangle

BHATTACHARYA ET AL

b > b’ b <b’
ok)=0+1r"+¢ ok)=0+r"+¢
X(k)=>5 X(k)="0
A = 1+total no. of blocks A=1
Table 2

Meaning of symbols used in equation 9

Tpri—row (i.e. the time taken to make a transition from block level scanning
to row level scanning) and Trow _coy (i.e. the time taken to make a transition
from row level scanning to column level scanning) can be set to zero. Moreover,
assuming Tsgpy to be negligible (i.e., the user activates the access switch as
soon as a key is focused), the focus movement time (FMT) between these two
keys can be represented by the following expression (Equation 9).

9) FMT(k, k) = {A+ oK) — X(k)} x T

The variable T' in Equation 9 represents the average scan step, i.e. the
average time required to move the focus from one element (a block, row or
column) on the soft keyboard interface to the next element. The meanings
of the rest of the symbols present in Equation 9 are summarized in Table 2.
It should be noted from Table 2 that the focus movement time among a pair
of distinct keys represented by Equation 9 is applicable for all five variants of
the matrix scanning mechanisms.

The modified predictive model is obtained by replacing the Fitts law com-
ponent in Equation 5 with the focus movement time in the following way
(Equation 10).

(10) CPS =1/(RT + FMT,,)

The mean focus movement time (F'MT,,) among any pair of character keys
on the soft keyboard is calculated using the following expression (Equation 11).
Note that Equation 11 is obtained by modifying Equation 6.
N N
(11) FMT, =YY (P x FMT(k,K))

k=1 k=1

5 System used for Model Validation

We have developed a soft keyboard with scanning to validate our predictive
model (Equation 10). The soft keyboard is in Bengali, which is a member
of the Indo-Aryan language family. The language is spoken primarily in the
eastern Indian regions and Bangladesh. The soft keyboard used to test our
model is a modification of an existing system described in [18]. A screenshot
of the modified keyboard interface is shown in Figure 1.

The keys on this keyboard are organized in the form of blocks, rows and

132

Siraj Shaikh
Rectangle

133

BHATTACHARYA ET AL

(L
(4
&

Fig. 1. The soft keyboard interface

columns. A matrix scanning scheme is implemented on this soft keyboard
interface that works in the following way; initially, the blocks of the keyboard
are highlighted periodically. Once the user selects a block (through activation
of an access switch), the rows in the block are periodically highlighted. Acti-
vation of the access switch at this stage selects the currently highlighted row.
Once a row is selected, the columns of the row are highlighted periodically.
To select a column, switch activation is needed. Moreover, once a column is
selected, the scanning process goes back to the block highlighting phase again.

Figure 1 shows that there are five blocks present in the keyboard. The
blocks are numbered according to the order of scan. Thus, block 1 will be
highlighted first, followed by block 2 and so on. Moreover, after block 5, block
1 will be highlighted again. Each of the block contains a number of rows
ranging from one (block 5) to nine (block 2). The top-most row in each block
is the first one to get the highlighter and the lower-most row in each block is
the last. The rows are assigned numbers accordingly.

The columns in each row contain the character keys of the soft keyboard.
The order of scanning on these columns is from left to right. Thus, the leftmost
column in a row is assigned the column number 1.

5.1 Special Rows

The last row in blocks 1-4 contains some special characters as shown in Fig-
ure 2. Among the special keys, the Space, Backspace and FEnter have their
usual meaning. However, the yuktakshar key is a system specific special key.
Its function is described below.

In Bengali, two or three alphabetic characters can be combined together
to produce a yuktakshar or conjugate symbol. To compose a yuktakshar
with the soft keyboard, the yuktakshar key is used. For example, to compose

Siraj Shaikh
Rectangle

BHATTACHARYA ET AL

The “Space”™ key The “Enter” key

The “Backspace™ key The “sultakshar” key

Fig. 2. The special keys in the soft keyboard

Clear display Scroll upfdown Exit system

Fig. 3. The special keys in block 5

£

Fow cancel Elock cancel

Fig. 4. The special keys to handle scan error

a two characteryuktakshar, the sequence of selections to be performed by the
user is; select first character, select yuktakshar key, select second character.

Apart from these special keys, the row in block 5 contains some more
special keys shown in Figure 3.

The clear display is used to clear the display area (the white part in Fig-
ure 1). The scroll up/down keys are used to perform scroll up and down
operations on the display area using access switches. The exit system key is
used to exit the keyboard.

5.2 Special keys to Handle Scan Error

Due to their involuntary muscle movement, the user may inadvertently make
errors in selecting blocks, rows or columns in the keyboard. While column
selection error can be rectified with Backspace key, the block and row selection
errors are handled using two special keys, namely block cancel and row cancel.
Figure 4 shows these two keys.

If the user wrongly selects a block during scanning, the user can come out
of the block by selecting the block cancel key. Same holds true for the row
cancel key.

134

Siraj Shaikh
Rectangle

BHATTACHARYA ET AL

6 Language Issues in the Model Prediction and Valida-
tion

We have used our model to predict the performance of the soft keyboard
described in the Section 5. However, to predict the soft keyboard performance
using our model, we had to carry out the following additional tasks.

6.1 Generation of Bengali Digraph Probability Table?

To calculate soft keyboard performance, it is necessary to have a table listing
the probabilities of all possible diagraph present on the soft keyboard (see
Section 2). Although such tables were developed for English (reported in
[21]]24]), we had to develop such a table ourselves for Bengali to evaluate the
performance of the Bengali soft keyboard interface.

The diagraph probability table in Bengali was developed from a corpus*
which in turn was created from a collection of a large number of editions of
the Anandabazar Patrika, a vernacular daily newspaper in Bengali. The total
size of the corpus was 96,012,779 characters. The digraph probability table
created from this corpus has a size of 104 x 104 characters®. However, the
table contains probabilities of digraphs having non-alphanumeric characters
as well (for example, digraph probability of Enter-Space etc).

It should be noted that the soft keyboard shown in Figure 1 contains
some characters for which no digraph probabilities are available as these do
not occur in the corpus. These include Backspace,row cancel,block cancel and
the keys present in block 5. Apart from these, there are 83 distinct keys
containing alphanumeric characters and punctuation marks. The probabilities
of all possible diagraphs from these 83 characters (there are 83 x 83 numbers of
possibilities) are obtained from the digraph probability table developed from
the corpus.

Another point to be noted here is that there are multiple Space,yuktakshar
and Enter keys present on the soft keyboard (Figure 1). While considering a
digraph between any key (apart from these three) k and any one of these keys
k', the k' which is nearest to k& was considered.

6.2 Estimation of Average Bengali Word Length

To measure performance of the soft keyboard in WPM, it was also necessary
to know the average length of a Bengali word. Since we did not have any such
data with us, we had estimated it using the same corpus described before.
In the process, we found that the average word in Bengali is approximately
six characters long (including Space). Thus, the performance of the Bengali

3 we will make the table available to other researchers on request.

4 The corpus that we used was developed by another institution.

135

Siraj Shaikh
Rectangle

BHATTACHARYA ET AL

soft keyboard in WPM can be measured with the following expression (Equa-
tion 12).

(12) Per formance(WPM) = CPS x 60/6
The CPS in Equation 12 above is calculated using Equation 10.

6.3 Test Bench Generation®

To evaluate our predictive model, we plan to perform an extensive user trial of
the soft keyboard described in Section 5. The user performance observed from
the trial will be compared to that predicted by the model. Evaluation of any
system through user testing requires use of appropriate test benches. In the
context of soft keyboards, such test bench implies a chunk of text that will be
given to the user. The user will compose the given text using the keyboard.
The performance of the user in composing the given text will be taken as
the performance of the soft keyboard. In [13], a test bench was described to
evaluate soft keyboard performances in English. However, no such test bench
exists to evaluate Bengali soft keyboards. In our work, we have developed
such a test bench from the Bengali corpus described in Section 6.1.

The test bench we have developed is a chunk of text that will be given
to the user. The user will compose the text using a soft keyboard with scan-
ning. To determine the size of the chunk, we have used the following formula
(Equation 13).

(13) chunk size = W PM x duration of typing in minutes

It is generally observed that the performance of a motion impaired user is
about 1-3 WPM with computerized text entry interfaces. Accordingly, we have
used the value of 1 WPM to calculate chunk size. Moreover, we assumed that
the user will compose text for 2 hrs/day for a week. With these assumptions
and the fact that the average Bengali word length is 6, the chunk size comes
out to be 1 x 6 x 60 x 2 x 7 = 5040 characters.

To identify a chunk (test bench) of 5040 characters that is representative of
the corpus (and hence the Bengali language), we have used the cross entropy
based similarity measure [16]. There are 104 distinct characters (comprising
of Bengali alphanumeric characters and punctuation symbols) present in the
corpus. We calculated the probability of occurrence of each of these characters
in the corpus, thus getting the unigram character probability distribution of the
Bengali alphanumeric and other characters present in the corpus. From this
probability distribution, we calculated the entropy of the whole corpus. Next,
chunks of 5040 characters were generated randomly from the whole corpus.
We found that we could generate 32,760 distinct chunks in that way. For
each of this randomly generated chunk, we calculated the unigram probability
distribution of the characters present in the chunk and with that information,
its cross entropy with the corpus. The cross entropy is then compared with

5 We will make the test bench we developed available to other researchers on request.

136

Siraj Shaikh
Rectangle

BHATTACHARYA ET AL

T (sec.) WPM (novice) WPM (expert)
0.5 3.46 6.62
1.0 2.27 3.31
1.5 1.69 2.21
2.0 1.35 1.65
2.5 1.12 1.32
3.0 0.96 1.10
Table 3

The novice and expert users performance predicted by the model

the entropy of the whole corpus. Among all the randomly generated chunk,
the chunk with minimum absolute difference between its cross entropy and
the entropy of the corpus was selected as the test bench.

7 Model Prediction

We have predicted the performance of the soft keyboard described in Section 5
using our model for both the novice and expert users. For novice users, the
performance in WPM is obtained by using Equation 12. To predict perfor-
mance of expert users, the CPS in Equation 10 was modified by removing
the RT component and substituting this modified CPS in Equation 12. The
predicted performance of the novice and expert users for different values of T
(the scan step) is summarized in Table 3.

7.1 Problem with Novice Performance Prediction

We have used the reaction time (RT) component of the Fitts-Digraph model
to predict the novice users performance. However, Sears et al [20] in their
work had demonstrated that the Hick-Hymans law used to predict RT for
a novice user is not an appropriate choice. Moreover, in the soft keyboard
layout described in Section 5, the character keys are organized into groups.
The scanning mechanism provides additional visual cue to the user on the
group organized interface. Clearly, prediction of RT in such situation using
Hick-Hymans law requires further investigation.

8 Conclusion

In this paper, we have described a model to automatically evaluate user per-
formance for a soft keyboard with scanning. We are presently performing
extensive user testing of the soft keyboard described in the paper to validate
our predictive model (i.e. how close the prediction is to observation). Even

137

Siraj Shaikh
Rectangle

BHATTACHARYA ET AL

though we are awaiting the test results, we can make some general comments
about the models ability.

Apart from the problem with prediction of novice performance, one impor-
tant factor not accounted for in the model is the users error. No matter what
the level of expertise achieved by the user, s/he is bound to make mistakes.
This is more so since the severely motion impaired users sometimes make
mistakes due to their involuntary muscle movements. Clearly, in the absence
of error, the model predictions are bound to be higher than the actual user
performance. Another limitation of the model is that it ignores learning time
[25] of an interface layout in its performance measure. These show that the
model considers only a few of all the human factors involved in the interaction
between a user and a soft keyboard interface with scanning. It is necessary to
identify and incorporate all these factors into the existing model to provide
accurate performance prediction of soft keyboard interfaces in general and for
motion impaired users in particular.

9 Acknowledgement

We thank our friends and colleagues at Communication Empowerment Labo-
ratory, II'T Kharagpur to help us in carrying out our research.

References

[1] Arnott, J. L. Text Entry in Augmentative and Alternative Communication.
Proceedings of Efficient Text Entry, 2005.

[2] Beukelman, R. D. and Mirenda, P. ”Augmentative and Alternative
Communication,” 2nd Eds. Baltimore, MD: Brookes publishing Co., 1998.

[3] Cook, A. M. and Hussey, S. M. ”Assistive Technologies: Principles and
Practice”. 2nd Eds. Mosby-Year Book, 2001.

[4] Fitts, P. M. The information capacity of the human motor system in controlling
the amplitude of movement. Journal of Experimental Psychology, 47(1954), 381-
391.

[5] Fitts, P. M. Information Capacity of Discret Motor esponses. Journal of
Experimental Psychology, 67(1964), 103-112.

[6] Harris, D. and Vanderheiden, G. C. ”Augmentative Communication
Techniques”. R.L. Schiefelbaush Eds. Baltimore: University Park Press, 1980.

[7] Hick, W. E. On the Rate of Gain of Information. Quarterly Journal of
Experimental Psychology, 4(1952), 11-36.

[8] Hyman, R. Stimulus Information as a Determinant of Reaction Time. Journal
of Experimental Psychology, 45(1953), 188-196.

138

Siraj Shaikh
Rectangle

BHATTACHARYA ET AL

[9] Johansen, A. S. and Hansen, J. P. Augmentative and Alternative
Communication: The Future of Text on the Move. Proceedings of the seventh
ERCIM workshop User Interface for All. Paris, France, 2002, pp 367-386.

[10] MacKenzie, I. S. Fitts Law as a Research and Design Tool in Human Computer
Interaction. HumanComputer Interaction, 7(1992), 91-139.

[11] MacKenzie, I S. and Buxton, W. Extending Fitts’ Law to Two-Dimensional
Tasks. In Bauersfeld, P., Bennett, J. Lynch, G. (ed.): Proceedings of the ACM
CHI 92 Human Factors in Computing Systems Conference. California, 1992,
219-226.

[12] MacKenzie, I. S. and Soukoreff, R. W. Text Entry for Mobile Computing: Models
and Methods, Theory and Practice. Human-Computer Interaction, 17(2002),
147-198.

[13] MacKenzie, I. S. and Soukoreff, R. W. Phrase sets for evaluating text entry
techniques. CHI 03 extended abstracts on Human factors in computing systems,
Ft. Lauderdale, Florida, US, 2003, 754—755.

[14] MacKenzie, I. S. and Zhang, S. X. The Design and Evaluation of a High
Performance Soft Keyboard. Proc. of CHI99, 1999, 25-31.

[15] MacKenzie, 1. S., Zhang, S. X. and Soukoreff, R. W. Text Entry using Soft
Keyboards. Behavior and Information Technology, 18(1999), 235-244.

[16] Manning, C and Schtze, H. ”Foundations of Statistical Natural Language
Processing”. MIT Press. Cambridge, MA, 1999.

[17] Mukherjee, A., Bhattacharya, S., Chakraborty, K. and Basu, A. Breaking the
Accessibility Barrier: Development of Special Computer Access Mechanisms for
the Neuro-Motor Disabled in India. Proceedings of the International Conference
on Human Machine Interfaces-2004 (ICHMI). Bangalore, India, 2004, 136-142.

[18] Mukherjee, A., Bhattacharya, S., Halder, P. and Basu, A. A Virtual Predictive
Keyboard as a Learning Aid for People with Neuro-motor Disorders. Proc. 5th
IEEE Int. Con. on Advanced Learning Technology (ICALT), 2005.

[19] Oneill, P., Roast, C. and Hawley, M. Evaluation of scanning user interfaces using
realtime-data usage logs. Proceedings of the Fourth Annual ACM Conference on
Assistive Technologies. ACM, 2000, 137-141.

[20] Sears, A., Jacko, J. A., Chung, J. C. and Moro, F. The role of visual search in
the design of effective soft keyboards. In Behaviour and Information Technology
- BIT, 20(2001). pp. 159-166.

[21] Soukoreff, W. and MacKenzie, I. S. Theorectical upper and lower bounds
on typing speed using a stylus and soft keyboard. Behaviour Information
Technology, 14(1995), 370-379.

[22] Stephanidis, C. and Emiliani, P. L. Design for all in the TIDE ACCESS project.
Proceedings of the 8rd TIDE Congress. Vol. 4, 1998.

139

Siraj Shaikh
Rectangle

140

BHATTACHARYA ET AL

[23] Steriadis, C. E. and Constantinou, P. Designing Human-Computer Interfaces
for Quadriplegic People. ACM Transactions on Computer-Human Interaction,
10(2003), 87-118.

[24] Zhai, S., Hunter, M. and Smith, B. A. Performance Optimization of Virtual
Keyboards. Human-Computer Interaction, 17(2002), 89-129.

[25] Zhai, S., Sue, A. and Accot, J. Movement Model, Hits Distribution and Learning
in Virtual Keyboarding. Proceedings of CHI-2002, Minneapolis, Minnesota, US,
2002, 17-24.

[26] Zhang, S. X. ”A High Performance Soft Keyboard for Mobile Systems”.
Unpublished Master of Science Thesis, University of Guleph, Ontario, Canad,
1998.

Siraj Shaikh
Rectangle

	Introduction
	Case Study: A Conference System
	Scenario
	Web Interface

	Modelling User Behaviour
	Expressing Ideas
	Establishing contacts
	Gathering Information

	Initial System Design
	Model of User Privileges
	Model of the Web Interface
	Overall System Model

	Improving the System Design
	Constraining the User Behaviour
	Analysis of the Initial Design
	Introducing a timeout
	Introducing authentication

	Conclusion
	References
	1B-Ruksenas.pdf
	Introduction
	The Cognitive Architecture in SAL
	Verification of Security Aspects in User Interaction
	Correctness properties: usability and security
	User error and security

	A Case Study: Authentication Interface
	An Authentication Interface
	A User Model
	User Interpretation
	Verification

	Conclusion
	References

	2A-Gibson.pdf
	Introduction
	E-voting: background and motivation
	The B Method
	E-voting: formal methods, correctness and security

	Critical system development: formality and security
	Valid Votes: a STV case study
	Overview of the typical counting algorithm
	Requirements for valid votes
	Validating votes in a typical implementation architecture

	Informal software design for vote validity
	The rapid prototyping approach
	Design1: the simplest interface
	Poor design may lead to security risks
	Design2: a more sophisticated, incorrect, interface design
	The risk of feature interactions in design
	Design3: a more sophisticated, correct interface design

	Formal software design for vote validity
	Incremental development and refinement
	Design1: the simplest interface
	Enriching the interface: Design2 and Design3

	The semi-automated proof process
	Conclusions and Future Work
	References

	2A-Gibson.pdf
	Introduction
	E-voting: background and motivation
	The B Method
	E-voting: formal methods, correctness and security

	Critical system development: formality and security
	Valid Votes: a STV case study
	Overview of the typical counting algorithm
	Requirements for valid votes
	Validating votes in a typical implementation architecture

	Informal software design for vote validity
	The rapid prototyping approach
	Design1: the simplest interface
	Poor design may lead to security risks
	Design2: a more sophisticated, incorrect, interface design
	The risk of feature interactions in design
	Design3: a more sophisticated, correct interface design

	Formal software design for vote validity
	Incremental development and refinement
	Design1: the simplest interface
	Enriching the interface: Design2 and Design3

	The semi-automated proof process
	Conclusions and Future Work
	References

	2B-Beuster.pdf
	Introduction
	Related Work
	Notation
	Formal Definition of User Interface Integrity
	Guaranteeing Integrity
	Specification of Secure Interactive Applications
	Verification
	Conclusions and Future Work
	References

	3A-Bowen.pdf
	Introduction
	User-Centred Design Artefacts
	Formal Methods and Refinement
	Refinement

	Integration of Techniques
	Presentation Model
	Syntax
	Semantics

	Example
	Using the Presentation Model
	Presentation Models and Refinement
	Presentation Models and Design Equivalence
	Presentation Models and Design Consistency

	Limitations and Extensions
	Conclusion
	References

	3B-Sinnig.pdf
	Introduction
	Overall Framework
	Background
	Use Case Models
	Task Models
	Use Cases vs. Task Models: A Comparison

	Semantic Domains for Use Cases and Task Models
	Related work
	Requirements for a Semantic Framework
	Semantic Domain Based on Sets of Posets

	Conclusion and Future Work
	References

	4A-Barbosa.pdf
	Introduction
	Coordination
	CNUCE Interactors
	Interactors and coordination
	Interfaces
	Generic Process Algebra
	Connectors
	Combinators
	Configurations

	An Example
	Conclusions and Future Work
	References

	4B-Bhattacharya.pdf
	Introduction
	Related Work
	Assumptions and Constant Values used for Model Prediction

	Applicability of the Model to the Soft Keyboards with Scanning
	The Scanning Mechanisms

	Incorporating Scanning in the Model
	Assumptions about the Soft Keyboard Layout
	Calculating Focus Movement Time

	System used for Model Validation
	Special Rows
	Special keys to Handle Scan Error

	Language Issues in the Model Prediction and Validation
	Generation of Bengali Digraph Probability Tablewe will make the table available to other researchers on request.
	Estimation of Average Bengali Word Length
	Test Bench GenerationWe will make the test bench we developed available to other researchers on request.

	Model Prediction
	Problem with Novice Performance Prediction

	Conclusion
	Acknowledgement
	References

